Verification — Lecture 25
Region Graphs

Bernd Finkbeiner — Sven Schewe
Rayna Dimitrova — Lars Kuhtz — Anne Proetzsch

Wintersemester 2007/2008

REVIEW

Timed automaton
A timed automaton is a tuple

TA = (Loc, Act,C,~, Locy, inv,AP,L) where:

Loc is a finite set of locations.

Locy C Locis a set of initial locations

C' is a finite set of clocks

o L:Loc— 24T is a labeling function for the locations
e ~ C Loc x CC(C) x Act x 2¢ x Loc s a transition relation, and

e inv: Loc — CC(C) is an invariant-assignment function

Bernd Finkbeiner Verification — Lecture 25 1

REVIEW

Timed automaton semantics

For timed automaton TA = (Loc, Act,C,~», Locy, inv, AP, L):
state graph S(TA) = (Q, Qo, E, L") over AP where:

e () = Loc x val(C), state s = (¢, v) for location ¢ and clock valuation v

Qo = { <£0,’Uo> | Eo c LOC() AN ’U()(QS‘) =0forall x O}

o AP = AP U ACC(C)

Li((¢,v)) = L(£) U {g € ACC(C) [v = g}

E is the edge set defined on the next slide

Bernd Finkbeiner Verification — Lecture 25 2

REVIEW

Timed automaton semantics

The edge set E consist of the following two types of transitions:

e Discrete transition: (/,v) = (¢, v') if all following conditions hold:

— there is an edge labeled (g : a, D) from location £ to ¢ such that:
— g is satisfied by v,i.e., v =g

— o' = v with all clocks in D resetto 0, i.e., v’ = reset D in v

— o fulfills the invariant of location ¢', i.e., v |= inv(¢")

e Delay transition: (£, v) % (¢, v+d) for positive real d

— ifforany 0 < d’ < d the invariant of £ holds for v+d’, i.e. v+d’ = inv(¥)

Bernd Finkbeiner Verification — Lecture 25 3

REVIEW

Timelock

e State s € S(TA) contains a timelock it Paths,;,(s) = @

— there is no behavior in s where time can progress ad infinitum

— clearly: any terminal state contains a timelock (but also non-terminal states may
do)

— terminal location does not necessarily yield a state with timelock (e.g. inv = true)
e TAis timelock-free if no state in Reach(S(TA)) contains a timelock

e Timelocks are considered as modeling flaws that should be avoided

Bernd Finkbeiner Verification — Lecture 25 4

REVIEW

Zenohess

e A TA that performs infinitely many actions in finite time is Zeno

e Path 7 in S(TA) is Zeno if:

— it is time-convergent, and
— infinitely many actions a € Act are executed along =

e TAis non-Zeno if there does not exist an initial Zeno path in S(7A)

— any m in S(TA) is time-divergent or
— is time-convergent with nearly all (i.e., all except for finitely many) transitions
being delay transitions

e Zeno paths are considered as modeling flaws that should be avoided

Bernd Finkbeiner Verification — Lecture 25 5

REVIEW

Timed CTL

Syntax of TCTL state-formulas over AP and set C'

d :=true | a

g‘q)/\cb‘ —@‘HQO‘VQO
where a € AP, g € ACC(C) and ¢ is a path-formula defined by:
p:=dU’®

where J C Ry is an interval whose bounds are naturals
Forms of J: [n,m], (n,m], [n,m) or (n,m) forn,m e Nandn < m

for right-open intervals, m = oo is also allowed

Bernd Finkbeiner Verification — Lecture 25 6

REVIEW

Some abbreviations

o O/ = trueU’ @
e JO0/® = VO -d and VO = 307 =P

¢ OO =00 and OP =00

Bernd Finkbeiner Verification — Lecture 25 7

REVIEW

Semantics of TCTL

For state s = (¢, n) in S(TA) the satisfaction relation |= is defined by:

s = true
skEa iff ae€ L(¢)
sty iff nig

skE-® iff notsk=®

sEOATY iff (s ®)and (s = V)

s = dp iff 7 = ¢ forsome n € Paths,(s)
s E Vo iff 7 = ¢forall w e Pathsy,(s)

path quantification over time-divergent paths only

Bernd Finkbeiner Verification — Lecture 25 8

REVIEW

Semantics of TCTL

For time-divergent path 7 € sg o, S1 HON

TE®UW

iff

3i > 0.s;4+d = U for some d € [0,d;] with Y1t d +d € J

and . .

