Verification — Lecture 23
Simulation Quotients (continued)

Bernd Finkbeiner — Sven Schewe
Rayna Dimitrova — Lars Kuhtz — Anne Proetzsch

Wintersemester 2007/2008

NEW YORK, February 4, 2008 — ACM has named Edmund M. Clarke,
E. Allen Emerson, and Joseph Sifakis the winners of the 2007 A.M.

Turing Award for their original and continuing research in a quality
assurance process known as Model Checking.

q1
R

- q

q2

but not necessatrily:

qi1
R

q2

Bernd Finkbeiner

Simulation order

can be completed to

can be completed to

Verification — Lecture 23

REVIEW

Q= q

R R

@ = @
a1~ q
R R
@ =

REVIEW

Simulation is a pre-order

< is a preorder, i.e., reflexive and transitive

Bernd Finkbeiner

Verification — Lecture 23

REVIEW

Simulation equivalence

S: and S, are simulation equivalent, denoted S; ~ S,,
if 81 < 82 and 82 < 81

Bernd Finkbeiner Verification — Lecture 23 4

REVIEW

Similar but not bisimilar

(s1){a} (t){a}
(52) (53)2 OF

Baj{b} (s5){c} (ta){b} (ta){c}

Siefr >~ Sright Ut Siepr % Sright

Bernd Finkbeiner Verification — Lecture 23 5

REVIEW

Simulation order on states

A simulation for S = (Q, Qq, E, L) is a binary relation R C S x S such
that for all (¢1,¢2) € R:

1. L(q1) = L(g2)

2. if ¢} € Successors(q,)
then there exists an ¢}, € Successors(qz) with (¢, ¢5) € R

q1 is simulated by q2, denoted by ¢; <s g2,
if there exists a simulation R for Swith (¢1, ¢2) € R

@1 =s g2 ifandonlyif S, <X S,
@1 ~s ¢ ifandonlyif ¢ <s gzand g =<s ¢

Bernd Finkbeiner Verification — Lecture 23 6

REVIEW

Simulation quotient

For S = (Q, Qo, E, L) and simulation equivalence ~ C @ x Q let
S/~= (Q,Qq, E', L"), the quotientof S under ~
where
e Q' =Q/~== {[g)~|qgeQ}and Q" ={[g]~ ¢ € Qo }
o ' ={(lg]~dl~) | (¢.¢) € E}.
o L'([s]~) = L(s)
lemma: S ~ S/~ ; proof not straightforward!

Bernd Finkbeiner Verification — Lecture 23 7

Universal fragment of CTL*
VCTL" state-formulas are formed according to:
d ::= true ‘ false ‘ a ‘ —Q ‘ P, NPy ‘ P, VvV Py ‘ \V/QO

where a € AP and ¢ is a path-formula

VCTL* path-formulas are formed according to:

p = ‘ Oy ‘ Y1\ P2 ‘ w1 V @2 ‘ o1 U @2 ‘ ©1 Rpo

where & is a state-formula, and ¢, 1 and ¢, are path-formulas

Bernd Finkbeiner Verification — Lecture 23

The release operator

ef

e The release operator: p Ry £ —(=¢p U —))

— 1y always holds, a requirement that is released as soon as ¢ holds

e Until U and release R are dual:

pUyp = =(-pR-y)
pRY = =(-pU—)

e Release satisfies the expansion law: Ry =4 N (¢ V O(p R¥))

Bernd Finkbeiner Verification — Lecture 23

Universal CTL* contains LTL

For every LTL formula there exists an equivalent VCTL" formula

Proof: Bring LTL formula into positive normal form (PNF).

Fora € AP, LTL formulas in PNF are given by:

ERE true‘false‘a‘ﬂa‘ g01/\<p2‘901\/g02‘ 090‘901U902‘901R902

Bernd Finkbeiner Verification — Lecture 23

10

Transformation

For any LTL-formula ¢ there exists
an equivalent LTL-formula +» in PNF with || = O(|¢])

Transformations:

—true ~» false
- ~ P

(e AY) ~ SV
(e VY) ~ Ay
—Op ~ O-p
“(pUy) ~ —pR-y
- ~ O=ep
-0 ~ O-p

Bernd Finkbeiner Verification — Lecture 23

11

Simulation order and YCTL"

