Verification – Lecture 25 Region Graphs

Bernd Finkbeiner – Sven Schewe Rayna Dimitrova – Lars Kuhtz – Anne Proetzsch

Wintersemester 2007/2008

REVIEW

Timed automaton

A timed automaton is a tuple

$$TA = (Loc, Act, C, \rightsquigarrow, Loc_0, inv, AP, L)$$
 where:

- Loc is a finite set of locations.
- $Loc_0 \subseteq Loc$ is a set of initial locations
- C is a finite set of clocks
- ullet $L: \mathit{Loc}
 ightarrow 2^{AP}$ is a labeling function for the locations
- $\bullet \ \leadsto \subseteq \ \textit{Loc} \times \textit{CC}(C) \times \textit{Act} \times 2^C \times \textit{Loc} \text{ is a transition relation, and}$
- $inv : Loc \rightarrow CC(C)$ is an invariant-assignment function

Timed automaton semantics

For timed automaton $TA = (Loc, Act, C, \rightsquigarrow, Loc_0, inv, AP, L)$: state graph $S(TA) = (Q, Q_0, E, L')$ over AP' where:

- $Q = \textit{Loc} \times \textit{val}(C)$, state $s = \langle \ell, v \rangle$ for location ℓ and clock valuation v
- $Q_0 = \{ \langle \ell_0, v_0 \rangle \mid \ell_0 \in Loc_0 \land v_0(x) = 0 \text{ for all } x \in C \}$
- $AP' = AP \cup ACC(C)$
- $L'(\langle \ell, v \rangle) = L(\ell) \cup \{ g \in ACC(C) \mid v \models g \}$
- E is the edge set defined on the next slide

Bernd Finkbeiner

Verification - Lecture 25

2

REVIEW

Timed automaton semantics

The edge set E consist of the following two types of transitions:

- Discrete transition: $\langle \ell, v \rangle \xrightarrow{\alpha} \langle \ell', v' \rangle$ if all following conditions hold:
 - there is an edge labeled $(g:\alpha,D)$ from location ℓ to ℓ' such that:
 - g is satisfied by v, i.e., $v \models g$
 - v' = v with all clocks in D reset to 0, i.e., $v' = \operatorname{reset} D$ in v
 - v' fulfills the invariant of location ℓ' , i.e., $v' \models \mathit{inv}(\ell')$
- Delay transition: $\langle \ell, v \rangle \xrightarrow{d} \langle \ell, v+d \rangle$ for positive real d
 - if for any $0 \leqslant d' \leqslant d$ the invariant of ℓ holds for v+d', i.e. $v+d' \models \mathit{inv}(\ell)$

Timelock

- State $s \in S(TA)$ contains a *timelock* if $Paths_{div}(s) = \varnothing$
 - there is no behavior in s where time can progress ad infinitum
 - clearly: any terminal state contains a timelock (but also non-terminal states may do)
 - terminal location does not necessarily yield a state with timelock (e.g. inv = true)
- TA is timelock-free if no state in Reach(S(TA)) contains a timelock
- Timelocks are considered as modeling flaws that should be avoided

Bernd Finkbeiner

Verification - Lecture 25

4

REVIEW

Zenoness

- A TA that performs infinitely many actions in finite time is Zeno
- Path π in S(TA) is Zeno if:
 - it is time-convergent, and
 - infinitely many actions $\alpha \in \mathit{Act}$ are executed along π
- TA is non-Zeno if there does not exist an initial Zeno path in S(TA)
 - any π in S(TA) is time-divergent or
 - is time-convergent with nearly all (i.e., all except for finitely many) transitions being delay transitions
- Zeno paths are considered as modeling flaws that should be avoided

Timed CTL

Syntax of TCTL *state-formulas* over *AP* and set *C*:

$$\Phi ::= \mathsf{true} \quad \left| \begin{array}{c|c} a & g & \Phi \land \Phi \end{array} \right| \quad \neg \Phi \quad \left| \begin{array}{c|c} \exists \varphi & \forall \varphi \end{array} \right|$$

where $a \in AP$, $g \in ACC(C)$ and φ is a path-formula defined by:

$$\varphi ::= \Phi \cup^{J} \Phi$$

where $J \subseteq \mathbb{R}_{\geqslant 0}$ is an interval whose bounds are naturals

