Verification – Lecture 19 Symbolic Model Checking (2)

Bernd Finkbeiner – Sven Schewe Rayna Dimitrova – Lars Kuhtz – Anne Proetzsch

Wintersemester 2007/2008

REVIEW

Ordered Binary Decision Diagram

- Binary decision diagram (OBDD) is a directed graph over $\langle X, < \rangle$ with:
 - each leaf v is labeled with a boolean value $\mathit{val}(v) \in \{\ 0,1\ \}$
 - non-leaf v is labeled by a boolean variable $Var(v) \in X$
 - such that for each non-leaf v and vertex w:

```
w \in \{ \textit{ left}(v), \textit{right}(v) \} \ \Rightarrow \ (\textit{Var}(v) < \textit{Var}(w) \ \lor \ w \text{ is a leaf})
```

- \Rightarrow An OBDD is acyclic
 - $-f_{\rm B}$ for OBDD B is obtained as for BDTs

Shannon expansion

• Each boolean function $f: \mathbb{B}^n \longrightarrow \mathbb{B}$ can be written as:

$$f(x_1, ..., x_n) = (x_i \land f[x_i := 1]) \lor (\neg x_i \land f[x_i := 0])$$

- where $f[x_i := 1]$ stands for $f(x_1, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_n)$
- and $f[x_i := 0]$ is a shorthand for $f(x_1, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_n)$
- The boolean function $f_B(v)$ represented by vertex v in BDT B is:
 - for v a leaf: $f_B(v) = val(v)$
 - otherwise:

$$f_{\mathsf{B}}(v) = (\mathit{Var}(v) \land f_{\mathsf{B}}(\mathit{right}(v))) \lor (\neg \mathit{Var}(v) \land f_{\mathsf{B}}(\mathit{left}(v)))$$

• $f_{B} = f_{B}(v)$ where v is the root of B

Bernd Finkbeiner

Verification - Lecture 19

2

REVIEW

Reduced OBDDs

OBDD B over $\langle X, < \rangle$ is called *reduced* iff:

- 1. for each leaf v, w: $(val(v) = val(w)) \Rightarrow v = w$
 - ⇒ identical terminal vertices are forbidden
- 2. for each non-leaf v: $left(v) \neq right(v)$
 - ⇒ non-leafs may not have identical children
- 3. for each non-leaf v, w:

$$(\mathit{Var}(v) = \mathit{Var}(w) \land \mathit{right}(v) \cong \mathit{right}(w) \land \mathit{left}(v) \cong \mathit{left}(w)) \Rightarrow v = w$$

 \Rightarrow vertices may not have isomorphic sub-dags

Dynamic generation of ROBDDs

Main idea:

- Construct directly an ROBDD from a boolean expression
- Create vertices in depth-first search order
- On-the-fly reduction by applying hashing
 - on encountering a new vertex v, check whether:
 - an equivalent vertex w has been created (same label and children)
 - left(v) = right(v), i.e., vertex v is a "don't care" vertex

Bernd Finkbeiner Verification – Lecture 19 4

REVIEW

ROBDDs are canonical

[Fortune, Hopcroft & Schmidt, 1978]

For ROBDDs B and B' over $\langle X, < \rangle$ we have: $(f_{\mathsf{B}} = f_{\mathsf{B}'})$ implies B and B' are isomorphic

⇒ for a fixed variable ordering, any boolean function can be uniquely represented by an ROBDD (up to isomorphism)

The importance of canonicity

- Absence of redundant vertices
 - if f_B does not depend on x_i , ROBDD B does not contain an x_i vertex
- Test for equivalence: $f(x_1, \ldots, x_n) \equiv g(x_1, \ldots, x_n)$?
 - generate ROBDDs B_f and B_g , and check isomorphism
- Test for validity: $f(x_1, \ldots, x_n) = 1$?
 - generate ROBDD B_f and check whether it only consists of a 1-leaf
- Test for implication: $f(x_1, \ldots, x_n) \to g(x_1, \ldots, x_n)$?
 - generate ROBDD $B_f \wedge \neg B_g$ and check if it just consist of a 0-leaf
- Test for satisfiability
 - f is satisfiable if and only if B_f is not just the 0-leaf