Vi <i.sj+d =@V Vforevery d € |0,d;] with Z;;é dip +d' < ;;10 di +d

Bernd Finkbeiner Verification — Lecture 25 9

REVIEW

TCTL-semantics for timed automata

e Let TA be a timed automaton with clocks C and locations Loc
e For TCTL-state-formula ®, the satisfaction set Sat(®) is defined by:

Sat(®) = {seLocx EvallC) |s=®}

e TA satisfies TCTL-formula @ iff ® holds in all initial states of TA:
TAE=® ifandonlyif V¢, € Locy. (Lo,n0) = P

where no(xz) =0 forallx € C

Bernd Finkbeiner Verification — Lecture 25 10

Timed CTL versus CTL

e Due to ignoring time-convergent paths in TCTL semantics, possibly:

§(TA) |:TCTL \V/QOJ but §< TA) %CTL VQOJ

Vv '
TCTL semantics CTL semantics

— CTL semantics considers all paths, timed CTL only time-divergent paths
e For® = vVO(on — V<off) and the light switch

S(SW/tCh) ‘:TCTL (b Whereas S(TA) I#CTL @

— there are time-convergent paths on which location onis never left

Bernd Finkbeiner Verification — Lecture 25 11

Characterizing timelock

TCTL semantics is also well-defined for TA with timelock

A state is timelock-free if and only if it satisfies 40true

— some time-divergent path satisfies Otrue, i.e., there is > 1 time-divergent path
— note: for fair CTL, the states in which a fair path starts also satisfy 30true

e TA s timelock-free iff Vs € Reach(S(TA)): s = 30true

Timelocks can thus be checked by model checking

Bernd Finkbeiner Verification — Lecture 25 12

TCTL model checking

TCTL model-checking problem: TA = ® for non-Zeno TA

TAE® iff S(TA) = @
N—— N———

timed automaton infinite state graph

ldea: consider a finite region graph RG(TA)

Transform TCTL formula @ into an “equivalent” CTL-formula d

Then: TAl=rer. @ iff RG(TA) Ecr @
N——

finite state graph

Bernd Finkbeiner Verification — Lecture 25 13

Eliminating timing parameters

e Eliminate all intervals J # [0, o) from TCTL formulas

— introduce a fresh clock, z say, that does not occur in TA
— s=307diffresetzins |= O(z € JA D)

e Formally: for any state s of S(7TA) it holds:

sEJRU T iff s{z:=0} E3(2VI)U(z€J)AT)

state in S(TA & z)

sEVeOU/T iff s{z:=0} EV(@VI)U(zeJ)AT)

state in S(TA @ z)

— where TA® z is TA (over C') extended with z & C

Bernd Finkbeiner Verification — Lecture 25 14

Clock equivalence

Impose an equivalence, denoted =, on the clock valuations such that:

(A) Equivalent clock valuations satisfy the same clock constraints g in TA
and ®:

n=n = (nkEg iff 7 k=g)

— no diagonal clock constraints are considered
— all the constraints in TA and ® are thus either of the formz < corx < ¢

(B) Time-divergent paths emanating from equivalent states are
equivalent

— this property guarantees that equivalent states satisfy the same path formulas

(C) The number of equivalence classes under = is finite

Bernd Finkbeiner Verification — Lecture 25 15

First observation

n = x < ¢ whenever n(z) < ¢, or equivalently, |n(z)]| < ¢
- |d] = max{c€ IN|c<d}andfrac(d) = d — |d]

n = x < cwhenever |n(x)] < cor |n(z)] =cand frac(n(z)) =0
n = g only depends on |n(z)]|, and whether frac(n(z)) = 0

Initial suggestion: clock valuations n and n’ are equivalent if:

()] = Lf(x)] and frac(n(x)) = 0 it frac(s (x)) = 0

e Note: itis crucial thatin z < cand z < ¢, cis a natural

Bernd Finkbeiner Verification — Lecture 25 16

Second observation

Consider location ¢ with inv(¢) = true and only outgoing transitions:

— one guarded with z > 2 (action) and y > 1 (action [3)

Let state s = (£,n) with1 < n(z) <2and 0 < n(y) < 1

— « and g are disabled, only time may elapse

Transition that is enabled next dependsonz <y orz > y

- e.g., if frac(n(x)) > frac(n(y)), action « is enabled first

Suggestion for strengthening of initial proposal for all z,y € C by:

frac(n(z)) < frac(n(y)) itandonlyif frac(n'(z)) < frac(n'(y))

Bernd Finkbeiner Verification — Lecture 25 17

Final observation

e So far, clock equivalence yield a denumerable though not finite
quotient

e For TA = @ only the clock constraints in TA and ® are relevant

— let ¢, € IN the largest constant with which = is compared in TA or ®

= If n(x) > ¢, then the actual value of x is irrelevant

— constraints on = so far are only relevant for clock values of = (y) up to ¢, (cy)

Bernd Finkbeiner Verification — Lecture 25 18

Clock equivalence

Clock valuations n,n' € Eval(C) are equivalent, denoted n = 7/, if:
(1) forany @ € C: (n(z) > c2) A (17'(2) > ¢) Of (n(z) < e0) A (7' (x) < ¢2)

(2) forany z € C: if n(x),n'(z) < ¢, then:

