Verification - Lecture 8
Progress under Justice

p=<q

Bernd Finkbeiner - Sven Schewe
Rayna Dimitrova - Lars Kuhtz - Anne Proetzsch

Wintersemester 2007/2008

Overview: 3 Rules

Qe[,/ew
Thn
Th
1. Rule RESP-1 ﬁ

H
3
I
[u

-
=

2

|

[

I

(single-step response under justice) ¥

S
3

2. Rule CHAIN-J
(chain rule under justice)

3. Rule WELL-J

(well-founded response under justice)
2

Bernd Finkbeiner Verification - Lecture 8

Single-Step Rule (Motivation) Revse,

7T En(m) e

helpful transition 7,

Justice requirement: it is not the case that a
just transition is continuously enabled but never
taken.

Bernd Finkbeiner Verification - Lecture 8

Single-Step Rule

e Wel'l/

For assertions p. ¢. ¢. and transition 7, € J.
JI. p — q V ¢
12 {¢} T {q v ¢}
J3. {e} 7 {d}

J4. ¢ — En(mp)

p = g

Bernd Finkbeiner Verification - Lecture 8

Useful Rules

e Monotonicity:
p=q g=r r=>t
p=> Ot

e Wel'l/

o Reflexivity:
p=>p

e Transitivity:

p=q q=>Or
p=r

e Case analysis:

p=Or g=Or
vy = Or

Bernd Finkbeiner Verification - Lecture 8 5

Chain Rule (Motivation)

e Wel'l/

Thy

A fixed number of helpful transitions

Bernd Finkbeiner Verification - Lecture 8 6

Chain Rule

(57
(/
€
For assertions p and ¢ = g, @1, .., ¥m
and transitions 7, ..., 73, € J
s
JI. p—= V¢
j=0
2. {@}TSV wj
i<i
fore=1,...,m
3. {eidm |V @i
j<i
Ja. p,— E'”'(Thi)
p=<4g
Bernd Finkbeiner Verification - Lecture 8 7
oo . o e INVARIANCE diagram
VCI“IflCOTIOﬂ DlClgl“ClmS valid for program MuUx-°rPET1 'Qe[/,'ew
&2
local y1,10: boolean where y1 =F,ys =F e T
— ~a
E : integer where s=1 = -
sat_fg.a A Cal_fz 5 M
£5: loop forever do [m ° - } [i R
£ noncritical — -
b (y1,8) = (1, 1) s
Py :
f3: await (-y2) V(s =2)
£4 1 critical e Also,
b5t yii=F (I2) at_€g A ~yg A - —
a
|| at_fpo A “y1 Voo
¥1 2
mg: loop forever do
m1: noncritical (I1) at_bg.o A -1 — y1 & al_f3 5
w1 4q
P ma: (y2, 8):=(T, 2) w w
2 - m3: await (—y) V(s =1) at_L3z 5 AN y1n — y1 & at_L3 e
w2 4
ma critical
ms Yy =TF Therefore
(1« at—t3.5)]
Bernd Finkbeiner Verification - Lecture 8 8

P-Valid Verification Diagrams

Directed labeled graph with

e Wel{/

Verification conditions

Nodes — labeled by assertions

@\

Edges — labeled by names of transitions

2N

e @

= {e} r{eVverVv...ved

.
& —®

Terminal Node (‘"goal") — no edges depart

from it

Definition: VD is P-valid iff all VCs
associated with nodes in the diagram
are P-state valid

Bernd Finkbeiner Verification - Lecture 8

Invariance Diagrams

VDs with no terminal nodes (cycles OK)

Claim (invariance diagram):

A P-valid INVARIANCE diagram establishes that

Ve, = OV ¢
= =

=

is P-valid.

