Verification – Lecture 20 Bisimulation

Bernd Finkbeiner – Sven Schewe Rayna Dimitrova – Lars Kuhtz – Anne Proetzsch

Wintersemester 2007/2008

REVIEW

Bisimulation equivalence

Let $S_i = (Q_i, Q_{0,i}, E_i, L_i)$, i=1, 2, be two state graphs over AP.

A *bisimulation* for (S_1, S_2) is a binary relation $\mathcal{R} \subseteq Q_1 \times Q_2$ such that:

- 1. $\forall q_1 \in Q_{0,1} \,\exists q_2 \in Q_{0,2}. \, (q_1, q_2) \in \mathcal{R}$ and $\forall q_2 \in Q_{0,2} \,\exists q_1 \in Q_{0,1}. \, (q_1, q_2) \in \mathcal{R}$
- 2. for all states $q_1 \in Q_1$, $q_2 \in Q_2$ with $(q_1, q_2) \in \mathcal{R}$ it holds:
 - (a) $L_1(q_1) = L_2(q_2)$
 - (b) if $q_1' \in \mathit{Successors}(q_1)$ then there exists $q_2' \in \mathit{Successors}(q_2)$ with $(q_1', q_2') \in \mathcal{R}$
 - (c) if $q_2' \in \mathit{Successors}(q_2)$ then there exists $q_1' \in \mathit{Successors}(q_1)$ with $(q_1', q_2') \in \mathcal{R}$ S_1 and S_2 are bisimilar, denoted $S_1 \sim S_2$, if there exists a bisimulation for (S_1, S_2)

Bisimulation equivalence

$$q_1
ightharpoonup q_1'$$
 $q_1
ightharpoonup q_1'$ \mathcal{R} can be completed to \mathcal{R} \mathcal{R} $q_2
ightharpoonup q_2$

and

$$q_1$$
 $q_1 o q_1'$ $q_1 o q_1'$ $q_2 o q_2'$ can be completed to $q_2 o q_2'$

Bernd Finkbeiner Verification – Lecture 20 2

REVIEW

Example (1)

$$\mathcal{R} = \left\{ (s_0, t_0), (s_1, t_1), (s_2, t_2), (s_2, t_3), (s_3, t_4) \right\}$$

is a bisimulation for (S_1, S_2) where $AP = \{ pay, beer, sprite \}$

Example (2)

$$S_1 \nsim S_3$$
 for $AP = \{ pay, beer, sprite \}$

But:
$$\{(s_0, u_0), (s_1, u_1), (s_1, u_2), (s_2, u_3), (s_2, u_4), (s_3, u_3), (s_3, u_4)\}$$

is a bisimulation for (S_1, S_3) for $AP = \{pay, drink\}$

Bernd Finkbeiner Verification – Lecture 20 4

REVIEW

\sim is an equivalence

For any transition systems S, S₁, S₂ and S₃ over AP:

 $S \sim S$ (reflexivity)

 $S_1 \sim S_2$ implies $S_2 \sim S_1$ (symmetry)

 $\mathcal{S}_1 \sim \mathcal{S}_2$ and $\mathcal{S}_2 \sim \mathcal{S}_3$ implies $\mathcal{S}_1 \sim \mathcal{S}_3$ (transitivity)

Bisimulation on paths

Whenever we have:

$$s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow s_4 \dots$$
 \mathcal{R}
 t_0

this can be completed to

$$s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow s_4 \dots \dots$$
 $\mathcal{R} \qquad \mathcal{R} \qquad \mathcal{R} \qquad \mathcal{R} \qquad \mathcal{R}$
 $t_0 \rightarrow t_1 \rightarrow t_2 \rightarrow t_3 \rightarrow t_4 \dots \dots$

proof: by induction on index i of state s_i

Bernd Finkbeiner Verification – Lecture 20 6

REVIEW

Bisimulation vs. trace equivalence

$$S_1 \sim S_2$$
 implies $\mathit{Traces}(S_1) = \mathit{Traces}(S_2)$

bisimilar transition systems thus satisfy the same LT properties!