Forms of J: [n, m], (n, m], [n, m) or (n, m) for $n, m \in \mathbb{N}$ and $n \leqslant m$

for right-open intervals, $m=\infty$ is also allowed

Bernd Finkbeiner

Verification - Lecture 25

REVIEW

6

Some abbreviations

- $\bullet \ \diamondsuit^J \Phi \ = \ \mathsf{true} \, \mathsf{U}^J \, \Phi$
- $\bullet \ \exists \Box^J \Phi \ = \ \neg \forall \diamondsuit^J \, \neg \Phi \quad \text{and} \quad \forall \Box^J \Phi \ = \ \neg \exists \diamondsuit^J \, \neg \Phi$
- $\bullet \ \Diamond \Phi = \Diamond^{[0,\infty)} \, \Phi \quad \text{and} \quad \Box \, \Phi = \Box^{[0,\infty)} \, \Phi$

Semantics of TCTL

For state $s = \langle \ell, \eta \rangle$ in S(TA) the satisfaction relation \models is defined by:

$$\begin{array}{lll} s \models \mathsf{true} \\ s \models a & \mathsf{iff} & a \in L(\ell) \\ s \models g & \mathsf{iff} & \eta \models g \\ s \models \neg \Phi & \mathsf{iff} & \mathsf{not} \ s \models \Phi \\ s \models \Phi \land \Psi & \mathsf{iff} & (s \models \Phi) \ \mathsf{and} \ (s \models \Psi) \\ s \models \exists \varphi & \mathsf{iff} & \pi \models \varphi \ \mathsf{for} \ \mathsf{some} \ \pi \in \mathit{Paths}_{\mathit{div}}(s) \\ s \models \forall \varphi & \mathsf{iff} & \pi \models \varphi \ \mathsf{for} \ \mathsf{all} \ \pi \in \mathit{Paths}_{\mathit{div}}(s) \end{array}$$

path quantification over time-divergent paths only

Bernd Finkbeiner Verification – Lecture 25 8

REVIEW

9

Semantics of TCTL

For time-divergent path $\pi \in s_0 \stackrel{d_0}{\Longrightarrow} s_1 \stackrel{d_1}{\Longrightarrow} \dots$:

$$\begin{split} \pi &\models \Phi \ \mathsf{U}^{\pmb{J}} \Psi \\ \text{iff} \\ \exists \ i \geqslant 0. \ s_i + d \models \Psi \ \text{for some} \ d \in [0,d_i] \ \text{with} \ \sum_{k=0}^{i-1} d_k + d \in \pmb{J} \\ \text{and} \\ \forall j \leqslant i. \ s_j + d' \models \Phi \lor \Psi \ \text{for every} \ d' \in [0,d_j] \ \text{with} \ \sum_{j=0}^{j-1} d_k + d' \leqslant \sum_{k=0}^{i-1} d_k + d \end{split}$$

Bernd Finkbeiner Verification – Lecture 25

TCTL-semantics for timed automata

- Let TA be a timed automaton with clocks C and locations Loc
- For TCTL-state-formula Φ , the *satisfaction set* $Sat(\Phi)$ is defined by:

$$Sat(\Phi) = \{ s \in Loc \times Eval(C) \mid s \models \Phi \}$$

• TA satisfies TCTL-formula Φ iff Φ holds in all initial states of TA:

$$TA \models \Phi$$
 if and only if $\forall \ell_0 \in Loc_0 . \langle \ell_0, \eta_0 \rangle \models \Phi$

where $\eta_0(x) = 0$ for all $x \in C$

Bernd Finkbeiner Verification – Lecture 25 10

Timed CTL versus CTL

• Due to ignoring time-convergent paths in TCTL semantics, possibly:

$$\underbrace{S(TA) \models_{\mathsf{TCTL}} \forall \varphi}_{\mathsf{TCTL} \; \mathsf{semantics}} \quad \mathsf{but} \quad \underbrace{S(TA) \not\models_{\mathsf{CTL}} \forall \varphi}_{\mathsf{CTL} \; \mathsf{semantics}}$$

- CTL semantics considers all paths, timed CTL only time-divergent paths
- ullet For $\Phi = \forall \Box (\mathit{on} \longrightarrow \forall \Diamond \mathit{off})$ and the light switch

$$S(Switch) \models_{TCTL} \Phi$$
 whereas $S(TA) \not\models_{CTL} \Phi$

- there are time-convergent paths on which location on is never left

Characterizing timelock

- TCTL semantics is also well-defined for TA with timelock
- A state is timelock-free if and only if it satisfies ∃□true
 - some time-divergent path satisfies \Box true, i.e., there is $\geqslant 1$ time-divergent path
 - note: for fair CTL, the states in which a fair path starts also satisfy ∃□true
- *TA* is timelock-free iff $\forall s \in Reach(S(TA))$: $s \models \exists \Box true$
- Timelocks can thus be checked by model checking