If, in addition,

m
am \V ¢ = ¢
i=1
T

12 6 = V ¢
ji=1

are P-state valid, then

[1g is P-valid

Bernd Finkbeiner Verification - Lecture 8

e Wel{/

Wait Diagrams

VDs with nodes ¢m,..., ¢ such that:

e weakly acyclic, i.e.,

if —>

then i > j

® oo IS a terminal node

Bernd Finkbeiner Verification - Lecture 8

e Wel'l/

Proofs with Wait Diagrams

A P-valid waiT diagram establishes that

m

V oi = om W om-1 - ¢1 W go

i=0

is P-valid.

If, in_addition,

m
(N1) p = V ¢
i=0

(N2) ¢; — ¢ for i=0,1,...,m

are P-state valid, then
P = gm Wiam-1 -+ 1 Waqo

is P-valid.

Bernd Finkbeiner Verification - Lecture 8

e Wel'l/

Chain Diagrams

(57
/ew
Edges: labeled by transitions Nodes: labeled by assertions
single-lined ——— Terminal node @
(represents a regular transition)

double-lined
(represents a helpful transition)

e weakly acyclic in —:
if —) then i > j
e acyclic in =

if =¢» then i > j

e every nonterminal node has a double edge
departing from it.

well-formedness conditions:

Bernd Finkbeiner Verification - Lecture 8 13

Verification Conditions

e[,,-ew
{er oV eLY ...V ion) @

@ = En(T) {e}r{e1 V...V en}

Bernd Finkbeiner Verification - Lecture 8 14

Chain Diagram Validity

e[,,-ew
A chain diagram is P-valid
if all the verification conditions associated with
the diagram are P-valid.
Claim: A P-valid chain diagram establishes that
m
V #i = O vo
j=0
is P-valid.
m
with p— \/ ¢; and ¢g—gq,
j=0
we can conclude the P-validity of
p= <4
Bernd Finkbeiner Verification - Lecture 8 15
e,
Example ito Qute | "y
f‘”_f_s_ i h
local yi,y>: boolean where y1 =F,yo =F)
E : integer where s=1
£5: loop forever do
£1 : noncritical -
P b (y1,8)=(1, 1) —
- f3: await (~g2) V(s = 2))
f4: critical 4
b5 y1:=F 3
| | {wa: al_ms)
mg: loop forever do e e -/
m1: noncritical
! = 2
Py ma: (y2, 8):=(T, 2) (or Vs 1)
m3: await (-y1)V(s=1)
mg . critical \ t y
ms: Yy =T
' wu: at—€y .
Bernd Finkbeiner Verification - Lecture 8 16

Program N

local i: integer

by i:=N

632

in N: integer where N >0

¢y : whilei >0 do
brii=i—1

We want to prove that for program N:

‘at_fo = at_€3‘

Bernd Finkbeiner

Verification - Lecture 8

Attempts to use Chain Diagrams...

[at _£g

Bernd Finkbeiner

Verification - Lecture 8

Well-Founded Domains

(A,-)

where A is a set and

= is a well-founded order
(i.e., there does not exist an infinitely
descending sequence ag = a1 > ay...)

Note: A well-founded order is transitive and
irreflexive.

Examples:

(N,>) is well-founded:
n>n-1>n2>...>0

(Z,>) is not well-founded:
n>n1>...>0>-1>-2...

(Z, >]) with z [>| y iff |z| > |y| is well-founded:
-7 > =3 21> -1 > 0

Bernd Finkbeiner Verification - Lecture 8 19

Lexicographic Product

Well-founded domains (A, =1) and (Ap,=5)
can be combined into their

lexicographic product (AqxAs, =)

where
(n1,n2) = (m1,m2)
iff
ny=mq of (np =mq and np = mo).

(AqxAs, =) is also a well-founded domain.

