Verification — Lecture 21
Quotienting Algorithms for Bisimulation

Bernd Finkbeiner — Sven Schewe
Rayna Dimitrova — Lars Kuhtz — Anne Proetzsch

Wintersemester 2007/2008

REVIEW

Bisimulation equivalence

Let S; = (Qi, Qo., Ei, L;), i=1, 2, be two state graphs over AP.
A bisimulation for (S1, S») is a binary relation R C @1 x @2 such that:

1. Vg1 € Qo,13q2 € Qo2- (q1,92) € R and
Vg2 € Qo23q1 € Qo,1- (q1,92) ER

2. for all states q; € Q1, g2 € Q2 with (g1, g2) € R it holds:

(@) Li(q1) = L2(q2)
(b) if ¢} € Successors(q;) then there exists ¢, € Successors(qz) with (¢}, ¢,) € R

(c) if ¢, € Successors(gz) then there exists q; € Successors(q;) with (g7, g5) € R

S and Ss are bisimilar, denoted S; ~ So, if there exists a bisimulation for (Sq, S»)

Sven Schewe Verification — Lecture 21

REVIEW

Coarsest bhisimulation

~g IS an equivalence and the coarsest bisimulation for S

Sven Schewe Verification — Lecture 21

REVIEW

Quotient state graph

For S = (@, Qo, F, L) and bisimulation ~5 C S x S on S let
S/~s= (Q,Q, E' L) bethe quotient of S under ~¢

where

e Q' =5/~s={ld~lqeQ}twithlg. = {¢d€Qqg~sq}

o Qo ={lg~1qeQo}

o E'={(lg~ [d1~) | (¢,4) € E}

e L'([g]~) = L(g)
notethatS ~ S/~s Why?

Sven Schewe Verification — Lecture 21

REVIEW

Bisimulation vs. CTL * and CTL equivalence

Let S be a finite state graph and s, s’ states in S
The following statements are equivalent:
(1) s ~g &
(2) s and s" are CTL-equivalent, i.e., s =c7_ s’

(3) s and s’ are CTL"-equivalent, i.e., s =¢p.* s’

this is proven in three steps: =ct. € ~ C =cpx C =c1L

important: equivalence is also obtained for any sub-logic containing —, A, and 30O

Sven Schewe Verification — Lecture 21

REVIEW

The importance of this result

CTL and CTL" equivalence coincide

— despite the fact that CTL" is more expressive than CTL

Bisimilar transition systems preserve the same CTL" formulas

— and thus the same LTL formulas (and LT properties)

Non-bisimilarity can be shown by a single CTL (or CTL") formula
— S; = ®and S, [~ ® implies S; £ Sy

You even do not need to use an until-operator!

To check S = @, it suffices to check S/~ @

Sven Schewe Verification — Lecture 21

REVIEW

Bisimulation quotient state graph

For S = (@, Qo, F, L) and bisimulation ~5 C @ x Q on S let
S/~s= (Q',Q, E',L") be the quotient of S under ~s

where

e Q' =Q/~s={ld~[qeQ}twithg. = {dcQfqg~sq}

e Qy={ld~1a€Qo}

o ' ={([q]~, [d]~) | (¢,¢') € E}

e L'(lg]~) = L(q)

notethatS ~ S/ ~sg

Sven Schewe Verification — Lecture 21

Quotient state graph / Partitioning
For S = (@, Qo, E, L) and an equivalence relation ~C @ x @ on S let

S/~ = (Q,Qp,E',L") be the quotient of S under ~, where

e Q'=Q/~ = {lgl~lqeQ}with[gl. = {d€Q|qg~q}
e Qo={ld~1q€Qo}
o ' ={([q]~, [d]~) | (¢,¢') € E}

o L'(lgl~) = L(a)
A partition II = {By,..., Bi} of @ is a set of nonempty (B; # @) and
pairwise disjoint blocks B; that decompose Q (@ = ,_; _,, Bi)-

A partition defines an equivalence relation ~ ((¢, ¢’)€ ~< 3Q; € 1. q,q' € By).
Likewise, an equivalence relation ~ defines a partition IT = @ /~.

Sven Schewe Verification — Lecture 21

Blocks, Superblocks, and Stability

A partition II = {By,..., Bi} of @ is a set of nonempty (B; # ©) and
pairwise disjoint blocks B; that decompose Q (Q = H,_,

A nonempty union C' = 4, ; B; of blocks is called a superblock.

A block B; of a partition II is called stable w.r.t. a set B if either B; N
Pre(B) = @, or B; C Pre(B).

(Pre(B) = {q € Q | Successors(q) N B # &})
A partition IT is called stable w.r.t. a set B if all blocks of II are.
Lemma 1. A partition II with consistently labeled blocks is stable with

respect to all of its (super)blocks if, and only if, it is the quotient of a
bisimulation relation (I = Q/~).