In(z)] = |n'(x)] and frac(n(z)) = 0iff frac(ns(z)) = 0

(8) forany z,y € C:ifn(x),n'(z) < ¢ and n(y), n'(y) < ¢y, then:
frac(n(z)) < frac(n(y)) it frac(n'(x)) < frac(n’(y)).

s=s iff £=4 and n =1y’

Bernd Finkbeiner Verification — Lecture 25 19

Regions

e The clock region of n € Eval(C), denoted [n], is defined by:

] = {n € EvallC) |n=17"}

e The state region of s = (£,n) € S(TA) is defined by:

[s] = (&) = {{s;n') [0 €]}

Bernd Finkbeiner Verification — Lecture 25 20

Number of regions

The number of clock regions is bounded from below and above by:

Clts [Jee < | EvallC)/= | < [C]1+219 5 [] (262 +2)
zel number of regions zeC

where for the upper bound it is assumed that ¢, > 1 forany z € C

the number of state regions is |Loc| times larger

Bernd Finkbeiner Verification — Lecture 25 21

Preservation of atomic properties

1. Forn,n' € Eval(C) such that n = »’:

nk=g ifandonlyif 5 |=gforany gc AP\ AP

2. For s,s’ € S(TA) such that s = '

sk=a ifandonlyif s =aforanyac AP

where AP includes all atomic propositions and atomic clock constraints in 7A and .

Bernd Finkbeiner Verification — Lecture 25 22

Clock equivalence is a bisimulation

Clock equivalence is a bisimulation equivalence over AP

Bernd Finkbeiner Verification — Lecture 25 23

Unbounded and successor regions

e Clock region r = {n € Eval(lC) | Vz € C.n(z) > ¢, } is unbounded

e 7' is the successor (clock) region of r, denoted ' = succ(r), if either:

1.r=randr =7/, or
2. r #re, v Zr and Vn € r:
dd € Rug. (n+der’ and V0L d <d.n+d erur’)

e The successor region: succ({{,r)) = (£,succ(r))

Bernd Finkbeiner Verification — Lecture 25 24

Region Graph

For non-Zeno TA = (Loc, Act,C,~», Locy, inv, AP, L) with S(TA) =
(Q,Qo,E, L) let RG(TA, @) = (Q',Q(, E', L") with

e Q'=Q/=={lgll¢gcQ}and Qy={lq] | g€ Qo},
o L'((l,r))=LU) U{ge AP\AP|r =g}

e FE’ consists of two types of edges:

— Discrete transitions: (¢,r) —=' (¢/,reset D in r)
it ¢S ¢ and r = g and reset D in 7 = inv(');
— Delay transitions: (¢, r) —' (¢, succ(r))
if r = inv(¢) and succ(r) = inv({)

Bernd Finkbeiner Verification — Lecture 25 25

Example: simple light switch

off off off
X=0 X=2 X>2
switch_on 2
§
o

on on on on
O<x<1 1 l<x<?2 X=2 X>2

Bernd Finkbeiner Verification — Lecture 25 26

Time convergence

For non-Zeno TA and 7 = sp s1 s2 ... an initial, infinite path in S(TA):
(a) = is time-convergent = d state region (¢, r) such that for some j:

s; € (l,ry foralli > j

(b) If 3 state region (¢, r) with r # r., and an index j such that:
s; € (l,ry foralli > j

then 7 is time-convergent

Bernd Finkbeiner Verification — Lecture 25 27

Timelock freedom

For non-Zeno TA:

TA is timelock-free iff no reachable state in RG(TA) is terminal

Bernd Finkbeiner Verification — Lecture 25 28

Example

off
X>2

on
X>2

Bernd Finkbeiner Verification — Lecture 25 29

Correctness theorem

Let TA be a non-Zeno timed automaton and ® a TCTL formula. Then:
TAE=® iff RG(TA,®) =@
\—\/—/ G _

TV
TCTL semantics CTL semantics

Bernd Finkbeiner Verification — Lecture 25 30

Zones

Clock constraints are conjunctions of atomic constraints

—zx<candz —y <cfor<e {<,<{,=,>,>}
— restrict to TA with only conjunctive clock constraints
— and (as before) assume no difference clock constraints

A clock zone is the set of clock valuations that satisfy a clock
constraint

— a clock zone for g is the maximal set of clock valuations satisfying g

Clock zone of g: [g] ={n € EvallC) |n =g}

— use z, 2z’ and so on to range over zones

The state zone of s = (¢,n) € S(TA) is (¢, z) withn € z

Bernd Finkbeiner Verification — Lecture 25 31

Zone automaton: intuition

3 3 3
2 2 2
1 1 1
1 2 3 12 3 ™1 2 3
leaving initia entering first leaving first
3 3 3
2 2 2 '
1 1 1
1 2 3 1 2 3 071 2 3
entering second leaving second entering third

Bernd Finkbeiner Verification — Lecture 25 32