Bernd Finkbeiner Verification - Lecture 8 20

10

Rule Well-J (Motivation)

Bernd Finkbeiner Verification - Lecture 8 21
Rule WELL-J ,
For assertions p and ¢ = ¢qg. ¢1--- - Cm.:
transitions 7q..... 7, € J.
a well-founded domain (A, =), and
m ranking functions éyp.. ... b: L — A
IWL p — ¢
=0
m 3
. V (&) A b 8)
IW2. pr A i — |i=o0
vV o(¢h A6 =80) J
forevery r€ 7T p fori=1.....m
m
IW3. pr, A i — (¢} A 8> 8%)
J=0
JW4. ¢ — En(r;)
p = g
Bernd Finkbeiner Verification - Lecture 8 22

11

Rank Diagrams

at;£0:> Oat;£3 Nodes:
labeled by assertions and

ranking functions

(@3: at_fg d3: (N,3) j

fo Well-formedness constraint:
" _ Every node ¢;, i >0,
w21 at_f o2 (3,2)): has a double edge departing
from it.
15} £

o1 : at_£o d1: (4,1)] £

(o=a: ai—ts do: (0,0))=

23

Verification - Lecture 8

Bernd Finkbeiner

Verification Conditions

{eAd=u} 7 {(pAuZ8) V (g1 A u>dy)
T T V o.oo V(pn A udp)}

{end=u}t 7 {(p1 A u>b1)
Voo Vo (pn A u=dn)}
w — En(t)

24

Bernd Finkbeiner Verification - Lecture 8

Example: Program UP-DOWN

!’.‘4 :

local =z, y: integer where z =y =10

fg: while r = 0 do’
fi:yi=y+1
Py |f9: while y > 0 do || Py [mu: = I]
f3: yi=y—1

ny:

at_lo A at_mg A x=y=0 =

at_l, A at_m,

Bernd Finkbeiner Verification - Lecture 8 25
i >0
G",—,: al _fgq Aal_mg A z= D (51010)
.J‘-ruu
local =z, y: integer where z = y =0 fot-m, 2 =1
fo: while r = 0 do h
i y:=y+1 .
J . D) (3.0,0)
Py |f9: while y > 0 do
Fli
by y:=y—1 ~
£q: (al_my, r=1
Lo at_ty (2y.1)
|| P, - [mu: ro= l]
iy 1 at_fy A y>0 (Z,Y,O)
\.
.
000
26

Bernd Finkbeiner

Verification - Lecture 8

13

Completeness

For a program P (with C= &, J= {1y, .., T}):
for every two state assertions p, q, such that

p=>q

is P-valid, there exist
assertions g= g, ©1,.., O, ,
transitions 1, 14,..., 1,
a well-founded domain (A, >~), and

ranking functions 8, 8,..., 8,

such that the premises of WELL-J are provable
from state validities.

Proof: /ater

Bernd Finkbeiner Verification - Lecture 8

27

Finite-State Model Checking

Principles of Model Checking

by Christel Baier and
Joost-Pieter Katoen

To appear in Spring 2008

(we'll distribute selected chapters in class.)

14

J. Richard Biichi Edmund M. Clarke E. Allen Emerson

Bernd Finkbeiner Verification - Lecture 8

29

Review: Finite-State Programs

For a computation o,
(op So, Sll 52,
state s;is a accessible state.

A program is finite-state if the set of all
accessible states is finite.

Bernd Finkbeiner Verification - Lecture 8

30

15

Peterson again!

local| 41, 72: boolean| where y1 = F,y2 =F
s R

integer where s =1

£o: loop forever do

SRt This is a finite-state
P L (g1, 8) = Q) program,
{31 await (-y2) V(s =2)
£4 @ critical s = 1,2
bg: Yy :=F y1 = T,F
|| y2 = T,F
mg : loop forever do
my . noncritical
. ma2: (g2,) = (1@
2= m3: await (-y1) V(s=1)
ma critical
ms Yy2'= F
Bernd Finkbeiner Verification - Lecture 8 31
K . . h
Peterson: State Transition Grap
¥
(0,0,2) + (0, 1,2) +(0,2,2) ¥ (0,3,2) + (0.4,2)+ (0.5,2)
(1,0,2) 4+ (1.1,2)(1.2,2) C (1,3, 2) (1.4, 2)(1.5,2)
(2,02»(;1,2)»(2‘:@ \(zlja,z)ﬂu,zh(z‘s,z)
(0,0,1)+ (0, 1,1)+(0,2,1) (i,j, ’U) means
(1,0,1) (1,1, 1)(1,2,1)
m:{&;,mj}, s,
\(3,(])1)*-(2‘1,1“(2‘:,9
) _ g .
{ I B30 +34) > (33,1 p=T If 3<i<5
L0632 DY (33,2 yp=1T iff 3<j5j<5
' v '
(4,0,1)+ (1,1,1) > (1,2, 1) +—» {1,3,2)
b
(5,0,1)+(5,1,7)+(5,2,1) > i5,3,2) — L~
Bernd Finkbeiner Verification - Lecture 8 32