Sven Schewe Verification — Lecture 21

Partition refinement

For two partitions Il = { By, ..., By} and II' = { By, ..., B’} of Q, we say
that IT is finer than II” iff every block of IT" is a superblock of II.

For a given partition II = {By, ..., B}, we call a (super)block C' of IT a
splitter of a block B; / the partition II if B; / II is not stable w.r.t. C.

Refine(B;, C') denotes { B;} if B; is stable w.r.t. C, and { B;NPre(C), B;
Pre(C)} if C is a splitter of C'.

Refine(I,C) = 14,_, .Refine(B;,C).
Lemma 2. Refine(Il, C) is finer than II.

Lemma 3. If ITis finer than II’ then Refine(II, C) is finer than Refine(IT’, C).

Sven Schewe Verification — Lecture 21

Algorithms for bisimulation quotienting

Input: Transition system S = (Q, Qq, E, L)
Output: Bisimulation quotient state graph

1. II=Q/~ap (¢,4)e~ap < L(q) = L(q')

2. while some block B € II is a splitter of II ioop invariant: IT is coarser than Q /~g

(a) pick a block B that is a splitter of II
(b) II = Refine(Il, B)

3. return II

Sven Schewe Verification — Lecture 21

Correctness and termination

1L I=Q/~ap (@.4)€~ap & L(a) = L(d)
2. while some block B € II is a splitter of IT loop invariant: II is coarser than Q/~ g

(a) pick a block B that is a splitter of IT
(b) II = Refine(II, B)
3. return I1

Lemma 4. The algorithm terminates.
Lemma 5. The loop invariant holds initially.
Lemma 6. The loop invariant is preserved.

Theorem 7. The algorithm returns the quotient ¢/~ of the coarsest
bisimulation ~g.

Sven Schewe Verification — Lecture 21

Complexity

1. I=Q/~ap (4,4)e~ap & L(a) = L(d)
2. while some block B € IT is a splitter of I1 loop invariant: IT is coarser than Q/~ g
() pick a block B that is a splitter of IT
(b) II = Refine(II, B)
3. return I1

Lemma 8. /~ap can be constructed in time O(|Q| - |AP)).

Proof Idea. Build tree that branches by the atomic propositions. The
leafs are labeled with the elements of Q/~ 4p.

The complexity of each refinement step depends on the strategy how B
Is picked.

Sven Schewe Verification — Lecture 21

Refinement complexity

2. while some block B € II is a splitter of II
() pick a block B that is a splitter of IT
(b) II = Refine(II, B)

Trying all B € II takes O(|E|) time.

— There may be O(|Q)|) splits.
Corollary 9. The overall algorithm takes O(|Q| - (|JAP| + |E])) time.

Sven Schewe Verification — Lecture 21

Refinement complexity

2. while some block B € I1 is a splitter of I1
() pick a block B that is a splitter of 11
(b) IT = Refine(II, B)

Trying all B € II takes O(|E|) time.

— There may be O(|Q)|) splits.
Corollary 9. The overall algorithm takes O(|Q| - (|[AP| + |E])) time.

— but we can do better —

Sven Schewe Verification — Lecture 21

An improved algorithm for bisimulation quotienting

Input: Transition system S = (Q, Qo, E, L)

Output: Bisimulation quotient state graph

3. while = # II
(@) Pick Be =\1I
(b) Pick B' € Il suchthat B’ C B and |B’| < 1| B|
©) E=(E~{B)U{B}U{B- B}
(d) TI = Refine(Refine(H, B'), B~ B’)
4. return I

Extra Challenge Question: Prove that the algorithm in the script is wrong. (31.5 Pts)

Sven Schewe Verification — Lecture 21

Termination

1 E={Q}
2. I=Q/~ap
3. while E #11
(@) Pick Be E~1I
(b) Pick B’ € I suchthat B’ C Band |B'| < £|B|

© E=((E~{BHu{B'tu{B~ B}
(d) TII = Refine (Refine(n, B"), B~ B’

4. return IT

Lemma 10. The loop invariant = is coarser than II is coarser than
Q) /~s holds.

Lemma 11. Z=is strictly refined in every step of the while loop.

Sven Schewe Verification — Lecture 21

Correctness
1. E={Q}
2. W=Q/~ap
3. while E #11
(@) Pick Be =11
(b) Pick B’ € I suchthat B’ C B and | B'| < |B]|
€ E=E-{B)u{B'tu{B- B’}
(d) TII = Refine (Refine(l‘[, B"), B~ B’

until 2 =11
4. return II

Lemma 12. If Il is finer than I’ and IT’ is stable w.r.t. a set C' C @ than
IT is stable w.r.t. C.

Proof Sketch. If A € ITis splitted and IT' 5 A’ O A than A’ is splitted.
Theorem 13. The algorithm returns the partition @/~ of the coarsest
bisimulation ~g.

Proof Idea. Loop invariant: I is stable w.r.t. every block in =.

= 11 is stable w.r.t. every block in IT = =

Sven Schewe Verification — Lecture 21

