

Verification – Lecture 8 Progress under Justice

$$p \Rightarrow \diamondsuit q$$

Bernd Finkbeiner – Sven Schewe Rayna Dimitrova – Lars Kuhtz – Anne Proetzsch

Wintersemester 2007/2008

Single-Step Rule

 $R_{e_{Vi_{e_{W}}}}$

For assertions p, q, φ , and transition $\tau_h \in \mathcal{J}$,

J1.
$$p \rightarrow q \lor \varphi$$

J2.
$$\{\varphi\} \mathcal{T} \{q \vee \varphi\}$$

J3.
$$\{\varphi\}$$
 τ_h $\{q\}$

J4.
$$\varphi \rightarrow En(\tau_h)$$

$$p \Rightarrow \Diamond q$$

Bernd Finkbeine

/erification - Lecture

Useful Rules

Review

• Monotonicity:

$$\begin{array}{c|c} p \Rightarrow q & q \Rightarrow \diamondsuit r & r \Rightarrow t \\ \hline p \Rightarrow \diamondsuit t & \end{array}$$

• Reflexivity:

$$p\Rightarrow \diamondsuit p$$

• Transitivity:

$$\begin{array}{c|c} p \Rightarrow \diamondsuit q & q \Rightarrow \diamondsuit r \\ \hline p \Rightarrow \diamondsuit r & \end{array}$$

• Case analysis:

$$\frac{p \Rightarrow \diamondsuit r \quad q \Rightarrow \diamondsuit r}{(p \lor q) \Rightarrow \diamondsuit r}$$

Rernd Finkheine

erification - Lecture 8

$$\begin{array}{l} \textbf{Chain Rule} \\ \text{For assertions p and $q=\varphi_0,\,\varphi_1,\,\dots,\,\varphi_m$} \\ \text{J1.} \quad p \to \bigvee_{j=0}^m \varphi_j \\ \text{J2.} \quad \{\varphi_i\}\mathcal{T} \left\{\bigvee_{j \leq i} \varphi_j\right\} \\ \text{J3.} \quad \{\varphi_i\}\tau_{h_i} \left\{\bigvee_{j < i} \varphi_j\right\} \\ \text{J4.} \quad \varphi_i \to En(\tau_{h_i}) \end{array} \right\} \text{ for $i=1,\dots,m$} \\ \text{p} \Rightarrow \diamondsuit q$$

P-Valid Verification Diagrams

Directed labeled graph with

Verification conditions

Nodes - labeled by assertions

Edges – labeled by names of transitions

 φ $\varphi_{1} \bullet \bullet \bullet \varphi_{k}$ $\Rightarrow \{\varphi\} \ \tau \ \{\varphi \lor \varphi_{1} \lor \dots \lor \varphi_{k}\}$

<u>Terminal Node</u> ("goal") – no edges depart

Bernd Finkbeine

/erification - Lecture 8

9

Invariance Diagrams

VDs with no terminal nodes (cycles OK)

Claim (invariance diagram):

A P-valid INVARIANCE diagram establishes that

$$\bigvee_{j=1}^{m} \varphi_{j} \quad \Rightarrow \quad \Box(\bigvee_{j=1}^{m} \varphi_{j})$$

is P-valid.

If, in addition,

(I1)
$$\bigvee_{j=1}^{m} \varphi_j \rightarrow q$$

(I2)
$$\Theta \rightarrow \bigvee_{j=1}^{m} \varphi_j$$

are P-state valid, then

 $\square q$ is P-valid

Bernd Finkbeine

Verification - Lecture 8

Wait Diagrams

Review

VDs with nodes $\varphi_m, \ldots, \varphi_0$ such that:

• weakly acyclic, i.e.,

if $(\widehat{\varphi_i}) \longrightarrow (\widehat{\varphi_j})$

then $i \geq j$

ullet φ_0 is a terminal node

Bernd Finkbeine

erification - Lecture 8

11

Proofs with Wait Diagrams

Review

A P-valid WAIT diagram establishes that

$$\bigvee_{j=0}^{m} \varphi_{j} \Rightarrow \varphi_{m} \mathcal{W} \varphi_{m-1} \cdots \varphi_{1} \mathcal{W} \varphi_{0}$$

is P-valid.