Bisimulation on states

 $\mathcal{R} \subseteq S \times S$ is a *bisimulation* on S if for any $(q_1, q_2) \in \mathcal{R}$:

- $\bullet \ L(q_1) = L(q_2)$
- ullet if $q_1' \in \mathit{Successors}(q_1)$ then there exists an $q_2' \in \mathit{Successors}(q_2)$ with $(q_1', q_2') \in \mathcal{R}$
- if $q_2' \in Successors(q_2)$ then there exists an $q_1' \in Successors(q_1)$ with $(q_1', q_2') \in \mathcal{R}$ q_1 and q_2 are *bisimilar*, $q_1 \sim_{\mathcal{S}} q_2$, if $(q_1, q_2) \in \mathcal{R}$ for some bisimulation \mathcal{R} for \mathcal{S}

 $q_1 \; \sim_{\mathcal{S}} \; q_2 \; \; \; ext{if and only if} \; \; \mathcal{S}_{q_1} \; \sim \; \mathcal{S}_{q_2}$

Bernd Finkbeiner Verification – Lecture 20 8

REVIEW

Coarsest bisimulation

 $\sim_{\mathcal{S}}$ is an equivalence and the coarsest bisimulation for \mathcal{S}

Bernd Finkbeiner Verification – Lecture 20 9

Quotient state graph

For $S = (Q, Q_0, E, L)$ and bisimulation $\sim_S \subseteq S \times S$ on S let

$$S/\sim_S = (Q', Q_0', E', L')$$
 be the *quotient* of S under \sim_S

where

- $Q' = S/\sim_S = \{ [q]_{\sim} \mid q \in Q \} \text{ with } [q]_{\sim} = \{ q' \in Q \mid q \sim_S q' \}$
- $Q_0' = \{ [q]_{\sim} \mid q \in Q_0 \}$
- $E' = \{([q]_{\sim}, [q']_{\sim}) \mid (q, q') \in E\}$
- $\bullet \ L'([q]_{\sim}) = L(q)$

note that $S \sim S/\sim_S$ Why?

Bernd Finkbeiner Verification – Lecture 20 10

The Bakery algorithm

$$P_1 :: \begin{bmatrix} \textbf{loop forever do} \\ & \textbf{noncritical} \\ n_1 : & y_1 := y_2 + 1 \\ w_1 : & \textbf{await } (y_2 = 0 \ \lor \ y_1 < y_2 \) \\ \textbf{c}_1 : & \textbf{critical} \\ & y_1 := 0 \end{bmatrix} \end{bmatrix} \quad || \quad P_2 :: \begin{bmatrix} \textbf{loop forever do} \\ & \textbf{noncritical} \\ n_1 : & y_2 := y_1 + 1 \\ w_1 : & \textbf{await } (y_1 = 0 \ \lor \ y_2 < y_1 \) \\ \textbf{c}_1 : & \textbf{critical} \\ & y_2 := 0 \end{bmatrix}$$

Example path fragment

process P_1	process P_2	y_1	y_2	effect
n_1	n_2	0	0	P_1 requests access to critical section
w_1	n_2	1	0	P_2 requests access to critical section
w_1	w_2	1	2	P_1 enters the critical section
c_1	w_2	1	2	P_1 leaves the critical section
n_1	w_2	0	2	P_1 requests access to critical section
w_1	w_2	3	2	P_2 enters the critical section
w_1	c_2	3	2	P_2 leaves the critical section
w_1	n_2	3	0	P_2 requests access to critical section
w_1	w_2	3	4	P_2 enters the critical section

Bernd Finkbeiner Verification – Lecture 20 12

Data abstraction

Function f maps a reachable state of S_{Bak} onto an abstract one in S_{Bak}^{abs}

Let $s=\langle \ell_1,\ell_2,y_1=b_1,y_2=b_2\rangle$ be a state of \mathcal{S}_{Bak} with $\ell_i\in\{n_i,w_i,c_i\}$ and $b_i\in\mathbb{I}\!\mathbb{N}$

Then:

$$f(s) \ = \begin{cases} \langle \ell_1, \ell_2, y_1 = 0, y_2 = 0 \rangle & \text{if } b_1 = b_2 = 0 \\ \langle \ell_1, \ell_2, y_1 = 0, y_2 > 0 \rangle & \text{if } b_1 = 0 \text{ and } b_2 > 0 \\ \langle \ell_1, \ell_2, y_1 > 0, y_2 = 0 \rangle & \text{if } b_1 > 0 \text{ and } b_2 = 0 \\ \langle \ell_1, \ell_2, y_1 > y_2 > 0 \rangle & \text{if } b_1 > b_2 > 0 \\ \langle \ell_1, \ell_2, y_1 > y_2 > 0 \rangle & \text{if } b_2 > b_1 > 0 \end{cases}$$