16

Constructing the Transition Graph

e Initially
Place as nodes in Gp all initial states
(satisfy @)

e Repeat until no new nodes or
new edges can be added to Gp

For some s € Gp, let s1,...,s; be its

successors

Add to Gp all new nodes in {s1,...,s;}

and draw edges connecting s to s;,
i=1,...,k

Bernd Finkbeiner Verification - Lecture 8

33

Checking Invariance

For assertion q,

check validity of (g (= check that q is P-state valid)
over finite-state programs.

Example: Peterson's Algorithm

Check assertions
wo: O~ (at—€4 N at—_my)

P1: C(at_€3 A —at_m3z — s = 1)
o C(at—m3 A —at—€s — s = 2)
in the graph.

The assertions hold over all accessible states. Thus,

Owo, Ow1, Oe2

Bernd Finkbeiner Verification - Lecture 8

34

17

Depth First Search

Program DFS Procedure dfs(s)
For each s such that s for each s’ such that s'e(s) do
satisfies @ do If new(s') then dfs(s")
dfs(s) end dfs.
end DFS

Bernd Finkbeiner Verification - Lecture 8 35

Start from an initial state

\ Hash table:

.

w

Bernd Finkbeiner Verification - Lecture 8 36

Stack:

18

Continue with some successor...

Hash table:
Stack .i;\.
Bernd Finkbeiner Verification - Lecture 8 37
One successor of q2...
Hash table:
Stack: /
Bernd Finkbeiner Verification - Lecture 8 38

19

Backtrack

l Hash table:
Stack: /
No new successors
for q4!
Bernd Finkbeiner Verification - Lecture 8 39

Backtrack...

\ Hash table:

.

w

Bernd Finkbeiner Verification - Lecture 8 40

Stack:

20

Second successor

l Hash table:

Stack: / \
Bernd Finkbeiner Verification - Lecture 8 41
Backtrack
/ Hash table:
Stack: /
Bernd Finkbeiner Verification - Lecture 8 42

21

Beyond Invariance Checking

@ Want to check more properties.

@ Want to have a single algorithm
that deals with all types of properties.

LTL formulas can be translated into graphs
(finite automata).

Bernd Finkbeiner Verification - Lecture

43

Automata

22

Quick Review: Finite-State Automata

A nondeterministic finite automaton (NFA) A is a tuple (Q. X, 4, Q. F') where:

e () is afinite set of states

e X is an alphabet A A
o = P (2 g agk 3 __.lrl;”t_ B __(“ | ‘(’J'.-.'
e §:() x ¥ — 2%is atransition function / g A
e Qu C Q a set of initial states A
e I C @ is a set of accept (or: final) states
Bernd Finkbeiner Verification - Lecture 8 45

Language

NFAA=(Q,%,6,Qp, F)andword w=A,...A, € ¥*

A runfor win A is a finite sequence ¢y ¢ ... ¢, such that:

i+1

A
- qo € Qpand g, rqi forall0 <i < n

Run gy q: ... q, is accepting if ¢, € F

w € X is accepted by A if there exists an accepting run for w

The accepted language of A:

L(A) = {w € £ | there exists an accepting run for win A }

e NFA A and A’ are equivalent if L(A) = L(A")