If, in addition,

(N1)
$$p \rightarrow \bigvee_{j=0}^{m} \varphi_{j}$$

(N2)
$$\varphi_i \rightarrow q_i$$
 for $i=0,1,\ldots,m$

are P-state valid, then

$$p \Rightarrow q_m \mathcal{W} q_{m-1} \cdots q_1 \mathcal{W} q_0$$

is $P ext{-}\mathrm{valid}$.

Bernd Finkbeiner

Verification - Lecture

Chain Diagrams

 $R_{e_{Vie_{W}}}$

Edges: labeled by transitions

single-lined (represents a regular transition) Nodes: labeled by assertions $\widehat{\varphi_i}$

Terminal node (φ_0)

double-lined _____ (represents a helpful transition)

well-formedness conditions:

weakly acyclic in →:

$$\text{if } \widehat{\left(\varphi_i\right)} \longrightarrow \widehat{\left(\varphi_j\right)} \quad \text{then } i \geq j$$

acyclic in ⇒:

if
$$\widehat{(\varphi_i)} \Longrightarrow \widehat{(\varphi_j)}$$
 then $i > j$

• every nonterminal node has a double edge departing from it.

Chain Diagram Validity

A chain diagram is $\underline{P}\text{-valid}$ if all the verification conditions associated with the diagram are P-valid.

Claim: A P-valid chain diagram establishes that

$$\bigvee_{j=0}^{m} \varphi_j \Rightarrow \diamondsuit \varphi_0$$

is P-valid.

With
$$p o \bigvee_{j=0}^m \varphi_j$$
 and $\varphi_0 o q$,

we can conclude the P-validity of

$$p \Rightarrow \diamondsuit q$$

Bernd Finkbeine

'erification - Lecture

Review Example $at-\ell_3 \Rightarrow \diamondsuit at-\ell_4$ $at_{-}\ell_3$; y_1 local y_1, y_2 : boolean where $y_1 = F, y_2 = F$ y_2 , s=1: integer where s = 1 φ_4 : at_m_3 ℓ_0 : loop forever do m_3 ℓ_1 : noncritical ℓ_2 : $(y_1, s) := (T, 1)$ $P_1 ::$ φ_3 : $al_{-}m_4$ ℓ_3 : await $(\neg y_2) \lor (s=2)$ m_A ℓ_4 : critical $y_1 := F$ φ_2 : at_-m_5 m_0 : loop forever do $[m_1: noncritical]$ $m_2: (y_2, s) := (T, 2)$ $\varphi_1: \neg y_2 \lor s \neq 1$ P_2 :: m_3 : await $(\neg y_1) \lor (s=1)$ ℓ_3 m_4 : critical $m_5: y_2 := F$ φ_0 : $at_-\ell_4$ Bernd Finkbeiner Verification - Lecture 8

Program N

in N: integer where N > 0

local i: integer

 $\ell_0: i := N$

 ℓ_1 : while i > 0 do

 ℓ_2 : i = i - 1

 ℓ_3 :

We want to prove that for program N:

$$at_{-\ell_0} \Rightarrow \diamondsuit at_{-\ell_3}$$

Bernd Finkbeine

erification - Lecture 8

Attempts to use Chain Diagrams...

Bernd Finkbeiner

Verification - Lecture

Well-Founded Domains

where A is a set and \succ is a well-founded order (i.e., there does not exist an infinitely descending sequence $a_0 \succ a_1 \succ a_2 \ldots$)

Note: A well-founded order is transitive and irreflexive.