Let S be a finite state graph (without terminal states) and q, ¢’ states in S.
The following statements are equivalent:
(1) ¢ Xs ¢
(2) for all VCTL*-formulas ®: ¢’ = ® implies ¢ = ®
(3) for all VCTL-formulas ®: ¢’ = ® implies ¢ &= ®

proof is carried out in three steps: (1) = (2) = (3) = (1)

Bernd Finkbeiner Verification — Lecture 23 12

Existential fragment of CTL*
JCTL" state-formulas are formed according to:
® 1= true ‘ false ‘ a ‘ -a ‘ P, N Dy ‘ b, Vv P, ‘ dp

where a € AP and ¢ is a path-formula

ACTL" path-formulas are formed according to:
p = @ ‘ O ‘ ©1 N\ P2 ‘ v1 V 2 ‘ 1 U o ‘ 01 Rpo

where & is a state-formula, and ¢, 1 and ¢, are path-formulas

Bernd Finkbeiner Verification — Lecture 23 13

Simulation order and 3CTL"

Let S be a finite state graph (without terminal states) and q, ¢’ states in S.
The following statements are equivalent:
(1) ¢ 2s ¢
(2) for all 3CTL*-formulas ®: q = ® implies ¢’ = &
(3) for all ICTL-formulas ®: ¢ |= ® implies ¢’ = @

Bernd Finkbeiner Verification — Lecture 23

14

~,VCTL", and ICTL" equivalence

For finite state graph S without terminal states:

=s = =yCTL* = =vCTL = =3CTL* = =3CTL

Bernd Finkbeiner Verification — Lecture 23

15

Skeleton for simulation preorder checking

Input: finite state graph S = (Q, Qo, E, L) over AP
Output: simulation order <g

R :=1{(q1,92) | L(q1) = L(q2) };

while R is not a simulation do
choose (q1,q2) € R
such that (q1, q}) € E, but for all ¢, with (g2, ¢5) € E, (q},d5) € R;
R :=R\{(q1,9)}
od
return R

The number of iterations is bounded above by |Q|?, since:

RQXQ DRy 2R1 2 Ra 2... 2 Ry ==

Bernd Finkbeiner Verification — Lecture 23

Complexity

For S = (Q,Qo, E, L) with |E| > |Q|:

Time complexity of computing <sis O(|Q|-|AP| + |E|-|Q|)

Details are non-trivial. See Baier/Katoen Section 7.6.

Bernd Finkbeiner Verification — Lecture 23

Overview implementation relations

bisimulation simulation trace
equivalence order equivalence
preservation of CTL* VCTL*/3ACTL* LTL
temporal-logical CTL VCTL/ACTL
properties
checking PTIME PTIME PSPACE-
equivalence complete
graph PTIME PTIME —
minimization O(|E|-1log Q) O(|E|-|1Q)

Bernd Finkbeiner Verification — Lecture 23

18

Time-critical systems

e Timing issues are of crucial importance for many systems, e.g.,

— landing gear controller of an airplane, railway crossing, robot controllers
— steel production controllers, communication protocols

e In time-critical systems correctness depends on:

— not only on the logical result of the computation, but
— also on the time at which the results are produced

e How to model timing issues:

— discrete-time or continuous-time?

Bernd Finkbeiner Verification — Lecture 23

19

A discrete time domain

e Time has a discrete nature, i.e., time is advanced by discrete steps

— time is modelled by naturals; actions can only happen at natural time values
— a specific tick action is used to model the advance of one time unit
= delay between any two events is always a multiple of the minimal delay of one
time unit
e Properties can be expressed in traditional temporal logic

— the next-operator “measures” time
— two time units after being red, the light is green: O (red = OOgreen)
— within two time units after red, the light is green:

O (red = (green V Ogreen V OOQgreen))

e Main application area: synchronous systems, e.g., hardware

Bernd Finkbeiner Verification — Lecture 23 20

A discrete-time coffee machine

coffee-ordered

tea-ordergd
tick
tick
tick

coffee-prepared () tea-prepat

tick tick

d

®

tick tick
tick

Bernd Finkbeiner Verification — Lecture 23 21

A discrete time domain

e Main advantage: conceptual simplicity

— labeled transition systems equipped with a tick actions suffice
— standard temporal logics can be used
= traditional model-checking algorithms suffice

e Main limitations:

— (minimal) delay between any pair of actions is a multiple of an a priori fixed
minimal delay
= difficult (or impossible) to determine this in practice
= limits modeling accuracy
= inadequate for asynchronous systems. e.g., distributed systems

Bernd Finkbeiner Verification — Lecture 23 22

A continuous time-domain

If time is continuous, state changes can happen at any point in time:

within four

OM‘ is modeled by

t=0 t=0.74 t=2

L1 11bL

t=0 t=074 t=
but: infinitely many states and infinite branching

How to check a property like:

once in a yellow state, eventually the system is in a blue state
within 7 time-units?