Bernd Finkbeiner

Verification - Lecture 19

6

REVIEW

Variable ordering

- The size of the ROBDD depends on the variable ordering
- For some functions, very compact ROBDDs may be obtained
 - e.g., the even parity function
- Some boolean functions have linear and exponential ROBDDs
 - e.g., the addition function, or the stable function
- Some boolean functions only have polynomial ROBDDs
 - this holds, e.g., for symmetric functions (see next)
 - examples $f(\ldots) = x_1 \oplus \ldots \oplus x_n$, or $f(\ldots) = 1$ iff $\geqslant k$ variables x_i are true
- Some boolean functions only have exponential ROBDDs
 - this holds, e.g., for the multiplication function, cf. (Bryant, 1986)

Operations on ROBDDs

Algorithm	Inputs	Output ROBDD	
REDUCE	B (not reduced)	B' (reduced) with $f_B=f_{B'}$	
Nот	B_f	$B_{\lnot f}$	
APPLY	$B_f,B_g,binarylogicaloperator\mathit{op}$	B_f op g	
RESTRICT	B_f , variable x , boolean value b	$B_{f[x:=b]}$	
RENAME	B_f , variables x and y	$B_{f[x:=y]}$	
Exists	B_f , variable x	$B_{\exists x.\; f}$	

Bernd Finkbeiner Verification – Lecture 19 8

REVIEW

Negation

negation amounts to interchange the 0- and 1-leaf

APPLY

Shannon expansion for binary operations:

$$f \ \textit{op} \ \textit{g} = (x_1 \ \land \ (f[x_1 := 1] \ \textit{op} \ \textit{g}[x_1 := 1]))$$
 $\lor (\neg x_1 \ \land \ (f[x_1 := 0] \ \textit{op} \ \textit{g}[x_1 := 0]))$

- A top-down evaluation scheme using the Shannon's expansion:
 - let v be the variable highest in the ordering occurring in B_f or B_g
 - split the problem into subproblems for v:=0 and v:=1, and solve recursively
 - at the leaves, apply the boolean operator op directly
 - reduce afterwards to turn the resulting OBDD into an ROBDD
- Efficiency gain is obtained by dynamic programming
 - the time complexity of constructing the ROBDD of B $_f$ op $_g$ is in \mathcal{O} (| B $_f$ $|\cdot|$ B $_g$ |)

Bernd Finkbeiner Verification – Lecture 19 10

REVIEW

Conjunction

performing APPLY(\land , $\mathsf{B}_{\mathit{left}}$, $\mathsf{B}_{\mathit{middle}}$), i.e., compute $f_{\mathsf{B}_{\mathit{left}}} \land f_{\mathsf{B}_{\mathit{middle}}}$

Algorithm RESTRICT(B, x, b)

- For each vertex v labeled with variable x:
 - if b = 1 then redirect incoming edges to right(v)
 - if b = 0 then redirect incoming edges to left(v)
 - remove vertex v, and (if necessary) reduce (only above v)

Bernd Finkbeiner Verification – Lecture 19 12

REVIEW

RESTRICT

performing RESTRICT(B, $x_2, 1$): replace x_2 by constant 1

EXISTS

• Existential quantification over x_i :

$$\exists x_i. f(x_1,...,x_n) = f[x_i := 1] \lor f[x_i := 0]$$

- Naive realization: APPLY(\vee , RESTRICT($B_f, x_i, 1$), RESTRICT($B_f, x_i, 0$))
- Efficiency gain:
 - observe that $\mathsf{RESTRICT}(\mathsf{B}_f,\,x_i,\,1)$ and $\mathsf{RESTRICT}(\mathsf{B}_f,\,x_i,\,0)$ are equal up to x_i
 - $-\ldots$ the resulting ROBDD also has the same structure up to x_i
 - replace each node labeled with x_i by the result of applying \vee on its children
- This can easily be generalized to $\exists x_1, \ldots \exists x_k, f(x_1, \ldots x_n)$

Bernd Finkbeiner Verification – Lecture 19 14

REVIEW

A more involved example

ROBBDs B_f (left up), $B_{f[x_2:=0]}$ (right up), $B_{f[x_2:=1]}$ (left down), and $B_{\exists x_2, f}$ (right down)

