Verification — Lecture 19
Symbolic Model Checking (2)

Bernd Finkbeiner — Sven Schewe
Rayna Dimitrova — Lars Kuhtz — Anne Proetzsch

Wintersemester 2007/2008

REVIEW

Ordered Binary Decision Diagram

e Binary decision diagram (OBDD) is a directed graph over (X, <) with:
— each leaf v is labeled with a boolean value val(v) € {0,1}
— non-leaf v is labeled by a boolean variable Var(v) € X
— such that for each non-leaf v and vertex w:
w € { left(v), right(v) } = (Var(v) < Var(w) VvV wis a leaf)
= An OBDD is acyclic
— fg for OBDD B is obtained as for BDTs

Bernd Finkbeiner Verification — Lecture 19 1

REVIEW

Shannon expansion

e Each boolean function f : B® — B can be written as:

flxy,....xn) = (x; A flr;:=1]) V (—x; A flz; :=0])

— where f[z; := 1] stands for f(x1, ..., xi—1, 1, Zit1,. .., Ty)
— and f[z; := 0] is a shorthand for f(z1,...,zi—1,0,Zit1,...,Tyn)

e The boolean function fg(v) represented by vertex v in BDT B is:

— for v aleaf: fg(v) = val(v)
— otherwise:

fe(v) = (Var(v) A fe(right(v))) Vv (- Var(v) A fg(left(v)))

e fz = fg(v) where v is the root of B

Bernd Finkbeiner Verification — Lecture 19 2

REVIEW

Reduced OBDDs
OBDD B over (X, <) is called reduced iff:

1. for each leaf v, w: (val(v) = vallw)) = v=w

= identical terminal vertices are forbidden

2. for each non-leaf v: left(v) # right(v)

= non-leafs may not have identical children

3. for each non-leaf v, w:
(Var(v) = Var(w) A right(v) = right(w) A left(v) = lefllw)) = v=w

= vertices may not have isomorphic sub-dags

Bernd Finkbeiner Verification — Lecture 19 3

REVIEW

Dynamic generation of ROBDDs

Main idea:
e Construct directly an ROBDD from a boolean expression

e Create vertices in depth-first search order

e On-the-fly reduction by applying hashing

— on encountering a new vertex v, check whether:
— an equivalent vertex w has been created (same label and children)
— left(v) = right(v), i.e., vertex v is a “don’t care” vertex

Bernd Finkbeiner Verification — Lecture 19 4

REVIEW

ROBDDs are canonical

[Fortune, Hopcroft & Schmidt, 1978]

For ROBDDs B and B’ over (X, <) we have:

(fs = fa) implies B and B’ are isomorphic

= for a fixed variable ordering, any boolean function
can be uniquely represented by an ROBDD (up to isomorphism)

Bernd Finkbeiner Verification — Lecture 19 5

REVIEW
The importance of canonicity

Absence of redundant vertices

— if fg does not depend on z;, ROBDD B does not contain an z; vertex

Test for equivalence: f(x1,...,z,) = g(x1, ..., 2,)?

— generate ROBDDs By and B, and check isomorphism

Test for validity: f(x1,...,2,) =17

— generate ROBDD By and check whether it only consists of a 1-leaf

Test for implication: f(z1,...,2,) = g(x1,...,2,)?

— generate ROBDD B A =B, and check if it just consist of a 0-leaf

Test for satisfiability

— f is satisfiable if and only if B is not just the 0-leaf

Bernd Finkbeiner Verification — Lecture 19 6

REVIEW

Variable ordering
The size of the ROBDD depends on the variable ordering

For some functions, very compact ROBDDs may be obtained

— e.g., the even parity function

Some boolean functions have linear and exponential ROBDDs

— e.g., the addition function, or the stable function

Some boolean functions only have polynomial ROBDDs

— this holds, e.g., for symmetric functions (see next)
— examples f(...) =xz1 D ... B x,, 0r f(...) = 1iff > k variables x; are true