Examples:

- $(\mathbb{N}, >)$ is well-founded: n > n-1 > n-2 $> \ldots > 0$
- $(\mathbb{Z},>)$ is not well-founded: $n > n-1 > \ldots > 0 > -1 > -2 \ldots$
- $(\mathbb{Z},|>|)$ with x|>|y| iff |x|>|y| is well-founded: $-7 \mid > \mid -3 \mid > \mid 2 \mid > \mid -1 \mid > \mid 0$

Lexicographic Product

```
Well-founded domains (A_1, \succ_1) and (A_2, \succ_2)
can be combined into their
```

lexicographic product
$$(A_1 \times A_2, \succ)$$

where

$$(n_1, n_2) \succ (m_1, m_2)$$

iff

$$n_1 \succ m_1$$
 or $(n_1 = m_1 \text{ and } n_2 \succ m_2).$

 $(A_1 \times A_2, \succ)$ is also a well-founded domain.

Example: Program UP-DOWN

local
$$x, y$$
: integer where $x = y = 0$

$$\begin{cases} \ell_0 \colon & \mathbf{while} \ x = 0 \ \mathbf{do} \\ \ell_1 \colon \ y := y + 1 \\ \ell_2 \colon & \mathbf{while} \ y > 0 \ \mathbf{do} \\ \ell_3 \colon \ y := y - 1 \end{cases}$$

$$\begin{cases} P_2 :: & \begin{bmatrix} m_0 \colon x := 1 \\ m_1 \colon \end{bmatrix} \end{cases}$$

$$at_l_0 \wedge at_m_0 \wedge x\text{=}y\text{=}0 \ \Rightarrow \ \diamondsuit \ at_l_4 \wedge at_m_1$$

Rernd Finkheine

erification - Lecture

25

local x, y: integer where x = y = 0

$$P_1 :: \begin{bmatrix} \ell_0 \colon \mathbf{while} \ x = 0 \ \mathbf{do} \\ \ell_1 \colon \ y := y + 1 \\ \ell_2 \colon \mathbf{while} \ y > 0 \ \mathbf{do} \\ \ell_3 \colon \ y := y - 1 \\ \ell_4 \colon \end{bmatrix}$$

$$\left[\begin{array}{ccc} & P_2 :: & \begin{bmatrix} m_0 \colon x := 1 \\ m_1 \colon & \end{bmatrix} \right]$$

Bernd Finkbeiner

erification - Lecture

Completeness

For a program P (with $C = \varnothing$, $\mathcal{J} = \{\tau_1, ..., \tau_m\}$): for every two state assertions p, q, such that

$$p \Rightarrow \Diamond q$$

is P-valid, there exist

assertions q = ϕ_0 , ϕ_1 ,..., ϕ_m ,

transitions $\tau_{\text{1}},\,\tau_{\text{1}},...,\,\tau_{\text{m}}$,

a well-founded domain (A,\succ) , and

ranking functions $\delta_{\text{1}},\,\delta_{\text{1}},\!...,\,\delta_{\text{m}}$

such that the premises of WELL-J are provable from state validities.

Proof: later

Bernd Finkbeiner

/erification - Lecture 8

27

Finite-State Model Checking

Principles of Model Checking

by Christel Baier and Joost-Pieter Katoen

To appear in Spring 2008

(we'll distribute selected chapters in class.)

Edmund M. Clarke

E. Allen Emerson

Bernd Finkbeiner

erification - Lecture 8

Review: Finite-State Programs

For a computation σ ,

 σ : s_0 , s_1 , s_2 , ...

state s_i is a accessible state.

A program is finite-state if the set of all accessible states is finite.

Bernd Finkbeiner

Verification - Lecture 8

```
Peterson again!
     \begin{array}{ccc} \text{local} & y_1,y_2 \colon \text{ boolean} \\ s & \vdots & \text{integer} \end{array} \text{ where } y_1 = \mathtt{F}, y_2 = \mathtt{F}
              \ell_0: loop forever do
                       \lceil \ell_1 : noncritical
                                                                           This is a finite-state
                        \ell_2: (y_1, s) := (T, 1)
                                                                           program.
     P_1 ::
                        \ell_3: await (\neg y_2) \lor (s=2)
                                                                                   s = 1,2
                        \ell_4: critical
                       \ell_5: y_1 := F
                                                                                   y_1 = T,F
                                                                                   y_2 = T, F
             m_0: loop forever do
                       [m_1: noncritical]
                        m_2: (y_2, s) := (T, 2)
    P_2 ::
                       m_3: await (\neg y_1) \lor (s=1)
                       m_4: critical
                       \begin{bmatrix} m_5 : & y_2 := F \end{bmatrix}
```