Operations on ROBDDs

Algorithm	Output	Time complexity	Space complexity
REDUCE	B' (reduced) with $f_B = f_{B'}$	$\mathcal{O}(B_f \cdot \log B_f)$	$\mathcal{O}(B_f)$
Nот	$B_{\lnot f}$	$\mathcal{O}(B_f)$	$\mathcal{O}(B_f)$
A PPLY	B_f op g	$\mathcal{O}(B_f \!\cdot\! B_g)$	$\mathcal{O}(B_f {\cdot} B_g)$
RESTRICT	$B_{f[x:=b]}$	$\mathcal{O}(B_f)$	$\mathcal{O}(B_f)$
RENAME	$B_{f[x:=y]}$	$\mathcal{O}(B_f)$	$\mathcal{O}(B_f)$
Exists	$B_{\exists x.f}$	$\mathcal{O}(B_f ^2)$	$\mathcal{O}(B_f ^2)$

operations are only efficient if f and g have compact ROBDD representations

Bernd Finkbeiner Verification – Lecture 19 16

Computing $Sat(\Phi)$ symbolically

Input: CTL-formula Φ in ENF

Output: ROBDD $B_{Sat(\Phi)}$

```
switch(\Phi):
```

true : $\mathbf{return} \ \mathsf{Const}(1);$

 x_i : return ROBDD B_f for $f(x_1, \ldots, x_n) = x_i$;

 $\neg \underline{\Psi} \qquad \qquad : \quad \textbf{return Not}(\textit{bddSat}(\underline{\Psi}))$

 $\Phi_1 \wedge \Phi_2$: return $APPLY(\wedge, bddSat(\Phi_1), bddSat(\Phi_2))$

 $\exists \bigcirc \Psi$: return $bddEX(\Psi)$;

 $\exists (\Phi_1 \cup \Phi_2)$: return $bddEU(\Phi_1, \Phi_2)$

 $\exists \Box \Psi$: return $bddEG(\Psi)$

end switch

Boolean Transition Systems

- finite set of boolean variables: V
- initial condition θ : boolean function over V
- transitions represented by transition relation: boolean function ρ over $V \cup V'$
 - V: values in present state
 - V': values in next state
- Atomic propositions AP = V.

Bernd Finkbeiner

Verification - Lecture 19

18

The next-step operator

$$Sat(\bigcirc \Phi) = \{ q \in Q \mid \exists q'. (q, q') \in E \text{ and } q' \in Sat(\Phi) \}$$

Input: CTL-formula Φ in ENF Output: ROBDD $B_{Sat(\bigcap \Phi)}$

$$\begin{split} \mathbf{B} &:= \mathit{bddSat}(\Phi); & (*\mathit{Sat}(\Phi) *) \\ \mathbf{B} &:= \mathsf{RENAME}(\mathbf{B}, x_1, \dots, x_n, x_1', \dots, x_n'); \\ \mathbf{B} &:= \mathsf{APPLY}(\wedge, \mathbf{B}_\rho, \mathbf{B}); & (*\mathit{Pre}(\mathit{Sat}(\Phi)) *) \\ \mathbf{return} \ \mathsf{Exists}(\mathbf{B}, x_1', \dots, x_n') & \end{split}$$

Existential until

 $\begin{array}{l} \textit{Input:} \; \mathsf{CTL}\text{-}\mathsf{formulas}\; \Phi, \textcolor{red}{\Psi} \; \mathsf{in} \; \mathsf{ENF} \\ \textit{Output:} \; \mathsf{ROBDD}\; B_{\mathit{Sat}(\exists(\Phi\;\mathsf{U}\; \textcolor{red}{\Psi}))} \end{array}$

```
var N, P, B : ROBDD;
N := bddSat(\Psi);
P := Const(0);
B := bddSat(\Phi);
while (N \neq P) do
   P := N;
                                                                                             (*T_i*)
  N := RENAME(N, x_1, ..., x_n, x'_1, ..., x'_n);
                                                                                      (* Pre(T_i) *)
  N := Apply(\Lambda, B_{\rho}, N);
  N := \mathsf{EXISTS}(\mathsf{N}, x_1', \dots, x_n');
                                                                        (* Pre(T_i) \cap Sat(\Phi) *)
  N := APPLY(\land, N, B);
                                                                       (^{\star} T_{i+1} = T_i \cup \ldots \cdot ^{\star})
  N := APPLY(\lor, P, N);
od
return N
```