Bernd Finkbeiner

Verification - Lecture 25

12

TCTL model checking

• TCTL model-checking problem: $TA \models \Phi$ for non-Zeno TA

$$TA \models \Phi$$
 iff $S(TA) \models \Phi$ infinite state graph

- Idea: consider a finite region graph RG(TA)
- Transform TCTL formula Φ into an "equivalent" CTL-formula $\widehat{\Phi}$
- Then: $TA \models_{\mathsf{TCTL}} \Phi$ iff $RG(TA) \models_{\mathsf{CTL}} \widehat{\Phi}$

Eliminating timing parameters

- Eliminate all intervals $J \neq [0, \infty)$ from TCTL formulas
 - introduce a fresh clock, z say, that does not occur in TA
 - $-s \models \exists \diamond^{J} \Phi \text{ iff reset } z \text{ in } s \models \Diamond (z \in J \land \Phi)$
- Formally: for any state s of S(TA) it holds:

$$s \models \exists \Phi \ \mathsf{U}^{\textcolor{red}{J}} \ \Psi \quad \text{iff} \quad \underbrace{s\{z := 0\}}_{\text{state in } S(\textcolor{red}{\mathcal{T}\!\!A} \oplus z)} \models \exists \big((\Phi \lor \Psi) \ \mathsf{U} \ (z \in \textcolor{red}{\textcolor{red}{J}}) \land \Psi \big)$$

$$s \models \forall \Phi \ \mathsf{U}^{\textcolor{red}{J}} \ \Psi \quad \text{iff} \quad \underbrace{s\{z := 0\}}_{\text{state in } S(\textcolor{red}{T\!\!A} \oplus z)} \models \forall \big((\Phi \lor \Psi) \ \mathsf{U} \ (z \in \textcolor{red}{\textcolor{red}{J}}) \land \Psi \big)$$

- where $TA \oplus z$ is TA (over C) extended with $z \notin C$

Bernd Finkbeiner Verification – Lecture 25

Clock equivalence

Impose an equivalence, denoted \cong , on the clock valuations such that:

(A) Equivalent clock valuations satisfy the same clock constraints g in TA and Φ :

$$\eta \cong \eta' \implies (\eta \models g \text{ iff } \eta' \models g)$$

- no diagonal clock constraints are considered
- all the constraints in TA and Φ are thus either of the form $x \leqslant c$ or x < c
- (B) Time-divergent paths emanating from equivalent states are equivalent
 - this property guarantees that equivalent states satisfy the same path formulas
- (C) The number of equivalence classes under \cong is finite

First observation

- $\eta \models x < c$ whenever $\eta(x) < c$, or equivalently, $\lfloor \eta(x) \rfloor < c$ - $\lfloor d \rfloor = \max \{ \ c \in \mathbb{N} \mid c \leqslant d \ \}$ and $frac(d) = d - \lfloor d \rfloor$
- $\bullet \ \ \eta \models x \leqslant c \ \text{whenever} \ \lfloor \eta(x) \rfloor < c \ \text{or} \ \lfloor \eta(x) \rfloor = c \ \text{and} \ \mathit{frac}(\eta(x)) = 0$
- $\Rightarrow \eta \models g$ only depends on $\lfloor \eta(x) \rfloor$, and whether $frac(\eta(x)) = 0$
 - Initial suggestion: clock valuations η and η' are equivalent if:

$$\lfloor \eta(x) \rfloor \ = \ \lfloor \eta'(x) \rfloor$$
 and $frac(\eta(x)) = 0$ iff $frac(\eta'(x)) = 0$

• Note: it is crucial that in x < c and $x \leqslant c$, c is a natural

Bernd Finkbeiner

Verification - Lecture 25

16

Second observation

- Consider location ℓ with $inv(\ell) = true$ and only outgoing transitions:
 - one guarded with $x \geqslant 2$ (action α) and y > 1 (action β)
- Let state $s = \langle \ell, \eta \rangle$ with $1 < \eta(x) < 2$ and $0 < \eta(y) < 1$
 - α and β are disabled, only time may elapse
- Transition that is enabled next depends on x < y or $x \ge y$
 - e.g., if $frac(\eta(x))\geqslant frac(\eta(y))$, action α is enabled first
- Suggestion for strengthening of initial proposal for all $x, y \in C$ by:

$$frac(\eta(x)) \leqslant frac(\eta(y))$$
 if and only if $frac(\eta'(x)) \leqslant frac(\eta'(y))$

