Verification — Lecture 26
Zones and Difference Bound Matrices

Bernd Finkbeiner — Sven Schewe
Rayna Dimitrova — Lars Kuhtz — Anne Proetzsch

Wintersemester 2007/2008

REVIEW

TCTL model checking

TCTL model-checking problem: TA = & for non-Zeno TA

TAE® iff S(TA) @
N—— N— —

timed automaton infinite state graph

|dea: consider a finite region graph RG(TA)

Transform TCTL formula @ into an “equivalent” CTL-formula D

Then TA ‘:TCTL @ |ff RG(TA) I:CTL @
——

finite state graph

Bernd Finkbeiner Verification — Lecture 26 1

REVIEW

Clock equivalence

Impose an equivalence, denoted =, on the clock valuations such that:

(A) Equivalent clock valuations satisfy the same clock constraints g in TA
and o:

n=n = (kg iff nEg)
— no diagonal clock constraints are considered
— all the constraints in TA and ® are thus either of the formz < corxz < ¢
(B) Time-divergent paths emanating from equivalent states are
equivalent

— this property guarantees that equivalent states satisfy the same path formulas

(C) The number of equivalence classes under = is finite

Bernd Finkbeiner Verification — Lecture 26 2

REVIEW

Clock equivalence

Clock valuations n, " € Eval(C) are equivalent, denoted n = 7/, if:
(1) forany x € C: (n(x) > cx) A (7 (x) > ¢z) or (n(x) < czx) A (7 () < ¢z)

(2) forany z € C: if n(x),n'(z) < ¢, then:
In(z)| = |7 (z)] and frac(n(z)) = 0iff frac(ne(z)) =0

(3) forany x,y € C: if n(z),n'(z) < ¢z and n(y),n'(y) < ¢y, then:
frac(n(x)) < frac(n(y)) it frac(n'(z)) < frac(n’(y)).

s=s iff £=4¢ and n=n

Bernd Finkbeiner Verification — Lecture 26 3

REVIEW

Regions

e The clock region of n € Eval(C), denoted [n], is defined by:
] = {n" e Bval(C) [n=1n"}

e The state region of s = (¢,n) € S(TA) is defined by:

[s] = (&,[) = {(s;n") [n" €nl}

Bernd Finkbeiner Verification — Lecture 26 4

REVIEW

Canonical representation of regions

e Each clock region can be uniquely represented

e For each clock x a term of the form (where n € IN and n < ¢,):

— x =mn,o0r
-n<x<n+tl,or
- T > Cy

e For each pair of clocks z, y a term of the form:

—x—y<O0,o0r
—x—y=mn,0r
-—n<x—y<n+tl,or
- Tr—Yy>cCy

Bernd Finkbeiner Verification — Lecture 26 5

REVIEW

Clock equivalence is a bisimulation

Clock equivalence is a bisimulation equivalence over AP’

Bernd Finkbeiner Verification — Lecture 26 6

REVIEW

Unbounded and successor regions

e Clock region ro, = {n € Eval(C) | Vz € C.n(z) > ¢, } is unbounded

e 1’ is the successor (clock) region of r, denoted ' = succ(r), if either:

1. r=randr =1/, 0r
2. 7 #re, £ and Vn € r:
dd € Ryg. (n+der’ and YVO<d <d.n+d erur’)

e The successor region: succ({(¢,r)) = (¢£,succ(r))

Bernd Finkbeiner Verification — Lecture 26 7

Region Graph

For non-Zeno TA = (Loc,Act,C,~,Locy,inv, AP, L) with S(TA) =
(Q7Q07E7L) let RG(TAa(b) - (Q/,Qé,El,L/) with

e Q=Q/=2={lgl|qeQ}and Q) ={[q] | g€ Qo },
o L'((t,r))=L() U{geAP'\AP |r =g}

e F’ consists of two types of edges:

— Discrete transitions: (¢, r) —' (¢/.reset D in r)
if ¢ 74" ¢ and r |= g and reset D in r |= inv(£');
— Delay transitions: (¢, r) —' (¢, succ(r))
if » = inv(¢) and succ(r) = inv(¢)

Bernd Finkbeiner Verification — Lecture 26 8

REVIEW

Example: simple light switch

Bernd Finkbeiner Verification — Lecture 26 9

REVIEW

Number of regions

The number of clock regions is bounded from below and above by:

Clts [Jee < | Eval(C)/= | < [C]12197 5 [] (260 +2)
zeC number of regions zeC

where for the upper bound it is assumed that ¢, > 1 forany =z € C

the number of state regions is |Loc| times larger

Bernd Finkbeiner Verification — Lecture 26 10

REVIEW

Zones

Clock constraints are conjunctions of atomic constraints

—zrx<candx —y <cfor<e {<,<,=,2,>}
— restrict to TA with only conjunctive clock constraints
— and (as before) assume no diagonal clock constraints

e A clock zone is the set of clock valuations that satisfy a clock
constraint

— a clock zone for g is the maximal set of clock valuations satisfying g

e Clock zone of g: [¢g] = {n € Eval(C) | |= g}

— use z, 2’ and so on to range over zones

The state zone of s = (¢,n) € S(TA) is (¢, z) withn € z

Bernd Finkbeiner Verification — Lecture 26 11

REVIEW

Zone graph: intuition

3 3 3
2 2 2
1 1 1
™1 2 3 71 2 3 1 2 3
leaving initial entering first leaving first
3 3 3
2 2 2 '
1 1 1
™1 2 3 ™1 2 3 1 2 3
entering second leaving second entering third
Bernd Finkbeiner Verification — Lecture 26 12

REVIEW

Successor and reset zones

e 2’ is the successor (clock) zone of z, denoted 2’ = 2T, if:

. {n+d|nezdeRy}

e 2’ is the zone obtained from z by resetting clocks D:

—resetDinz = {resetDinn|n €z}

Bernd Finkbeiner Verification — Lecture 26 13

REVIEW

Some operations on zones

6 6
2 2
074 6 07 % 4 & 0% 4 &
initial zone up free x
6 6
4 4 I
2 2
0% 4 & 0% 4 & 0% 4 &
reset X norm(0.3) and(x <= 2)
Bernd Finkbeiner Verification — Lecture 26 14
REVIEW
Zone graph

For non-Zeno TA let:
ZG(TA,®) = (Q,Qo, E, L") with
e Q =Loc x Zone(C) and Qo = { (£,) | £ € Locy }

o L({(4,z)) = L) U{glgez}

e [consists of two types of edges:

— Discrete transitions: (¢, z) — (¢/,reset D in (zAg) A inv({))
if ¢ 57 ¢/, and
— Delay transitions: (¢, z) = (¢, 2 Ainv(¢)).

Bernd Finkbeiner Verification — Lecture 26 15

REVIEW

Correctness (1)

For timed automaton TA and any initial state (¢, 7):

e Soundness:

(&, {mo}) == (¢',2') implies (£, n0) —:r* ((',n) foralln' € 2’
20 in S(TA)

A\ e

in ZG(TA)

e Completeness:

{Como) =" (',n') implies (¢, {no}) —" (¢',2) for some 2" withn’ € 2’

in S(TA) in ZG(TA)

Bernd Finkbeiner Verification — Lecture 26 16

REVIEW

Zone normalization

To obtain a finite representation, zone normalization is employed

For zone z, norm(z) = {n|n=n,n €z}

— where = is the clock equivalence
e There can only be finitely many normalized zones

o ({,2) —norm (U';norm(2"))if ({,2) — (V' 2')

Bernd Finkbeiner Verification — Lecture 26 17

REVIEW

Correctness (2)
For timed automaton TA and any initial state (¢, n):

e Soundness:
(€m0 }) = orm (€,2") implies (¢, m0) =~ (¢, ')
— foralln’ € 2’ suchthat Vz. n'(z) < ¢,
e Completeness:
(€,mo) =" (€', 0"y withVz.n'(z) < e implies (€, {mo}) — 7o (¢, 2)
— for some 2z’ such that ' € 2

e Finiteness: the transition relation — ,,,,.,, Is finite

Bernd Finkbeiner Verification — Lecture 26 18

REVIEW

Forward reachability algorithm

PASSED := g; /I explored states so far
WAIT := { (Yo, 20) }; /I states to be explored
while WAIT #£ o I/ still states to go

do select and remove (¢, z) from WAIT;
if (¢ =goal A z N zyu # @)then return “reachable”! fi ;

if =(3(¢, 2") € PASSED. z C 2’) /I no “superstate explored yet

then add (¢, z) to PASSED I (£, 2) is a new state
foreach (¢, 2") with (¢, 2) — o (€', 2')
do add (¢, 2') to WAIT; /I add symbolic successors
fi

od

return “not reachable”!