Some boolean functions only have exponential ROBDDs
— this holds, e.g., for the multiplication function, cf. (Bryant, 1986)

Bernd Finkbeiner Verification — Lecture 19 7

REVIEW

Operations on ROBDDs

Algorithm Inputs Output ROBDD
REDUCE B (not reduced) B’ (reduced) with fg = fg/
NoT Bf B_.f
APPLY By, By, binary logical operatorop By gp 4
RESTRICT By, variable x, boolean value b B fla:=b]
RENAME By, variables = and y B flz:=y]
EXISTS B, variable x Baz. s
Bernd Finkbeiner Verification — Lecture 19 8
REVIEW
Negation

negation amounts to interchange the 0- and 1-leaf

Bernd Finkbeiner Verification — Lecture 19 9

REVIEW

APPLY

e Shannon expansion for binary operations:

fopg = (@1 A (flz1 == 1] op g[z1 := 1]))
V (—z1 A (f[x1:=0] op g[xz1 :=0]))

e A top-down evaluation scheme using the Shannon’s expansion:

— let v be the variable highest in the ordering occurring in B orB,

— split the problem into subproblems for v := 0 and v := 1, and solve recursively
— at the leaves, apply the boolean operator op directly

reduce afterwards to turn the resulting OBDD into an ROBDD

e Efficiency gain is obtained by dynamic programming
— the time complexity of constructing the ROBDD of By gp ,isin O (| By [-| By)

Bernd Finkbeiner Verification — Lecture 19 10

REVIEW

Conjunction

@ (b) (©)

performing APPLY(A, By, Buidare), i-€., compute fBleft A I8, aiie

Bernd Finkbeiner Verification — Lecture 19 11

REVIEW

Algorithm RESTRICT(B, z, b)

e For each vertex v labeled with variable z:

— if b = 1 then redirect incoming edges to right(v)
— if b = 0 then redirect incoming edges to left(v)
— remove vertex v, and (if necessary) reduce (only above v)

Bernd Finkbeiner Verification — Lecture 19 12

REVIEW

RESTRICT

performing RESTRICT(B, z2, 1): replace x2 by constant 1

Bernd Finkbeiner Verification — Lecture 19 13

REVIEW

EXISTS

Existential quantification over x;:

Jzi. f(@1,.. ., 20) = flwi:=1] V flz; =0

Naive realization: APPLY(V, RESTRICT(By,z;,1), RESTRICT(By, z;,0))

Efficiency gain:

— observe that RESTRICT(By, x;, 1) and RESTRICT(By, x;, 0) are equal up to z;
— ... the resulting ROBDD also has the same structure up to z;
— replace each node labeled with x; by the result of applying Vv on its children

This can easily be generalized to Jx;. ... dzk. f(x1,...z,)

Bernd Finkbeiner Verification — Lecture 19 14

REVIEW

A more involved example

ROBBDs B (left up), Bf[mz:o] (right up), By (left down), and B3z, £ (right down)

xo:=1]

Bernd Finkbeiner Verification — Lecture 19 15

REVIEW

Operations on ROBDDs

Algorithm Output Time complexity Space complexity

REDUCE B’ (reduced) with fs = fzr O(|By|-log |Bf|) O(|B¢])

NoT B/ O(|By|) O(IBy|)
APPLY Bfopyg O([Byl-[Bg) O(IBy]-[Byl)
RESTRICT Bp—y O(|Byl) O(Byl)
RENAME Bjp.y O(IByl) O(IB¢l)
EXISTS B3, 5 O(|Bs|?) O(IBs|*)

operations are only efficient if f and g have compact ROBDD representations

Bernd Finkbeiner Verification — Lecture 19 16

Computing Sat(®) symbolically
Input: CTL-formula ® in ENF
OUtpUt.’ ROBDD BSat(@)

switch(®):
true : return CONST(1);
false : return CONST(0);
T; : return ROBDD By for f(x1,...,z,) = x;;
- : return NOT(bddSat(V))
Dy N Dy : return APPLY(A, bddSat(®,), bddSat(P-))
JOv : return bddEX(V);
F(P,UPy) : return bddEU(P,, P5)
IO v : return bddEG(V)
end switch