Bernd Finkbeiner Verification — Lecture 23 23

Approach

e Restrict expressivity of the property language

— e.g., only allow reference to natural time units
=— Timed CTL

e Model timed systems symbolically rather than explicitly

— Timed Automata

e Consider a finite quotient of the infinite state space on-demand

— i.e., using an equivalence that depends on the property and the timed automaton

—> Region Automata

Bernd Finkbeiner Verification — Lecture 23 24

What is a timed automaton?

edge

location \

\\ V

\

Q

e a program graph with locations and edges
e a location is labeled with the valid atomic propositions

e taking an edge is instantaneous, i.e, consumes no time

Bernd Finkbeiner Verification — Lecture 23 25

What is a timed automaton?
guard

e equipped with real-valued clocks x,y, z, . ..
e clocks advance implicitly, all at the same speed

e logical constraints on clocks can be used as guards of actions

Bernd Finkbeiner Verification — Lecture 23

26

What is a timed automaton?

clock reset x> 2

Ve {x,y}

8
V
)

~—
8
—

e clocks can be reset when taking an edge

e assumption:
all clocks are zero when entering the initial location initially

Bernd Finkbeiner Verification — Lecture 23

27

What is a timed automaton?
invariant

\ =~ -

\ T2 2

N\
T <2

7

&
V
()

y=29

{z}

e guards indicate when an edge may be taken

e alocation invariant specifies the amount of time that may be spent in
a location

— when a location invariant becomes invalid, an edge must be taken

Bernd Finkbeiner Verification — Lecture 23 28

A real-time coffee machine

d

coffee-prepared Cj tea-prepared

r <15

x =15
{=}

Bernd Finkbeiner Verification — Lecture 23 29

Clock constraints

e Clock constraints over set C' of clocks are defined by:

g = true ‘ r<c

r—y<c|zr<c | r—y<c ﬂg‘g/\g

where ¢ € Nandclocks z,y € C

— rational constants would do; neither reals nor addition of clocks!

let CC(C') denote the set of clock constraints over C

shorthands: = > c denotes - (x < c¢)and x € [c1,c2) Orci < = < ¢
denotes —(z < ¢1) A (z < ¢2)

e Atomic clock constraints do not contain true, — and A

— let ACC(C') denote the set of atomic clock constraints over C

Bernd Finkbeiner Verification — Lecture 23 30

Timed automaton
A timed automaton is a tuple

TA = (Loc, Act,C,~, Locy, inv,AP,L) where:

Loc is a finite set of locations.

Locy C Locis a set of initial locations

C' is a finite set of clocks

o L:Loc— 247 is a labeling function for the locations

~» C Loc x CC(C) x Act x 2¢ x Loc s a transition relation, and

inv: Loc — CC(C) is an invariant-assignment function

Bernd Finkbeiner Verification — Lecture 23 31

Intuitive interpretation

e Edge /¢ 9:2.C", ' means:

— action « is enabled once guard g holds
— when moving from location £ to ¢', any clock in C’ will be reset to zero

e inv(¢) constrains the amount of time that may be spent in location ¢

— the location ¢ must be left before the invariant inv(¢) becomes invalid

Bernd Finkbeiner Verification — Lecture 23 32

Guards versus location invariants

The effect of a lowerbound guard:

I

value
of

—~| 8
8\
| o

Bernd Finkbeiner Verification — Lecture 23 33

Guards versus location invariants

The effect of a lowerbound and upperbound guard:

Bernd Finkbeiner Verification — Lecture 23 34

Guards versus location invariants

The effect of a guard and an invariant:

I

value
of

—~ |8
8 |\WV
et

Bernd Finkbeiner Verification — Lecture 23 35

Arbitrary clock differences

— — - clock =
—— clock y
y > 2 T

{y} 4 5 y /
clock ; / ;
value .y E
z 22 2 Yy 4
| | 4

8 10

time ——

This is impossible to model in a discrete-time setting

Bernd Finkbeiner Verification — Lecture 23

36