Constructing the Transition Graph

Initially

Place as nodes in G_P all initial states (satisfy Θ)

ullet Repeat until no new nodes or new edges can be added to G_P

For some $s \in G_P$, let s_1, \ldots, s_k be its successors

Add to G_P all new nodes in $\{s_1, \ldots, s_k\}$ and draw edges connecting s to s_i , $i=1,\ldots,k$

Rernd Finkheiner

erification - Lecture

33

Checking Invariance

For assertion q, check validity of $\Box q$ over finite-state programs.

(= check that q is P-state valid)

Example: Peterson's Algorithm

Check assertions

 φ_0 : $\Box \neg (at - \ell_4 \wedge at - m_4)$

 φ_1 : $\Box (at_-\ell_3 \land \neg at_-m_3 \rightarrow s = 1)$

 φ_2 : $\Box (at_-m_3 \land \neg at_-\ell_3 \rightarrow s = 2)$

in the graph.

The assertions hold over all accessible states. Thus,

 $\square \varphi_0, \ \square \varphi_1, \ \square \varphi_2$

Bernd Finkbeine

Verification - Lecture 8

Depth First Search

Program DFS For each s such that s satisfies θ do dfs(s) end DFS

Procedure dfs(s) for each s' such that $s' \in \tau(s)$ do If new(s') then dfs(s') end dfs.

Bernd Finkbeiner

erification - Lecture 8

Start from an initial state

Hash table:

q1

q3

g5

Bernd Finkbeiner

Verification - Lecture 8

Beyond Invariance Checking

- Want to check more properties.
- Want to have a single algorithm that deals with all types of properties.

LTL formulas can be translated into graphs (finite automata).

Rernd Finkheiner

/erification - Lecture 8

Automata

Quick Review: Finite-State Automata

A nondeterministic finite automaton (NFA) \mathcal{A} is a tuple $(Q, \Sigma, \delta, Q_0, F)$ where:

- Q is a finite set of states
- \bullet Σ is an alphabet
- $\delta:Q\times\Sigma\to 2^Q$ is a transition function

- $Q_0 \subseteq Q$ a set of initial states
- $F \subseteq Q$ is a set of accept (or: final) states

Bernd Finkbeiner

Verification - Lecture

45

Language

- NFA $\mathcal{A}=(Q,\Sigma,\delta,Q_0,F)$ and word $\textit{w}=\textit{A}_1\ldots\textit{A}_n\in\Sigma^*$
- A *run* for w in A is a finite sequence $q_0 q_1 \ldots q_n$ such that:
 - $q_0 \in Q_0$ and $q_i \xrightarrow{A_{i+1}} q_{i+1}$ for all $0 \leqslant i < n$
- Run $q_0 q_1 \dots q_n$ is accepting if $q_n \in F$
- ullet $w\in \Sigma^*$ is *accepted* by $\mathcal A$ if there exists an accepting run for w
- The accepted language of A:

 $\mathcal{L}(\mathcal{A}) = \left\{ w \in \Sigma^* \mid \text{ there exists an accepting run for } w \text{ in } \mathcal{A}
ight.
ight\}$

• NFA \mathcal{A} and \mathcal{A}' are equivalent if $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$

Bernd Finkbein

Verification - Lecture 8

Extended Transition Function

Extend the transition function δ to $\delta^*: Q \times \Sigma^* \to 2^Q$ by:

$$\delta^*(q, \varepsilon) = \{ q \}$$
 and $\delta^*(q, \mathbf{A}) = \delta(q, \mathbf{A})$

$$\delta^*(q, \mathsf{A}_1 \mathsf{A}_2 \dots \mathsf{A}_n) = \bigcup_{p \in \delta(q, \mathsf{A}_1)} \delta^*(p, \mathsf{A}_2 \dots \mathsf{A}_n)$$