Bernd Finkbeiner Verification — Lecture 19 17

REVIEW

Boolean Transition Systems

finite set of boolean variables: V'

initial condition 6: boolean function over V'

transitions represented by transition relation:
boolean function p over V.U V'

— V: values in present state
— V': values in next state

Atomic propositions AP = V.

Bernd Finkbeiner Verification — Lecture 19 18

The next-step operator

Sat(O®) = {qeQ]3¢. (¢,¢) € Eand ¢ € Sat(®) }

Input: CTL-formula ® in ENF
OUtpUt.' ROBDD BSat(O@)

B := bddSat(®); (* Sat(®) *)
B := RENAME(B, z1, ..., Zn, T}, ..., 2]);

B := APPLY(A, B,, B); (* Pre(Sat(®)) *)
return EXISTS(B, 2, ..., z)

Bernd Finkbeiner Verification — Lecture 19 19

Existential until

Input: CTL-formulas ®, ¥ in ENF

Output: ROBDD Bz Uy

var N, P, B : ROBDD,;
N := bddSat(V);
P := CONST(0);
B := bddSat(®);
while (N # P) do
P:=N,
N := RENAME(N, z1, .
N := APPLY(A, B,, N);
N := ExISTS(N, z', ...,z);
N
N

!/ !\,
S O L 1

:= APPLY(A, N, B);
:= APPLY(V, P,N);
od
return N

Bernd Finkbeiner Verification — Lecture 19

(T
(* Pre(T3) ™)

(* Pre(T;) N Sat(®) *)
(* T’L’—l—l = Tz U...... *)

20

Possibly always

Input: CTL-formula ® in ENF
Oul‘put.‘ ROBDD BSat(ED ®)

var N, P, B : ROBDD,;
B := bddSat(®);
N := B;
P := CONST(0);
while (N # P) do
P:=N;
N := RENAME(N, z1, ..
N := APPLY(A, B,, N);
N := ExISTS(N, ', ...,z);
N
N

!/ !\
Sy Ty Ty e ey X))

:= APPLY(A, N, B);
:= APPLY(A, P, N);
od
return N

Bernd Finkbeiner Verification — Lecture 19

(T
(* Pre(T3) ™)

(* Pre(T;) N Sat(®) *)
(* T’L’—l—l = Tz N...... *)

21

OBDDs versus deterministic automata

each OBDD B is a deterministic automaton Ag with f5 ' (1) = L(Ag)

Bernd Finkbeiner Verification — Lecture 19 22

Analogies between ROBDDs and deterministic
automata
e Forlanguage L, a minimized automaton is unique up to isomorphism
— for a given variable ordering <, and function f, an ROBDD is unique upto =

e [, = L'? can be checked by verifying isomorphism of their automata

— f = f'? for boolean functions can be checked by verifying By = B
= in both cases, efficient algorithms do exist for this

o [+ o? = is there a reachable accept state?

— is f satisfiable? = its ROBDD has a reachable leaf 1

e Union, intersection, and complementation on det. automata is
efficient

— disjunction, conjunction, and negation on ROBDDs are efficient

Bernd Finkbeiner Verification — Lecture 19 23

Implementation relations

e A binary relation on transition systems

— when does a transition systems correctly implements another?

e Important for system synthesis

— stepwise refinement of a system specification S into an “implementation” S’

e Important for system analysis

— use the implementation relation as a means for abstraction
— replace S |= p by S’ |= ¢ where | S'| << | S| such that:

SEpiffSEe oo SEp = Sk
= Focus on state-based bisimulation and simulation

— logical characterization: which logical formulas are preserved by bisimulation?