Final observation

- So far, clock equivalence yield a denumerable though not finite quotient
- For $TA \models \Phi$ only the clock constraints in TA and Φ are relevant
 - let $c_x \in \mathbb{N}$ the *largest constant* with which x is compared in TA or Φ
- \Rightarrow If $\eta(x) > c_x$ then the actual value of x is irrelevant
 - constraints on \cong so far are only relevant for clock values of x (y) up to c_x (c_y)

Bernd Finkbeiner

Verification - Lecture 25

18

Clock equivalence

Clock valuations $\eta, \eta' \in \mathit{Eval}(C)$ are *equivalent*, denoted $\eta \cong \eta'$, if:

(1) for any
$$x \in C$$
: $(\eta(x) > c_x) \land (\eta'(x) > c_x)$ or $(\eta(x) \leqslant c_x) \land (\eta'(x) \leqslant c_x)$

(2) for any $x \in C$: if $\eta(x), \eta'(x) \leqslant c_x$ then:

$$\lfloor \eta(x) \rfloor = \lfloor \eta'(x) \rfloor$$
 and $frac(\eta(x)) = 0$ iff $frac(\eta_2(x)) = 0$

(3) for any $x, y \in C$: if $\eta(x), \eta'(x) \leqslant c_x$ and $\eta(y), \eta'(y) \leqslant c_y$, then:

$$frac(\eta(x)) \leqslant frac(\eta(y))$$
 iff $frac(\eta'(x)) \leqslant frac(\eta'(y))$.

$$s \cong s' \quad \text{iff} \quad \ell = \ell' \quad \text{and} \quad \eta \cong \eta'$$

Bernd Finkbeiner

Regions

• The *clock region* of $\eta \in \mathit{Eval}(C)$, denoted $[\eta]$, is defined by:

$$[\eta] = \{ \eta' \in \mathit{Eval}(C) \mid \eta \cong \eta' \}$$

• The *state region* of $s = \langle \ell, \eta \rangle \in \mathcal{S}(TA)$ is defined by:

$$[s] = \langle \ell, [\eta] \rangle = \{ \langle s, \eta' \rangle \mid \eta' \in [\eta] \}$$

Bernd Finkbeiner Verification – Lecture 25 20

Number of regions

The *number of clock regions* is bounded from below and above by:

$$|C|! * \prod_{x \in C} c_x \leqslant |\underbrace{\textit{Eval}(C)/\cong}_{\text{number of regions}}| \leqslant |C|! * 2^{|C|-1} * \prod_{x \in C} (2c_x + 2)$$

where for the upper bound it is assumed that $c_x\geqslant 1$ for any $x\in C$

the number of state regions is |Loc| times larger

Preservation of atomic properties

1. For $\eta, \eta' \in \mathit{Eval}(C)$ such that $\eta \cong \eta'$:

$$\eta \models g$$
 if and only if $\eta' \models g$ for any $g \in AP' \setminus AP$

2. For $s, s' \in S(TA)$ such that $s \cong s'$:

$$s \models a$$
 if and only if $s' \models a$ for any $a \in AP'$

where AP' includes all atomic propositions and atomic clock constraints in TA and Φ .

Bernd Finkbeiner Verification – Lecture 25 22

Clock equivalence is a bisimulation

Clock equivalence is a bisimulation equivalence over AP'

Unbounded and successor regions

- Clock region $r_{\infty} = \{ \eta \in \mathit{Eval}(C) \mid \forall x \in C. \, \eta(x) > c_x \}$ is unbounded
- r' is the successor (clock) region of r, denoted r' = succ(r), if either:
 - 1. $r=r_{\infty}$ and r=r', or
 - 2. $r \neq r_{\infty}, r \neq r'$ and $\forall \eta \in r$:

$$\exists d \in \mathbb{R}_{>0}$$
. $(\eta + d \in r' \text{ and } \forall 0 \leqslant d' \leqslant d \cdot \eta + d' \in r \cup r')$

• The successor region: $succ(\langle \ell, r \rangle) = \langle \ell, succ(r) \rangle$