 $\delta^*(q, w)$ = set of states reachable from q for the word w

Then: $\mathcal{L}(\mathcal{A}) = \{ \mathbf{w} \in \Sigma^* \mid \delta^*(q_0, \mathbf{w}) \cap F \neq \varnothing \text{ for some } q_0 \in Q_0 \}$

Bernd Finkbeine

Verification - Lecture

47

Intersection

- Let NFA $A_i = (Q_i, \Sigma, \delta_i, Q_{0,i}, F_i)$, with i=1, 2
- The product automaton

$$\mathcal{A}_1 \otimes \mathcal{A}_2 = (Q_1 \times Q_2, \Sigma, \delta, Q_{0,1} \times Q_{0,2}, F_1 \times F_2)$$

where δ is defined by:

$$\frac{q_1 \xrightarrow{A}_1 q'_1 \land q_2 \xrightarrow{A}_2 q'_2}{(q_1, q_2) \xrightarrow{A} (q'_1, q'_2)}$$

 $\bullet \ \ \text{Well-known result:} \ \mathcal{L}(\mathcal{A}_1 \otimes \mathcal{A}_2) \ = \ \mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\mathcal{A}_2)$

Bernd Finkbeine

Verification - Lecture

Regular Expressions

For a regular expression R (over Σ)

- $\sigma \in R$ for every $\sigma \in \Sigma$
- If R_1, R_2 are regular expressions

$$\begin{array}{ll} R_1+R_2 &=& \{x\mid x\in R_1 \text{ or } x\in R_2\}\\ R_1\cdot R_2 &=& \{x\cdot y\mid x\in R_1 \text{ and } y\in R_2\}\\ R^* &=& \{\,\epsilon\}\cup \{x\mid x \text{ obtained by concatenating}\\ &=& \text{a finite }\#\text{ of words in } R\} \end{array}$$

Bernd Finkbeiner

/erification - Lecture 8

49

Examples

```
\Sigma = \{a, b\}
```

abbaa is a word

 $a^*ba^*ba^*$ – all words containing exactly 2 b's

 ba^* – all words beginning with a \underline{b} followed only by \underline{a} 's

 $(a+b)^*$ – all words over $\{a,b\}$

 $(a+b)^*(aa+bb)(a+b)^*$ – all words containing 2 consecutive a's or 2 consecutive b's

 $(a^*b)^*$ — the empty word and all finite words over $\{a,b\}$ whose last letter is b

Bernd Finkbeiner

erification - Lecture

Deterministic Automata

Automaton A is called deterministic if

$$|Q_0| \leqslant 1$$
 and $|\delta(q, A)| \leqslant 1$ for all $q \in Q$ and $A \in \Sigma$

DFA A is called total if

$$|Q_0|=1$$
 and $|\delta(q,\mathbf{A})|=1$ for all $q\in Q$ and $\mathbf{A}\in \Sigma$

any DFA can be turned into an equivalent total DFA

total DFA provide unique successor states, and thus, unique runs for each input word

Bernd Finkbeiner

/erification - Lecture 8

51

Determinization

For NFA $\mathcal{A}=(Q,\Sigma,\delta,Q_0,F)$ let $\mathcal{A}_{det}=(2^Q,\Sigma,\delta_{det},Q_0,F_{det})$ with:

$$F_{det} = \{ Q' \subseteq Q \mid Q' \cap F \neq \emptyset \}$$

and the total transition function $\delta_{det}: 2^Q \times \Sigma \to 2^Q$ is defined by:

$$\delta_{det}(Q', \mathbf{A}) = \bigcup_{q \in Q'} \delta(q, \mathbf{A})$$

 \mathcal{A}_{det} is a total DFA and, for all $\textit{w} \in \Sigma^*$: $\delta^*_{det}(Q_0, \textit{w}) = \bigcup_{q_0 \in Q_0} \delta^*(q_0, \textit{w})$ Thus: $\mathcal{L}(\mathcal{A}_{det}) = \mathcal{L}(\mathcal{A})$