Verification - Lecture 19

Possibly always

Input: CTL-formula Φ in ENF Output: ROBDD $B_{Sat}(\exists \Box \Phi)$

Bernd Finkbeiner

```
var N, P, B: ROBDD;
B := bddSat(\Phi);
N := B;
P := Const(0);
while (N \neq P) do
                                                                                               (*T_i*)
   P := N;
  \mathsf{N} := \mathsf{RENAME}(\mathsf{N}, x_1, \dots, x_n, x_1', \dots, x_n');
  N := APPLY(\Lambda, B_{\rho}, N);
                                                                                         (* Pre(T_i) *)
  N := \mathsf{EXISTS}(N, x_1', \dots, x_n');
                                                                          (* Pre(T_i) \cap Sat(\Phi) *)
  N := APPLY(\land, N, B);
                                                                         (^*T_{i+1} = T_i \cap \ldots \quad ^*)
  N := APPLY(\Lambda, P, N);
od
return N
```

Bernd Finkbeiner

20

OBDDs versus deterministic automata

each OBDD B is a deterministic automaton $A_{\rm B}$ with $f_{\rm B}^{-1}(1) = L(A_{\rm B})$

Bernd Finkbeiner Verification – Lecture 19 22

Analogies between ROBDDs and deterministic automata

- ullet For language L, a minimized automaton is unique up to isomorphism
 - for a given variable ordering <, and function f, an ROBDD is unique upto \cong
- ullet L=L'? can be checked by verifying isomorphism of their automata
 - -f=f'? for boolean functions can be checked by verifying $B_f\cong B_{f'}$
 - ⇒ in both cases, efficient algorithms do exist for this
- $L \neq \varnothing$? \equiv is there a reachable accept state?
 - is f satisfiable? \equiv its ROBDD has a reachable leaf 1
- Union, intersection, and complementation on det. automata is efficient
 - disjunction, conjunction, and negation on ROBDDs are efficient

Implementation relations

- A binary relation on transition systems
 - when does a transition systems correctly implements another?
- Important for system synthesis
 - stepwise *refinement* of a system specification S into an "implementation" S'
- Important for system analysis
 - use the implementation relation as a means for abstraction
 - replace $S \models \varphi$ by $S' \models \varphi$ where $|S'| \ll |S|$ such that:

$$S \models \varphi \text{ iff } S' \models \varphi \text{ or } S' \models \varphi \Rightarrow S \models \varphi$$

- ⇒ Focus on state-based *bisimulation* and *simulation*
 - logical characterization: which logical formulas are preserved by bisimulation?

Bernd Finkbeiner Verification – Lecture 19 24

Bisimulation equivalence

Let $S_i = (Q_i, Q_{0,i}, E_i, L_i)$, i=1, 2, be two state graphs over AP.

A *bisimulation* for (S_1, S_2) is a binary relation $\mathcal{R} \subseteq Q_1 \times Q_2$ such that:

- 1. $\forall q_1 \in Q_{0,1} \, \exists q_2 \in Q_{0,2}. \, (q_1, q_2) \in \mathcal{R}$ and $\forall q_2 \in Q_{0,2} \, \exists q_1 \in Q_{0,1}. \, (q_1, q_2) \in \mathcal{R}$
- 2. for all states $q_1 \in Q_1$, $q_2 \in Q_2$ with $(q_1, q_2) \in \mathcal{R}$ it holds:
 - (a) $L_1(q_1) = L_2(q_2)$
 - (b) if $q_1' \in \mathit{Successors}(q_1)$ then there exists $q_2' \in \mathit{Successors}(q_2)$ with $(q_1', q_2') \in \mathcal{R}$
 - (c) if $q_2' \in \mathit{Successors}(q_2)$ then there exists $q_1' \in \mathit{Successors}(q_1)$ with $(q_1', q_2') \in \mathcal{R}$ S_1 and S_2 are bisimilar, denoted $S_1 \sim S_2$, if there exists a bisimulation for (S_1, S_2)

