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REVIEW

Bisimulation equivalence

Let S; = (Qi, Qoi, i, Li), i=1, 2, be two state graphs over AP.
A bisimulation for (Sy, S2) is a binary relation R C @1 x Q5 such that:

1. Vg1 € Qo.13¢2 € Qo2 (q1,92) € R and
Vo € Qo231 € Qo1- (q1,92) ER

2. for all states q; € Q1, g2 € Q2 With (q1, g2) € R it holds:

(@) Li(q1) = L2(q2)
(b) if ¢} € Successors(q1) then there exists ¢, € Successors(qz) with (¢}, ¢5) € R

(c) if g5 € Successors(qz) then there exists q; € Successors(q:) with (¢, ¢5) € R

S1 and Sy are bisimilar, denoted S; ~ Sy, if there exists a bisimulation for (S1, S2)
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Bisimulation equivalence

a1 = q
R can be completed to R R
q2 I )
and
01 = q
R can be completed to R R
G2 — ¢ @2 — 4
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Example (1)

R = {(30, to), (81, t1), (82, t2), (82, t3), (s3, t4)}
is a bisimulation for (S;, S2) where AP = { pay, beer, sprite }
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Example (2)

sprite }

S; ¢ S; for AP = { pay, beer, sprite }

But: { (SOa U'O)a (Sla u1)7 (817 U,2), (827 ’LL3), (82a ’U,4), (33a U,3), (33a U4) }

is a bisimulation for (Si, S3) for AP = { pay, drink }
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~ is an equivalence

For any transition systems S, S;, S; and S3 over AP:
S ~ S (reflexivity)
S1 ~ Sy implies S; ~ S; (symmetry)

Sl ~ 82 and 82 ~ 83 lmplles Sl ~ 83 (transitivity)
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Bisimulation on paths

Whenever we have:

So — 81 — S22 —» 83 —7  S4......
R
to

this can be completed to
S — S1 — SS9 — 83 — S4......
R R R R R

to — t1 — to — t3 — tg......

proof: by induction on index : of state s;
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Bisimulation vs. trace equivalence

S ~ Sy implies Traces(S;) = Traces(S,)

bisimilar transition systems thus satisfy the same LT properties!
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Bisimulation on states
R C S x Sis a bisimulationon Sif for any (q1, g2) € R:
® L(q1) = L(q2)
e if q; € Successors(q1) then there exists an ¢, € Successors(qz) with (g7, ¢5) € R

e if g, € Successors(qz) then there exists an q; € Successors(q:) with (g7, ¢5) € R

q1 and g» are bisimilar, g1 ~s g2, if (q1, g2) € R for some bisimulation R for S

q1 ~s q2 ifandonlyif S, ~ S,
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Coarsest bisimulation

~ g is an equivalence and the coarsest bisimulation for S
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Quotient state graph
For S = (Q, Qo, E, L) and bisimulation ~5 C .S x S on Slet

S/~s= (Q,Qp, E',L") be the quotient of S under ~
where
¢ @ =5/~s={ld~lqeQ}withigl. = {¢d€Q|a~sq}
e Qy={ld~1q€Qo}

o E'={(ld~ ¢]~) [ (¢,d) € E}

o L'(lg]~) = L(q)
notethat S ~ S/ ~g
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Why?

10

The Bakery algorithm

[ loop forever do [ loop forever do
I noncritical ] i noncritical
ny: yr:=y2+1 nyp: y2:=y1+1
Py . Py ::
! await (y2 =0 V y1 < y2) P
ci1:  critical c1 :  critical

y1:=0 yg := 0

Bernd Finkbeiner Verification — Lecture 20

await (y1 =0 V y2 < y1)
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Example path fragment

| process P |

process P, | y1 | y2 | effect

ni
w1
w1
C1

ni
w1
w1
w1
w1

C2

0

WWWWOoO = =+ =

0

AOMNPDNPDMNODNDNO

P; requests access to critical section
P, requests access to critical section
Py enters the critical section
P, leaves the critical section
P; requests access to critical section
P, enters the critical section
P, leaves the critical section
P> requests access to critical section
P> enters the critical section
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Data abstraction

Function f maps a reachable state of Sp,: onto an abstract one in S}‘;bjk

Let s = (41,%2,y1 = b1,y2 = bs) be a state of Spy with ¢; € {n;, w,,c; } and

Then:

f(s)

{

\

(L1, £2,y1 = 0,y2 = 0)
(L1, £2,y1 = 0,92 > 0)
(£1,£2,y1 > 0,y2 = 0)
(£1,£2,y1 > y2 > 0)
(L1, L2, y2 > y1 > 0)

ifby =0b2=0
ifby =0and by, > 0
ifb; >0and by =0
ifby > bs >0
ifby > by >0

It follows: R = { (s, f(s)) | s € S } is a bisimulation for ( Sz, S4",

for any subset of AP = { noncrit;, wait;, crit; | i = 1,2 }
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Bisimulation quotient

S%b,fk = Spu/ ~ for AP = {crit,, crit, }
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Remarks
e Data abstraction yields a bisimulation relation

— in this example; typically a simulation relation is obtained

S = o with, e.g.,:

— O(—crity vV —crib) and (OO waih = OO erit) A (OO wat, = OO crity)

Since Si, ~ Spa, it follows Sgy, =

abs

Note: Traces(Sy,.) = Traces(Spa)

— but checking trace equivalence is PSPACE-complete
— while checking bisimulation equivalence is in poly-time
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Syntax of CTL*

CTL" state-formulas are formed according to:
® ::=true ‘ a ‘ P, APy ‘ -P ‘ dp
where a € AP and ¢ is a path-formula
CTL" path-formulas are formed according to the grammar:
=0 ‘ 1\ P2 ‘ —p ‘ Oyp ‘ 1 U po

where & is a state-formula, and ¢, ¢; and g5 are path-formulas
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CTL* equivalence

States ¢; and ¢, in S (over AP) are CTL"-equivalent:
@1 =cn+ g2 ifandonlyif (g = @ iff ¢ = @)

for all CTL* state formulas over AP

Si1=cn+ S ifandonlyif (S =@ iff Sy = @)

for any sublogic of CTL*, logical equivalence is defined analogously
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Bisimulation vs. CTL* and CTL equivalence

Let S be a finite state graph and s, s’ statesin S
The following statements are equivalent:
(1) s ~s &

(2) s and s’ are CTL-equivalent, i.e., s =¢7. s’

(3) s and s’ are CTL"-equivalent, i.e., s =7+ s’

this is proven inthree steps: =¢7p € ~ C =, € =¢71

important: equivalence is also obtained for any sub-logic containing —, A and O
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The importance of this result

CTL and CTL" equivalence coincide

— despite the fact that CTL" is more expressive than CTL

Bisimilar transition systems preserve the same CTL" formulas

— and thus the same LTL formulas (and LT properties)

Non-bisimilarity can be shown by a single CTL (or CTL") formula
- S Edand S, E ® implies S; £ S,

You even do not need to use an until-operator!

To check S | @, it suffices to check S/~ @
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