Bernd Finkbeiner

Verification - Lecture

Determinization

a deterministic finite automaton accepting $\mathcal{L}((A+B)^*B(A+B))$

Bernd Finkbeine

erification - Lecture 8

53

Facts about NFAs

- They are as expressive as regular languages
- They are closed under ∩ and complementation
 - NFA $\mathcal{A} \otimes B$ (= cross product) accepts $\mathcal{L}(A) \cap \mathcal{L}(B)$
 - Total DFA $\overline{\mathcal{A}}$ (= swap all accept and normal states) accepts $\overline{\mathcal{L}(A)} = \Sigma^* \setminus \mathcal{L}(\mathcal{A})$
- They are closed under determinization (= removal of choice)
 - although at an exponential cost.....
- $\mathcal{L}(A) = \varnothing$? = check for reachable accept state in A
 - this can be done using a simple depth-first search
- ullet For regular language ${\cal L}$ there is a unique minimal DFA accepting ${\cal L}$

Bernd Finkbeiner

Verification - Lecture 8

Büchi Automata

- NFA (and DFA) are incapable of accepting infinite words
- Automata on infinite words
 - suited for accepting ω -regular languages
 - we consider nondeterministic Büchi automata (NBA)
- Accepting runs have to "check" the entire input word ⇒ are infinite
 - ⇒ acceptance criteria for infinite runs are needed
- NBA are like NFA, but have a distinct acceptance criterion
 - one of the accept states must be visited infinitely often

Bernd Finkbeiner

Verification - Lecture

55

Büchi Automata

A nondeterministic Büchi automaton (NBA) \mathcal{A} is a tuple $(Q, \Sigma, \delta, Q_0, F)$ where:

- Q is a finite set of states with $Q_0 \subseteq Q$ a set of initial states
- Σ is an alphabet
- $\delta: Q \times \Sigma \to 2^Q$ is a transition function
- $F \subseteq Q$ is a set of accept (or: final) states

Bernd Finkbeiner

Verification - Lecture 8

Language

- NBA $\mathcal{A}=(Q,\Sigma,\delta,Q_0,F)$ and word $\sigma=\mathsf{A}_0\mathsf{A}_1\mathsf{A}_2\ldots\in\Sigma^\omega$
- A run for σ in $\mathcal A$ is an infinite sequence $q_0\,q_1\,q_2\dots$ such that: • $q_0\in Q_0$ and $q_i\overset{\pmb A_i}{\longrightarrow}q_{i+1}$ for all $0\leqslant i$
- Run $q_0 q_1 q_2 \dots$ is *accepting* if $q_i \in F$ for infinitely many i
- $\sigma \in \Sigma^{\omega}$ is accepted by A if there exists an accepting run for σ
- The accepted language of A:

 $\mathcal{L}_{\omega}(\mathcal{A}) = \big\{ \sigma \in \Sigma^{\omega} \mid \text{ there exists an accepting run for } \sigma \text{ in } \mathcal{A} \ \big\}$

• NBA ${\mathcal A}$ and ${\mathcal A}'$ are equivalent if ${\mathcal L}_{\omega}({\mathcal A})={\mathcal L}_{\omega}({\mathcal A}')$

Bernd Finkbeiner

erification - Lecture l

57

NFA vs. NBA

finite equivalence $\Rightarrow \omega$ -equivalence

$$\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$$
, but $\mathcal{L}_{\omega}(\mathcal{A}) \neq \mathcal{L}_{\omega}(\mathcal{A}')$

 ω -equivalence \Rightarrow finite equivalence

$$\mathcal{L}_{\omega}(\mathcal{A}) = \mathcal{L}_{\omega}(\mathcal{A}')$$
, but $\mathcal{L}(\mathcal{A}) \neq \mathcal{L}(\mathcal{A}')$

Bernd Finkbeiner

Verification - Lecture 8

ω -Regular Expressions

```
For a regular expression R (where \varepsilon \notin R),
```

 $\underline{R^\omega}$ is an ω -reg exp denoting the set of all <u>infinite words</u> that can be represented as the infinite concatenation

```
x_1 \cdot x_2 \cdot \ldots \cdot x_k \cdot \ldots
```

such that $x_i \in R$ for i = 1, 2, ...

