
Verification – Lecture 26
Zones and Difference Bound Matrices

Bernd Finkbeiner – Sven Schewe
Rayna Dimitrova – Lars Kuhtz – Anne Proetzsch

Wintersemester 2007/2008

REVIEW

TCTL model checking

• TCTL model-checking problem: TA |= Φ for non-Zeno TA

TA |= Φ︸ ︷︷ ︸
timed automaton

iff S(TA) |= Φ︸ ︷︷ ︸
infinite state graph

• Idea: consider a finite region graph RG(TA)

• Transform TCTL formula Φ into an “equivalent” CTL-formula Φ̂

• Then: TA |=TCTL Φ iff RG(TA)︸ ︷︷ ︸
finite state graph

|=CTL Φ̂

Bernd Finkbeiner Verification – Lecture 26 1

REVIEW

Clock equivalence

Impose an equivalence, denoted ∼=, on the clock valuations such that:

(A) Equivalent clock valuations satisfy the same clock constraints g in TA
and Φ:

η ∼= η′ ⇒ (η |= g iff η′ |= g)

– no diagonal clock constraints are considered
– all the constraints in TA and Φ are thus either of the form x � c or x < c

(B) Time-divergent paths emanating from equivalent states are
equivalent

– this property guarantees that equivalent states satisfy the same path formulas

(C) The number of equivalence classes under ∼= is finite

Bernd Finkbeiner Verification – Lecture 26 2

REVIEW

Clock equivalence

Clock valuations η, η′ ∈ Eval(C) are equivalent, denoted η ∼= η′, if:

(1) for any x ∈ C: (η(x) > cx)∧ (η′(x) > cx) or (η(x) � cx)∧ (η′(x) � cx)

(2) for any x ∈ C: if η(x), η′(x) � cx then:

�η(x)� = �η′(x)� and frac(η(x)) = 0 iff frac(η2(x)) = 0

(3) for any x, y ∈ C: if η(x), η′(x) � cx and η(y), η′(y) � cy, then:

frac(η(x)) � frac(η(y)) iff frac(η′(x)) � frac(η′(y)).

s ∼= s′ iff � = �′ and η ∼= η′

Bernd Finkbeiner Verification – Lecture 26 3

REVIEW

Regions

• The clock region of η ∈ Eval(C), denoted [η], is defined by:

[η] = { η′ ∈ Eval(C) | η ∼= η′ }

• The state region of s = 〈�, η〉 ∈ S(TA) is defined by:

[s] = 〈�, [η]〉 = { 〈s, η′〉 | η′ ∈ [η] }

Bernd Finkbeiner Verification – Lecture 26 4

REVIEW

Canonical representation of regions

• Each clock region can be uniquely represented

• For each clock x a term of the form (where n ∈ IN and n < cx):

– x = n, or
– n < x < n+1, or
– x > cx

• For each pair of clocks x, y a term of the form:

– x − y < 0, or
– x − y = n, or
– n < x − y < n+1, or
– x − y > cx

Bernd Finkbeiner Verification – Lecture 26 5

REVIEW

Clock equivalence is a bisimulation

Clock equivalence is a bisimulation equivalence over AP′

Bernd Finkbeiner Verification – Lecture 26 6

REVIEW

Unbounded and successor regions

• Clock region r∞ =
{

η ∈ Eval(C) | ∀x ∈ C. η(x) > cx

}
is unbounded

• r′ is the successor (clock) region of r, denoted r′ = succ(r), if either:

1. r = r∞ and r = r′, or

2. r �= r∞, r �= r′ and ∀η ∈ r:

∃d ∈ R>0. (η+d ∈ r′ and ∀0 � d′ � d. η+d′ ∈ r ∪ r′)

• The successor region: succ(〈�, r〉) = 〈�, succ(r)〉

Bernd Finkbeiner Verification – Lecture 26 7

REVIEW

Region Graph

For non-Zeno TA = (Loc, Act, C, �, Loc0, inv, AP, L
)

with S(TA) =
(Q, Q0, E, L) let RG(TA,Φ) = (Q′, Q′

0, E
′, L′) with

• Q′ = Q/ ∼= = { [q] | q ∈ Q } and Q′
0 = { [q] | q ∈ Q0 },

• L′(〈�, r〉) = L(�) ∪ { g ∈ AP′ \ AP | r |= g }

• E′ consists of two types of edges:

– Discrete transitions: 〈�, r〉 α−−→′ 〈�′, reset D in r〉
if �

g:α,D
� �′ and r |= g and reset D in r |= inv(�′);

– Delay transitions: 〈�, r〉 τ−→′ 〈�, succ(r)〉
if r |= inv(�) and succ(r) |= inv(�)

