Verification

Lecture 10

Bernd Finkbeiner Peter Faymonville Michael Gerke

REVIEW: CTL Syntax

modal logic over infinite trees [Clarke & Emerson 1981]

State formulas

- ▶ a ∈ AP
- $\neg \Phi \text{ and } \Phi \land \Psi$
- Εφ
- Α φ
- Path formulas
 - X Φ the next state fulfills Φ
 - $\Phi \cup \Psi$ Φ holds until a Ψ -state is reached
- \Rightarrow note that X and U alternate with A and E
 - AX X Φ and A EX $\Phi \notin$ CTL, but AX AX Φ and AX EX $\Phi \in$ CTL

Alternative syntax: $E \approx \exists, A \approx \forall, X \approx \bigcirc, G \approx \Box, F \approx \diamondsuit$.

atomic proposition negation and conjunction there exists a path fulfilling φ all paths fulfill φ

REVIEW: Basic model checking algorithm

Require: finite transition system *TS* with states *S* and initial states *I*, and CTL formula Φ (both over *AP*) **Ensure:** *TS* $\models \Phi$

```
{compute the sets Sat(\Phi) = \{ q \in S \mid q \models \Phi \}}
for all i \le |\Phi| do
for all \Psi \in Sub(\Phi) with |\Psi| = i do
compute Sat(\Psi) from Sat(\Psi') {for maximal proper \Psi' \in Sub(\Psi)}
end for
end for
return I \subseteq Sat(\Phi)
```

REVIEW: Computing $Sat(E(\Phi \cup \Psi))$ (3)

Require: finite transition system with states S CTL-formula E $(\Phi \cup \Psi)$ **Ensure:** Sat(E $(\Phi \cup \Psi)$) = { $q \in S | q \models E (\Phi \cup \Psi)$ }

 $V := Sat(\Psi); \{V \text{ administers states } q \text{ with } q \models E(\Phi \cup \Psi)\}$ $T := V; \{T \text{ contains the already visited states } q \text{ with } q \models E(\Phi \cup \Psi)\}$ while $V \neq \emptyset$ do let $q' \in V;$ $V := V \setminus \{q'\};$ for all $q \in Pre(q')$ do if $q \in Sat(\Phi) \setminus T$ then $V := V \cup \{q\}; T := T \cup \{q\};$ endif end for end while return T

REVIEW: Computing $Sat(EG \Phi)$

 $V := S \setminus Sat(\Phi)$; {V contains any not visited q' with $q' \notin EG\Phi$ }

 $T := Sat(\Phi)$; {T contains any q for which $q \models EG\Phi$ has not yet been disproven}

for all $q \in Sat(\Phi)$ do c[q] := |Post(q)|; od {initialize array c}

```
while V \neq \emptyset do
   {loop invariant: c[q] = |Post(q) \cap (T \cup V)|}
   let a' \in V; {q' \neq \Phi}
    V := V \setminus \{q'\}; \{q' \text{ has been considered}\}
   for all q \in Pre(q') do
       if q \in T then
           c[q] := c[q] - 1; {update counter c[q] for predecessor q of q'}
           if c[q] = 0 then
              T := T \setminus \{q\}; V := V \cup \{q\}; \{q \text{ does not have any successor in } T\}
           end if
       end if
   end for
end while
return T
```

For transition system *TS* with *N* states and *K* edges, and CTL formula Φ , the CTL model-checking problem *TS* $\models \Phi$ can be determined in time $O(|\Phi| \cdot (N + M))$

this applies to both algorithms for EG Φ

Model-checking LTL versus CTL

- Let TS be a transition system with N states and M edges
- Model-checking LTL-formula Φ has time-complexity $\mathcal{O}((N+M)\cdot 2^{|\Phi|})$
 - linear in the state space of the system model
 - exponential in the length of the formula
- Model-checking CTL-formula Φ has time-complexity $\mathcal{O}((N+M)\cdot|\Phi|)$
 - Inear in the state space of the system model and the formula
- Is model-checking CTL more efficient?

Hamiltonian path problem

⇒ LTL-formulae can be <u>exponentially shorter</u> than their CTL-equivalent

- Existence of Hamiltonian path in LTL: $\bigwedge_i (Fp_i \land G(p_i \rightarrow XG \neg p_i))$
- In CTL, all possible (= 4!) routes need to be encoded

Equivalence of LTL and CTL formulas

CTL-formula Φ and LTL-formula φ (both over *AP*) are <u>equivalent</u>, denoted $\Phi \equiv \varphi$, if for any state graph *TS* (over *AP*):

 $TS \models \Phi$ if and only if $TS \models \varphi$

Examples (1)

CTL-formula AGAFa and LTL-formula GFa are equivalent.