Example: $(a^*b)^{\omega}$

denotes the set of $\hbox{all infinite words over } \{a,b\}$

which contain infinitely many b's

Bernd Finkbeine

erification - Lecture

59

ω-Regular Expressions (cont'd)

For regular expression ${\cal R}$ and

 $\omega\text{-regular expression }O$

 \underline{RO} is an ω -regular expression denoting the set of all infinite words that can be presented as the concatenation

xy

where $x \in R, y \in O$

Example: $(a+b)^*b^{\omega}$

denotes the set of

all infinite words over $\{a,b\}$ which contains finitely many a's

Bernd Finkbeiner

Verification - Lecture 8

ω-Regular Expressions (cont'd)

For ω -regular expression O_1 and O_2

 $\frac{O_1+O_2}{\text{the union of the sets denoted by}}$ is an ω -regular expression denoting

Example: The ω -regular expression

$$(a+b)^*b^\omega + (a+b)^*a^\omega$$

denotes the set of infinite words over $\{a,b\}$ which either contain finitely many a's or finitely many b's.

Bernd Finkbeine

erification - Lecture 8

61

NBA and ω -Regular Languages

The class of languages accepted by NBA agrees with the class of ω -regular languages

- (1) any ω -regular language is recognized by an NBA
- (2) for any NBA ${\mathcal A}$, the language ${\mathcal L}_{\omega}({\mathcal A})$ is ω -regular

Bernd Finkbeiner

erification - Lecture

For any ω -regular language there is an NBA

• How to construct an NBA for the ω -regular expression:

$$\mathsf{G} = \mathsf{E}_1.\mathsf{F}_1^\omega + \ldots + \mathsf{E}_n.\mathsf{F}_n^\omega ?$$

where E_i and F_i are regular expressions over alphabet Σ ; $\varepsilon \not\in F_i$

- Rely on operations for NBA that mimic operations on ω -regular expressions:
 - (1) for NBA \mathcal{A}_1 and \mathcal{A}_2 there is an NBA accepting $\mathcal{L}_{\omega}(\mathcal{A}_1) \cup \mathcal{L}_{\omega}(\mathcal{A}_2)$
 - (2) for any regular language $\mathcal L$ with $\varepsilon \notin \mathcal L$ there is an NBA accepting $\mathcal L^\omega$
 - (3) for regular language $\mathcal L$ and NBA $\mathcal A'$ there is an NBA accepting $\mathcal L.\mathcal L_\omega(\mathcal A')$

Bernd Finkbeiner

Verification - Lecture

63

Union

For NBA A_1 and A_2 (both over the alphabet Σ) there exists an NBA A such that:

$$\mathcal{L}_{\omega}(\mathcal{A}) = \mathcal{L}_{\omega}(\mathcal{A}_1) \, \cup \, \mathcal{L}_{\omega}(\mathcal{A}_2) \quad \text{ and } \quad |\mathcal{A}| = \mathcal{O}(|\mathcal{A}_1| + |\mathcal{A}_2|)$$

The size of A, denoted |A|, is the number of states and transitions in A:

$$|\mathcal{A}| \; = \; |Q| + \sum_{q \in Q} \sum_{\mathbf{A} \in \Sigma} |\; \delta(q, \mathbf{A}) \; | \;$$

Bernd Finkbeiner

Verification - Lecture

ω -Operator (for NFA)

For each NFA $\mathcal A$ with $\varepsilon \notin \mathcal L(\mathcal A)$ there exists an NBA $\mathcal A'$ such that:

$$\mathcal{L}_{\omega}(\mathcal{A}') = \mathcal{L}(\mathcal{A})^{\omega} \quad \text{ and } \quad |\mathcal{A}'| = \mathcal{O}(|\mathcal{A}|)$$

rnd Finkbeiner Verification - Lectur

,,,