Bernd Finkbeiner Verification – Lecture 26 8

REVIEW

Example: simple light switch

x� 0 x� 1 x� 2

x� 1 x� 2

0� x� 1 1� x� 2 x� 2

x� 21� x� 20� x� 1

off off off off off off

on on on on on

x� 0
on

switch on

sw
itch

off

Bernd Finkbeiner Verification – Lecture 26 9

REVIEW

Number of regions

The number of clock regions is bounded from below and above by:

|C|! ∗
∏
x∈C

cx �
∣∣ Eval(C)/∼=︸ ︷︷ ︸

number of regions

∣∣ � |C|! ∗ 2|C|−1 ∗
∏
x∈C

(2cx + 2)

where for the upper bound it is assumed that cx � 1 for any x ∈ C

the number of state regions is |Loc| times larger

Bernd Finkbeiner Verification – Lecture 26 10

REVIEW

Zones

• Clock constraints are conjunctions of atomic constraints

– x ≺ c and x − y ≺ c for ≺ ∈ {<, �, =, �, > }
– restrict to TA with only conjunctive clock constraints
– and (as before) assume no diagonal clock constraints

• A clock zone is the set of clock valuations that satisfy a clock
constraint

– a clock zone for g is the maximal set of clock valuations satisfying g

• Clock zone of g: [[g]] = { η ∈ Eval(C) | η |= g }
– use z, z′ and so on to range over zones

• The state zone of s = 〈�, η〉 ∈ S(TA) is 〈�, z〉 with η ∈ z

Bernd Finkbeiner Verification – Lecture 26 11

REVIEW

Zone graph: intuition

0 1 32

1

2

3

0 1 32

1

2

3

0 1 32

1

2

3

leaving first

0 1 32

1

2

3

entering second

0 1 32

1

2

3

leaving second

0 1 32

1

2

3

entering third

leaving initial entering first

x := 1 y � 2 x � 2

Bernd Finkbeiner Verification – Lecture 26 12

REVIEW

Successor and reset zones

• z′ is the successor (clock) zone of z, denoted z′ = z↑, if:

– z↑ = { η + d | η ∈ z, d ∈ R>0 }

• z′ is the zone obtained from z by resetting clocks D:

– reset D in z = { reset D in η | η ∈ z }

Bernd Finkbeiner Verification – Lecture 26 13

REVIEW

Some operations on zones

0 2 4

2

4

6

6

up

0 2 4

2

4

6

6

free x

0 2 4

2

4

6

6

initial zone

0 2 4

2

4

6

6

reset x

0 2 4

2

4

6

6

norm(0,3)

0 2 4

2

4

6

6

and(x <= 2)

Bernd Finkbeiner Verification – Lecture 26 14

REVIEW

Zone graph

For non-Zeno TA let:

ZG(TA,Φ) = (Q, Q0, E, L′) with

• Q = Loc × Zone(C) and Q0 = { 〈�, z0〉 | � ∈ Loc0 }

• L(〈�, z〉) = L(�) ∪ { g | g ∈ z }

• E consists of two types of edges:

– Discrete transitions: 〈�, z〉 α−−→〈�′, reset D in (z ∧ g) ∧ inv(�′)〉
if �

g:α,D
� �′, and

– Delay transitions: 〈�, z〉 τ−→〈�, z↑∧ inv(�)〉.

Bernd Finkbeiner Verification – Lecture 26 15

REVIEW

Correctness (1)

For timed automaton TA and any initial state 〈�, η0〉:

• Soundness:

〈�, { η0 }︸ ︷︷ ︸
z0

〉 →∗ 〈�′, z′〉
︸ ︷︷ ︸

in ZG(TA)

implies 〈�, η0〉 →∗ 〈�′, η′〉︸ ︷︷ ︸
in S(TA)

for all η′ ∈ z′

• Completeness:

〈�, η0〉 →∗ 〈�′, η′〉︸ ︷︷ ︸
in S(TA)

implies 〈�, { η0 }〉 →∗ 〈�′, z′〉︸ ︷︷ ︸
in ZG(TA)

for some z′ with η′ ∈ z′

Bernd Finkbeiner Verification – Lecture 26 16

REVIEW

Zone normalization

• To obtain a finite representation, zone normalization is employed

• For zone z, norm(z) = { η | η ∼= η′, η′ ∈ z }
– where ∼= is the clock equivalence

• There can only be finitely many normalized zones

• 〈�, z〉 →norm 〈�′, norm(z′)〉 if 〈�, z〉 → 〈�′, z′〉

Bernd Finkbeiner Verification – Lecture 26 17

REVIEW

Correctness (2)
For timed automaton TA and any initial state 〈�, η〉:

• Soundness:

〈�, { η0 }〉 →∗
norm 〈�′, z′〉 implies 〈�, η0〉 →∗ 〈�′, η′〉

– for all η′ ∈ z′ such that ∀x. η′(x) � cx

• Completeness:

〈�, η0〉 →∗ 〈�′, η′〉 with ∀x. η′(x) � cx implies 〈�, { η0 }〉 →∗
norm 〈�′, z′〉

– for some z′ such that η′ ∈ z′

• Finiteness: the transition relation → norm is finite

Bernd Finkbeiner Verification – Lecture 26 18

REVIEW

Forward reachability algorithm
PASSED := ∅; // explored states so far

WAIT := { (�0, z0) }; // states to be explored

while WAIT
= ∅ // still states to go

do select and remove (�, z) from WAIT;

if (� = goal ∧ z ∩ zgoal
= ∅)then return “reachable”! fi ;

if ¬(∃(�, z′) ∈ PASSED. z ⊆ z′) // no “super”state explored yet

then add (�, z) to PASSED // (�, z) is a new state

foreach (�′, z′) with (�, z) → norm (�′, z′)

do add (�′, z′) to WAIT; // add symbolic successors

fi

od

return “not reachable”!