It follows: $\mathcal{R} = \{~(s,f(s)) \mid s \in S~\}$ is a bisimulation for $(\mathcal{S}_{Bak},\mathcal{S}_{Bak}^{abs})$

for any subset of \textit{AP} = \{\textit{noncrit}_i, \textit{wait}_i, \textit{crit}_i \mid i = 1, 2\}

Bisimulation quotient

$$S_{Bak}^{abs} = S_{Bak}/\sim \quad ext{for} \quad AP = \{ ext{ crit}_1, ext{ crit}_2 \}$$

Bernd Finkbeiner Verification – Lecture 20 14

Remarks

- Data abstraction yields a bisimulation relation
 - in this example; typically a simulation relation is obtained
- ullet $S_{Bak}^{abs} \models arphi$ with, e.g.,:

$$- \ \Box (\neg \textit{crit}_1 \ \lor \ \neg \textit{crit}_2) \quad \text{and} \quad (\Box \diamondsuit \textit{wait}_1 \ \Rightarrow \ \Box \diamondsuit \textit{crit}_1) \quad \land \quad (\Box \diamondsuit \textit{wait}_2 \ \Rightarrow \ \Box \diamondsuit \textit{crit}_2)$$

- Since $S_{Bak}^{abs} \sim S_{Bak}$, it follows $S_{Bak} \models \varphi$
- ullet Note: $\mathit{Traces}(S_{Bak}^{abs}) = \mathit{Traces}(S_{Bak})$
 - but checking trace equivalence is PSPACE-complete
 - while checking bisimulation equivalence is in poly-time

Syntax of CTL*

CTL* state-formulas are formed according to:

$$\Phi ::= \mathsf{true} \ \left| \ a \ \right| \ \Phi_1 \wedge \Phi_2 \ \left| \ \neg \Phi \ \right| \ \exists \varphi$$

where $a \in AP$ and φ is a path-formula

CTL* path-formulas are formed according to the grammar:

$$\varphi ::= \Phi \quad \middle| \quad \varphi_1 \wedge \varphi_2 \quad \middle| \quad \neg \varphi \quad \middle| \quad \bigcirc \varphi \quad \middle| \quad \varphi_1 \cup \varphi_2$$

where Φ is a state-formula, and φ , φ_1 and φ_2 are path-formulas

Bernd Finkbeiner Verification – Lecture 20 16

CTL* equivalence

States q_1 and q_2 in S (over AP) are CTL^* -equivalent:

$$q_1 \equiv_{\mathit{CTL}^*} q_2$$
 if and only if $(q_1 \models \Phi \ \ \text{iff} \ \ q_2 \models \Phi)$

for all CTL* state formulas over AP

$$S_1 \equiv_{\mathcal{C}\mathcal{I}L^*} S_2$$
 if and only if $(S_1 \models \Phi \text{ iff } S_2 \models \Phi)$

for any sublogic of CTL*, logical equivalence is defined analogously

Bisimulation vs. CTL* and CTL equivalence

Let S be a *finite* state graph and s, s' states in S. The following statements are equivalent:

(1)
$$s \sim_S s'$$

- (2) s and s' are CTL-equivalent, i.e., $s \equiv_{\textit{CTL}} s'$
- (3) s and s' are CTL^* -equivalent, i.e., $s \equiv_{\mathit{CTL}^*} s'$

this is proven in three steps: $\equiv_{CTL} \subseteq \sim \subseteq \equiv_{CTL^*} \subseteq \equiv_{CTL}$

important: equivalence is also obtained for any sub-logic containing \neg , \wedge and \bigcirc

Bernd Finkbeiner Verification – Lecture 20 18

The importance of this result

- CTL and CTL* equivalence coincide
 - despite the fact that CTL* is more expressive than CTL
- Bisimilar transition systems preserve the same CTL* formulas
 - and thus the same LTL formulas (and LT properties)
- Non-bisimilarity can be shown by a single CTL (or CTL*) formula
 - $S_1 \models \Phi$ and $S_2 \not\models \Phi$ implies $S_1 \not\sim S_2$
- You even do not need to use an until-operator!
- To check $S \models \Phi$, it suffices to check $S / \sim \models \Phi$