Bernd Finkbeiner

Verification - Lecture 25

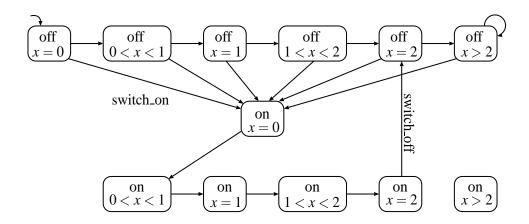
24

Region Graph

For non-Zeno $\mathit{TA} = (\mathit{Loc}, \mathit{Act}, C, \leadsto, \mathit{Loc}_0, \mathit{inv}, \mathit{AP}, L)$ with $\mathit{S}(\mathit{TA}) = (Q, Q_0, E, L)$ let $\mathit{RG}(\mathit{TA}, \Phi) = (Q', Q'_0, E', L')$ with

- $\bullet \ \ Q'=Q/\cong \ = \ \{\,[q]\mid q\in Q\,\} \ \text{and} \ Q_0'=\{\,[q]\mid q\in Q_0\,\},$
- $L'(\langle \ell, r \rangle) = L(\ell) \cup \{ g \in AP' \setminus AP \mid r \models g \}$
- E' consists of two types of edges:
 - Discrete transitions: $\langle \ell, r \rangle \xrightarrow{\alpha}' \langle \ell', \text{reset } D \text{ in } r \rangle$ if $\ell \overset{g:\alpha,D}{\leadsto} \ell'$ and $r \models g$ and reset $D \text{ in } r \models \textit{inv}(\ell')$;
 - Delay transitions: $\langle \ell, r \rangle \xrightarrow{\tau}' \langle \ell, succ(r) \rangle$ if $r \models inv(\ell)$ and $succ(r) \models inv(\ell)$

Example: simple light switch



Bernd Finkbeiner Verification – Lecture 25 26

Time convergence

For non-Zeno TA and $\pi = s_0 s_1 s_2 \dots$ an initial, infinite path in S(TA):

(a) π is $time-convergent <math>\Rightarrow \exists$ state region $\langle \ell, r \rangle$ such that for some j:

$$s_i \in \langle \ell, r \rangle \;\; {
m for \; all} \; i \geqslant j$$

(b) If \exists state region $\langle \ell, r \rangle$ with $r \neq r_{\infty}$ and an index j such that:

$$s_i \in \langle \ell, r \rangle$$
 for all $i \geqslant j$

then π is *time-convergent*

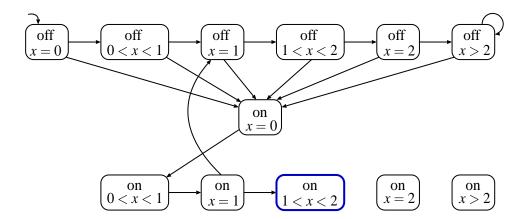
Timelock freedom

For non-Zeno TA:

TA is timelock-free iff no reachable state in RG(TA) is terminal

Bernd Finkbeiner Verification – Lecture 25 28

Example



Correctness theorem

Let TA be a non-Zeno timed automaton and Φ a TCTL \Diamond formula. Then:

$$TA \models \Phi$$
 iff $RG(TA, \Phi) \models \Phi$

CTL semantics

Bernd Finkbeiner Verification – Lecture 25 30

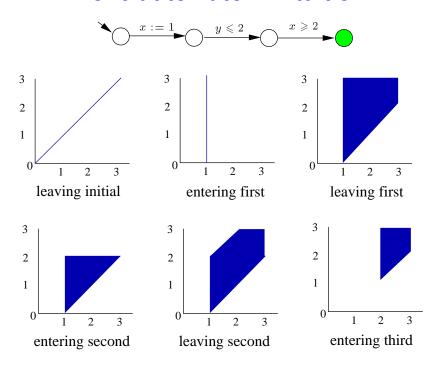
Zones

- Clock constraints are *conjunctions* of atomic constraints
 - $x \prec c \text{ and } x y \prec c \text{ for } \prec \in \ \{\,<, \leqslant, =, \geqslant, >\,\}$
 - restrict to TA with only conjunctive clock constraints
 - and (as before) assume no difference clock constraints
- A clock zone is the set of clock valuations that satisfy a clock constraint

31

- ${\sf -}$ a clock zone for g is the maximal set of clock valuations satisfying g
- Clock zone of g: $[\![g]\!] = \{ \eta \in \mathit{Eval}(C) \mid \eta \models g \}$
 - use $z,\,z'$ and so on to range over zones
- The *state zone* of $s = \langle \ell, \eta \rangle \in \mathcal{S}(TA)$ is $\langle \ell, z \rangle$ with $\eta \in z$

Zone automaton: intuition



Bernd Finkbeiner Verification – Lecture 25 32