Bernd Finkbeiner Verification – Lecture 26 19

REVIEW

Representing zones

• Let 0 be a clock with constant value 0; let C0 = C ∪ {0 }

• Any zone z ∈ Zone(C) can be written as:

– conjunction of constraints x − y < n or x − y � n for n ∈ Z, x, y ∈ C0

– when x − y � n and x − y � m take only x − y � min(n, m)

⇒ this yields at most |C0|·|C0| constraints

• Example:

x − 0 < 20 ∧ y − 0 � 20 ∧ y − x � 10 ∧ x − y � −10 ∧ 0 − z < 5

• Store each such constraint in a matrix

– this yields a difference bound matrix

Bernd Finkbeiner Verification – Lecture 26 20

REVIEW

Difference bound matrices

• Zone z over C is represented by DBM Z of cardinality |C+1|·|C+1|
– for C = x1, . . . , xn, let C0 = { x0, x1, . . . , xn } with x0 = 0
– Z(i, j) = (c,�) if and only if xi − xj � c

• Definition of Z for zone z:

– for xi − xj � c let Z(i, j) = (c,�)

– if xi − xj is unbounded in z, set Z(i, j) = ∞
– Z(0, i) = (�, 0) and Z(i, i) = (�, 0)

• Operations on bounds:

– (c,�) < ∞, (c, <) < (c, �), and (c,�) < (c′,�′) if c < c′

– c + ∞ = ∞, (c, �) + (c′, �) = (c+c′, �) and (c, <) + (c′, �) = (c+c′, <)

Bernd Finkbeiner Verification – Lecture 26 21

REVIEW

Canonical DBMs

• A zone z is in canonical form if and only if:

– no constraint in z can be strengthened without reducing [[z]] = { η | η ∈ z }

• For each zone z: ∃ a unique and equivalent zone in canonical form

• Represent zone z by a weighted digraph G = (V,E, w) where

– V = C0 is the set of vertices
– (xi, xj) ∈ E whenever xj − xi � c is a constraint in z

– w(xi, xj) = (�, c) whenever xj − xi � c is a constraint in z

• Zone z is in canonical form if and only if DBM Z satisfies:

– Z(i, j) � Z(i, k) + Z(k, j) for any xi, xj, xk ∈ C0

• Compute canonical zone?

– use Floyd-Warshall’s all-pairs SP algorithm (time O(|C0|3))

Bernd Finkbeiner Verification – Lecture 26 22

REVIEW

Minimal constraint systems
• A zone may contain redundant constraints

– e.g., in x−y < 2, y−z < 5, and x−z < 7, constraint x−z < 7 is redundant

• Reduce memory usage: consider minimal constraint systems

– e.g., x−y � 0, y − z � 0, z − x � 0, x−0 � 3, and 0−x < −2

– is a minimal representation of a zone in canonical form with 12 constraints

• For each zone: ∃ a unique and equivalent minimal constraint system

• Determining minimal representations of canonical zones:

– xi
(n,�)−−−−→xj is redundant if an alternative path from xi to xj has weight at most

(n,�)

– it suffices to consider alternative paths of length two

zero cycles require a special treatment

Bernd Finkbeiner Verification – Lecture 26 23

REVIEW

Main operations on DBMs (1)

• Nonemptiness: is [[Z]] �= ∅?

– search for negative cycles in the graph representation of Z, or
– mark Z when upper bound of some clock is set to value < its lower bound

• Inclusion test: is [[Z]] ⊆ [[Z′]]?

– for DBMs in canonical form, test whether Z(i, j) � Z′(i, j), for all i, j ∈ C0

• Delay: determine Z↑

– remove the upper bounds on any clock, i.e.,
– Z↑(i, 0) = ∞ and Z↑(i, j) = Z(i, j) for j
= 0

Bernd Finkbeiner Verification – Lecture 26 24

REVIEW

Main operations on DBMs (2)

• Conjunction: z ∧ (xi − xj � n)

– if (n,�) < Z(i, j) then Z(i, j) := (n,�) else do nothing
– put Z back into canonical form (in time O(|C0|2) using that only Z(i, j)

changed)

• Clock reset: xi := 0

– Z(i, j) := Z(0, j) and Z(j, i) := Z(j, 0)

• Normalization

– remove all bounds x−y � m for which (m,�) > (cx, �), and
– set all bounds x−y � m with (m,�) < (−cy, <) to (−cy, <)

– put the DBM back into canonical form (Floyd-Warshall)

Bernd Finkbeiner Verification – Lecture 26 25