Bernd Finkbeiner Verification — Lecture 26 19

REVIEW

Representing zones

e Let 0 be a clock with constant value O; let Co = C U {0}

e Any zone z € Zone(C') can be written as:

— conjunction of constraints x —y < norx —y < nforn € Z,x,y € Cy
— whenz —y <nandz —y < mtakeonly x — y < min(n, m)
= this yields at most |Cy|-|Cy| constraints

e Example:

r—0<20 N y—0<20 N y—2z<10 N z—y<—-10 AN 0—2 <5

e Store each such constraint in a matrix

— this yields a difference bound matrix

Bernd Finkbeiner Verification — Lecture 26 20

REVIEW

Difference bound matrices

e Zone z over C'is represented by DBM Z of cardinality |C'+1|-|C+1]
—forC =z1,...,zp, let Co = { xo, x1,..., 2, } Withzg =0
- Z(i,j) = (¢, X)ifandonlyifz;, — z; < ¢
e Definition of Z for zone z:
— forz; —xz; X cletZ(i,j) = (¢, X)
— if z; — x; is unbounded in z, set Z(i, j) = oo
— 7(0,4) = (<,0) and Z(i, 1) = (<, 0)
e Operations on bounds:

— (¢, %) <00, (¢, <) < (¢,<),and (¢, X) < (¢, XN ife<
—c+oo=o00,(c, <)+ (¢, <) = (c+, <) and (¢, <) + (¢, <) = (c+, <)

Bernd Finkbeiner Verification — Lecture 26 21

REVIEW

Canonical DBMs

A zone z is in canonical form if and only if:

— no constraint in z can be strengthened without reducing [z] = {n | n € 2 }

For each zone z: 9 a unique and equivalent zone in canonical form

Represent zone z by a weighted digraph G = (V, E, w) where

— V = () is the set of vertices
— (xi, ;) € E whenever z; — xz; <X cis aconstraintin z
— w(z;, z;) = (X, c) whenever z; — x; <X cis aconstraint in z

e Zone z is in canonical form if and only if DBM Z satisfies:
- Z(i,j) < Z(i, k) + Z(k, j) forany z;, z;, z; € Cy

Compute canonical zone?

— use Floyd-Warshall’s all-pairs SP algorithm (time O(|C,|?))

Bernd Finkbeiner Verification — Lecture 26 22

REVIEW

Minimal constraint systems

A zone may contain redundant constraints

—eg,inz—y <2, y—z < 5,and x—z < 7, constraint z—z < 7 is redundant

Reduce memory usage: consider minimal constraint systems

—eg,z—y<0,y—2<0,z—2<0,z—0<3,and 0—x < —2
— is a minimal representation of a zone in canonical form with 12 constraints

For each zone: 3 a unique and equivalent minimal constraint system

Determining minimal representations of canonical zones:

- x;), x; is redundant if an alternative path from z; to =; has weight at most
(n, X)

— it suffices to consider alternative paths of length two

zero cycles require a special treatment

Bernd Finkbeiner Verification — Lecture 26 23

REVIEW

Main operations on DBMs (1)

e Nonemptiness: is [Z] # @7

— search for negative cycles in the graph representation of Z, or
— mark Z when upper bound of some clock is set to value < its lower bound

e Inclusiontest:is[Z] C [Z']?

— for DBMs in canonical form, test whether Z (i, j) < Z'(4, j), forall i, j € Cy

e Delay: determine Z'

— remove the upper bounds on any clock, i.e.,
— Z'(i,0) = coand Z' (4, j) = Z(3,j) for j # 0

Bernd Finkbeiner Verification — Lecture 26 24

REVIEW

Main operations on DBMs (2)

e Conjunction: z A (x; —z; 2 n)
— if (n, X)) < Z(i,j) then Z(4, 5) := (n, =) else do nothing

— put Z back into canonical form (in time O(|Cy|*) using that only Z(3, j)
changed)

e Clockreset: z; :=0
- Z(i,7) :=Z(0,) and Z(j, i) := Z(y, 0)

e Normalization

— remove all bounds x—y < m for which (m, X) > (¢., <), and
— setall bounds z—y < m with (m, <) < (—¢y, <) t0 (—cy, <)
— put the DBM back into canonical form (Floyd-Warshall)

Bernd Finkbeiner Verification — Lecture 26 25