Bernd Finkbeiner Verification — Lecture 19 24

Bisimulation equivalence

Let S; = (Qi, Qo.i, i, Li), i=1, 2, be two state graphs over AP.
A bisimulation for (Sy, S2) is a binary relation R C @1 x Q5 such that:

1. Vg1 € Qo.13¢2 € Qo2 (q1,92) € R and
Vg2 € Qo231 € Qo1- (g1,92) ER

2. for all states q; € Q1, g2 € Q2 With (q1, g2) € R it holds:
(@) Li(q1) = L2(qg2)
(b) if ¢} € Successors(q1) then there exists ¢, € Successors(qz) with (¢}, ¢5) € R
(c) if g5 € Successors(qz) then there exists q; € Successors(q:) with (¢, ¢5) € R

S1 and Sy are bisimilar, denoted S; ~ Sy, if there exists a bisimulation for (Sy, S2)

Bernd Finkbeiner Verification — Lecture 19 25

Bisimulation equivalence

can be completed to

and

q1

can be completed to
@ — g

Bernd Finkbeiner Verification — Lecture 19

Q2—>QQ

Q1—>ql1
R R

CI2—>QQ

26

Example (1)

R = {(80, to), (s1,t1), (s2, t2), (s2,t3), (s3, t4)}

is a bisimulation for (S;, S2) where AP = { pay, beer, sprite }

Bernd Finkbeiner Verification — Lecture 19

27

Example (2)

sprite }

S; ¢ S; for AP = { pay, beer, sprite }

But: { (SOa U'O)a (Sla u1)7 (817 U,2), (827 ’LL3), (82a ’U,4), (33a U,3), (33a U4) }

is a bisimulation for (Si, S3) for AP = { pay, drink }

Bernd Finkbeiner Verification — Lecture 19 28

~ is an equivalence

For any transition systems S, S;, S, and S3 over AP:
S ~ S (reflexivity)
S1 ~ Sy implies S; ~ S; (symmetry)

Sl ~ 82 and 82 ~ 83 Imp|leS Sl ~ 83 (transitivity)

Bernd Finkbeiner Verification — Lecture 19 29

Bisimulation on paths

Whenever we have:

So — 81 — S92 —» 83 —7 S4......
R
to

this can be completed to
S — S1 — SS9 — 83 — S4......
R R R R R

to — t1 — to — t3 — tg......

proof: by induction on index ¢ of state s;

Bernd Finkbeiner Verification — Lecture 19 30

Bisimulation vs. trace equivalence

S ~ Sy implies Traces(S;) = Traces(S,)

bisimilar transition systems thus satisfy the same LT properties!

Bernd Finkbeiner Verification — Lecture 19 31

Bisimulation on states
R C S x Sis a bisimulationon Sif for any (q1, g2) € R:
® L(q1) = L(q2)
e if g; € Successors(q1) then there exists an ¢, € Successors(q2) with (g7, ¢5) € R

e if g, € Successors(qz) then there exists an q; € Successors(qi) with (g7, ¢5) € R

q1 and qg» are bisimilar, g1 ~s g2, if (q1, g2) € R for some bisimulation R for S

q1 ~s q2 ifandonlyif S, ~ S,

Bernd Finkbeiner Verification — Lecture 19 32

Coarsest bisimulation

~ g is an equivalence and the coarsest bisimulation for S

Bernd Finkbeiner Verification — Lecture 19 33

Quotient state graph
For S = (Q, Qo, E, L) and bisimulation ~5 C .S x S on Slet

S/~s= (Q,Qp, E',L") be the quotient of S under ~
where
¢ @ =5/~s={ld~lqeQ}withig. = {d€Q|a~sq}
e Q={ld~1g€Qo}

o E'={(ld~ ¢]~) [(¢,d) € E}

e L'(lg]~) = L(qg)
notethat S ~ S/ ~g Why?

Bernd Finkbeiner Verification — Lecture 19 34