Bernd Finkbeiner Verification - Lecture 8 46

23

Extended Transition Function

Extend the transition function § to 6* : Q x ¥* — 29 by:
0*(q.c) ={q} and 6&*(q.A) =6(q,A)
0*(q,A1As. . A,) = LJHE{).{W,J“.J 0*(p,Az...A,)

46" (q. w) = set of states reachable from ¢ for the word w

Then: £L(A) = {w € =* | §*(g0, W) N F # @ for some ¢y € Qp}

Bernd Finkbeiner Verification - Lecture 8 47

Intersection

e Let NFA A; = (Q;.2.6;, Qo.i. F;), with i=1,2
e The product automaton
A1®A4s = (Q1 X Q2,%,6,Q0.1 X Qo.o, F1 X F5)

where ¢ is defined by:

a2 g A aaBadh

A '
(q1,q2) = (a1, 93)

e Well-known result: £(A;2A45) = L(A)NL(As)

Bernd Finkbeiner Verification - Lecture 8 48

24

Regular Expressions

For a regular expression R (over X)

e ogc R foreveryoce X

e If Ry, Ry are regular expressions
Ri+Ry; = {z|xz€ Ry orze Ry}
Ry-Ry; = {z-y|z€ Ry and y € Ry}

R* = { &} uU{z |z obtained by concatenating
a finite # of words in R}

Bernd Finkbeiner Verification - Lecture 8

49

Examples
Y = {a, b}
abbaa is a word

a*ba*ba® — all words containing exactly 2 b's

ba* — all words beginning with a &
followed only by a's

(a + b)* — all words over {a,b}

(a + b)*(aa + bb)(a + b)* — all words containing
2 consecutive a's or 2 consecutive b's

(a*b)* — the empty word and
all finite words over {a,b}
whose last letter is b

Bernd Finkbeiner Verification - Lecture 8

50

25

Deterministic Automata

Automaton A is called deterministic if

[Qo] <1 and |6(q,A) <1 forallge Qand Ae X

DFA A is called total if

[Qo] =1 and |6(qg.A))=1 forallge QandAc X

any DFA can be turned into an equivalent total DFA

total DFA provide unique successor states, and thus, unique runs for each input word

Bernd Finkbeiner Verification - Lecture 8 51

Determinization

For NFA A = (Q, %, 5,Qo, F) let Ay = (22,5, 8461, Qo, Fuer) With:
Fie={Q' CQ|Q NF +#a}
and the total transition function 4, : 2¢ x ¥ — 29 is defined by:

Sut(Q . A) = |] 0(¢.A)

geqQ’

A, is atotal DFA and, forallw € £°: §;,,(Qo. W) = U,,c0, 9" (q0. W)
Thus: £(Auu) = L(A)
Bernd Finkbeiner Verification - Lecture 8 52

26

Determinization

A.
~+ {w} —L—{{wa}
A S 4 B
A
{ qo. 42 } “ A :{ qo,q1,q2 }‘ B

a deterministic finite automaton accepting L((A + B)*B(A + B))

Bernd Finkbeiner Verification - Lecture 8 53

Facts about NFAs

They are as expressive as regular languages

They are closed under N and complementation

- NFA A ® B (= cross product) accepts £L(A) N L(B)
— Total DFA A (= swap all accept and normal states) accepts £(A) = =*\ L(A)

They are closed under determinization (= removal of choice)

— although at an exponential cost.....

L(A) = @? = check for reachable accept state in A

- this can be done using a simple depth-first search

For regular language £ there is a unique minimal DFA accepting £

Bernd Finkbeiner Verification - Lecture 8 54

27

Biichi Automata

e NFA (and DFA) are incapable of accepting infinite words

e Automata on infinite words

— suited for accepting w-regular languages
— we consider nondeterministic Blchi automata (NBA)

e Accepting runs have to “check” the entire input word =- are infinite

= acceptance criteria for infinite runs are needed

e NBA are like NFA, but have a distinct acceptance criterion

— one of the accept states must be visited infinitely often

Bernd Finkbeiner Verification - Lecture 8 55

Biichi Automata

A nondeterministic Biichi automaton (NBA) A is a tuple (Q. 2. 4. Q. F') where:
e () is a finite set of states with Oy C @ a set of initial states

e Y is an alphabet

e §:(Q x ¥ — 2%Iis a transition function

e [C ()is a set of accept (or: final) states

Bernd Finkbeiner Verification - Lecture 8 56

28

Language

NBA A = (Q.3.6,Q, F) andword ¢ = ApA1Ay ... € ¥

e A runfor o in A is an infinite sequence ¢ ¢; ¢2 . .. such that:

- qo € Qpand g; S qiyr forall 0 <4

Run qoq1 g2 . .. is accepting if ¢; € F for infinitely many ¢
e 0 € X¥ is accepted by A if there exists an accepting run for o

The accepted language of A:

L, (A) = {0 € £¥| there exists an accepting run for s in A }

e NBA A and A’ are equivalent if £ (A) = L (A)

Bernd Finkbeiner Verification - Lecture 8 57

NFA vs. NBA
e —~6_ O
) . ~_ ®

&

finite equivalence #- w-equivalence

w-equivalence # finite equivalence
L(A) = L(A),but L(A) # L.(A)

L (A) = L,(A"), but L(A) # L(A)

Bernd Finkbeiner Verification - Lecture 8 58

29

o-Regular Expressions

For a regular expression R (where ¢¢ R),

RY¥ is an w-reg exp denoting the set of
all infinite words that can be represented
as the infinite concatenation

T TP ... Tp -

such that r; e Rfori=1,2,...

Example: (a*b)¥

denotes the set of
all infinite words over {a,b}
which contain infinitely many b's

Bernd Finkbeiner Verification - Lecture 8 59

o-Regular Expressions (cont'd)
For regular expression R and
w-regular expression O

RO is an w-regular expression denoting
the set of all infinite words that can
be presented as the concatenation

ry
where x € R,y € O

Example: (a -+ b)*b¥

denotes the set of
all infinite words over {a,b}
which contains finitely many a's

Bernd Finkbeiner Verification - Lecture 8 60

30

o-Regular Expressions (cont'd)

For w-regular expression 01 and O»

01 + O3 is an w-regular expression denoting
the union of the sets denoted by
01 and Os.

Example: The w-regular expression

(a+0)** + (a+b)*a”

denotes the set of
infinite words over {a, b}
which either contain finitely many a's
or finitely many b's.

Bernd Finkbeiner Verification - Lecture 8 61

NBA and ®-Regular Languages

The class of languages accepted by NBA

agrees with the class of w-regular languages

(1) any w-regular language is recognized by an NBA
(2) for any NBA A, the language L..(A) is w-regular

Bernd Finkbeiner Verification - Lecture 8 62

31

For any w-regular language there is an NBA

e How to construct an NBA for the w-regular expression:
G=E.F{+...+E,.F.?
where E; and F; are regular expressions over alphabet 32; = & F;

e Rely on operations for NBA that mimic operations on w-regular
expressions:

(1) for NBA A, and A, there is an NBA accepting £.(A;) U £,(.A>5)
(2) forany regular language £ with = ¢ L there is an NBA accepting £~
(3) for regular language £ and NBA A’ there is an NBA accepting £.£,.(.A")

Bernd Finkbeiner Verification - Lecture 8 63

Union

For NBA A, and A, (both over the alphabet X)
there exists an NBA A such that:
L,(A)=CL,(A)UL,(A2) and |A|l=0O(|]Ai|+ |Az2])

The size of A, denoted |.A|, is the number of states and transitions in A:

Al = 1QI+D> D 16(a,A) |

qeQ AeX

Bernd Finkbeiner Verification - Lecture 8 64

32

o-Operator (for NFA)

L(A)=C(A» and

For each NFA A with = ¢ £(.A) there exists an NBA A’ such that:

4] = 0(4))

Bernd Finkbeiner Verification - Lecture 8

65

33