Bisimulation equivalence

$$q_1 \rightarrow q_1'$$
 $q_1 \rightarrow q_1'$ \mathcal{R} can be completed to \mathcal{R} \mathcal{R} $q_2 \rightarrow q_2'$

and

$$q_1$$
 $q_1 o q_1'$ $q_1 o q_1'$ $q_2 o q_2'$ can be completed to $q_2 o q_2'$

Bernd Finkbeiner Verification – Lecture 19 26

Example (1)

$$\mathcal{R} = \Big\{ (s_0, t_0), (s_1, t_1), (s_2, t_2), (s_2, t_3), (s_3, t_4) \Big\}$$

is a bisimulation for (S_1, S_2) where $AP = \{ pay, beer, sprite \}$

Example (2)

 $S_1 \nsim S_3$ for $AP = \{ pay, beer, sprite \}$

But: $\{(s_0, u_0), (s_1, u_1), (s_1, u_2), (s_2, u_3), (s_2, u_4), (s_3, u_3), (s_3, u_4)\}$ is a bisimulation for (S_1, S_3) for $AP = \{pay, drink\}$

Bernd Finkbeiner Verification – Lecture 19 28

\sim is an equivalence

For any transition systems S, S₁, S₂ and S₃ over AP:

 $S \sim S$ (reflexivity)

 $S_1 \sim S_2$ implies $S_2 \sim S_1$ (symmetry)

 $\mathcal{S}_1 \sim \mathcal{S}_2$ and $\mathcal{S}_2 \sim \mathcal{S}_3$ implies $\mathcal{S}_1 \sim \mathcal{S}_3$ (transitivity)

Bisimulation on paths

Whenever we have:

$$s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow s_4 \dots$$
 \mathcal{R}
 t_0

this can be completed to

$$s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow s_4 \dots$$
 $\mathcal{R} \qquad \mathcal{R} \qquad \mathcal{R} \qquad \mathcal{R} \qquad \mathcal{R}$
 $t_0 \rightarrow t_1 \rightarrow t_2 \rightarrow t_3 \rightarrow t_4 \dots$

proof: by induction on index i of state s_i

Bernd Finkbeiner Verification – Lecture 19 30

Bisimulation vs. trace equivalence

$$S_1 \sim S_2$$
 implies $\mathit{Traces}(S_1) = \mathit{Traces}(S_2)$

bisimilar transition systems thus satisfy the same LT properties!

Bisimulation on states

 $\mathcal{R} \subseteq S \times S$ is a *bisimulation* on S if for any $(q_1, q_2) \in \mathcal{R}$:

- $\bullet \ L(q_1) = L(q_2)$
- $\bullet \ \ \text{if} \ q_1' \in \textit{Successors}(q_1) \ \text{then there exists an} \ q_2' \in \textit{Successors}(q_2) \ \text{with} \ (q_1', q_2') \in \mathcal{R}$
- if $q_2' \in Successors(q_2)$ then there exists an $q_1' \in Successors(q_1)$ with $(q_1', q_2') \in \mathcal{R}$ q_1 and q_2 are *bisimilar*, $q_1 \sim_{\mathcal{S}} q_2$, if $(q_1, q_2) \in \mathcal{R}$ for some bisimulation \mathcal{R} for \mathcal{S}

$$q_1 \; \sim_{\mathcal{S}} \; q_2 \; \; \; ext{if and only if} \; \; \mathcal{S}_{q_1} \; \sim \; \mathcal{S}_{q_2}$$

Bernd Finkbeiner Verification – Lecture 19 32

Coarsest bisimulation

 $\sim_{\mathcal{S}}$ is an equivalence and the coarsest bisimulation for \mathcal{S}

Quotient state graph

For $S = (Q, Q_0, E, L)$ and bisimulation $\sim_S \subseteq S \times S$ on S let

$$S/\sim_S = (Q', Q_0', E', L')$$
 be the *quotient* of S under \sim_S

where

- $\bullet \ \ Q' = S/\!\sim_{\mathcal{S}} \ = \ \{ \ [q]_{\sim} \ | \ q \in Q \ \} \ \text{with} \ [q]_{\sim} \ = \ \{ \ q' \in Q \ | \ q \sim_{\mathcal{S}} q' \ \}$
- $Q_0' = \{ [q]_{\sim} \mid q \in Q_0 \}$
- $E' = \{([q]_{\sim}, [q']_{\sim}) \mid (q, q') \in E\}$
- $L'([q]_{\sim}) = L(q)$

note that $S \sim S/\sim_S$ Why?