AFAGa is not equivalent to FGa

Examples (3)

 $F(a \land Xa)$ is not equivalent to $AF(a \land AXa)$

LTL and CTL are incomparable

- Some LTL-formulas cannot be expressed in CTL, e.g.,
 - ▶ FGa
 - ▶ F(a ∧ Xa)
- Some CTL-formulas cannot be expressed in LTL, e.g.,
 - AF AG a
 - AF $(a \land AX a)$
 - AG EF a
- ⇒ Cannot be expressed = there does not exist an equivalent formula

Example

The CTL-formula AG EF *a* cannot be expressed in LTL

Let Φ be a CTL-formula, and φ the LTL-formula obtained by eliminating all path quantifiers in Φ . Then: [Clarke & Draghicescu]

 $\Phi \equiv \varphi$ or there does not exist any LTL-formula that is equivalent to Φ

Comparing LTL and CTL

The LTL-formula FG *a* cannot be expressed in CTL

REVIEW: LTL Fairness constraints

Let Φ and Ψ be propositional logic formulas over *AP*.

1. An <u>unconditional LTL fairness constraint</u> is of the form:

 $ufair = GF\Psi$

2. A strong LTL fairness condition (compassion) is of the form:

$$sfair = GF \Phi \longrightarrow GF \Psi$$

3. A weak LTL fairness constraint (justice) is of the form:

wfair =
$$FG\Phi \longrightarrow GF\Psi$$

A LTL fairness assumption fair is a conjunction of LTL fairness constraints.

REVIEW: Fair satisfaction

For state q in transition system TS (over AP) without terminal states, let

$$\begin{aligned} &\textit{FairPaths}_{\textit{fair}}(q) &= \left\{ \pi \in \textit{Paths}(q) \mid \pi \vDash \textit{fair} \right\} \\ &\textit{FairTraces}_{\textit{fair}}(q) &= \left\{ \textit{trace}(\pi) \mid \pi \in \textit{FairPaths}_{\textit{fair}}(q) \right\} \end{aligned}$$

For LTL-formula φ , and fairness assumption *fair*:

 $q \vDash_{fair} \varphi$ if and only if $\forall \pi \in FairPaths_{fair}(q)$. $\pi \vDash \varphi$ and $TS \vDash_{fair} \varphi$ if and only if $\forall q_0 \in Q_0$. $q_0 \vDash_{fair} \varphi$

 \models_{fair} is the <u>fair satisfaction relation</u> for LTL; \models the standard one for LTL

REVIEW: Reducing \vDash_{fair} to \vDash

For:

- state graph TS without terminal states
- LTL formula φ , and
- LTL fairness assumption fair

it holds:

$$TS \vDash_{fair} \varphi \qquad \text{if and only if} \qquad TS \vDash (fair \rightarrow \varphi)$$

verifying an LTL-formula under a fairness assumption can be done using standard LTL model-checking algorithms

Fairness constraints in CTL

- ► For LTL it holds: $TS \vDash_{fair} \varphi$ if and only if $TS \vDash (fair \rightarrow \varphi)$
- An analogous approach for CTL is not possible!
- ▶ Formulas of form \forall (*fair* $\rightarrow \phi$) and \exists (*fair* $\land \phi$) needed
- But: boolean combinations of path formulas are not allowed in CTL
- and: strong fairness constraints

$$\mathsf{GF}b \to \mathsf{GF}c \equiv \mathsf{FG}\neg b \lor \mathsf{FG}c$$

cannot be expressed, since persistence properties are not in CTL

Solution: change the semantics of CTL by ignoring unfair paths

CTL fairness constraints

• A strong CTL fairness constraint is a formula of the form:

$$sfair = \bigwedge_{0 < i \le k} (\mathsf{GF} \Phi_i \to \mathsf{GF} \Psi_i)$$

- where Φ_i and Ψ_i (for $0 < i \le k$) are CTL-formulas over AP
- weak and unconditional CTL fairness constraints are defined analogously, e.g.

$$ufair = \bigwedge_{0 < i \le k} \mathsf{GF} \Psi_i$$
 and $wfair = \bigwedge_{0 < i \le k} (\mathsf{FG} \Phi_i \to \mathsf{GF} \Psi_i)$

- a CTL fairness assumption *fair* is a conjunction of CTL fairness constraints.
- ⇒ a CTL fairness constraint is an LTL formula over CTL state formulas!

Semantics of fair CTL

For CTL fairness assumption *fair*, relation \vDash_{fair} is defined by:

$$\begin{split} s &\models_{fair} a & \text{iff } a \in Label(s) \\ s &\models_{fair} \neg \Phi & \text{iff } \neg (s \models_{fair} \Phi) \\ s &\models_{fair} \Phi \lor \Psi & \text{iff } (s \models_{fair} \Phi) \lor (s \models_{fair} \Psi) \\ s &\models_{fair} \mathsf{E}\varphi & \text{iff } \pi \models_{fair} \varphi \text{ for some fair } \text{path } \pi \text{ that starts in } s \\ s &\models_{fair} \mathsf{A}\varphi & \text{iff } \pi \models_{fair} \varphi \text{ for all fair } \text{paths } \pi \text{ that start in } s \end{split}$$

 $\pi \vDash_{fair} X \Phi \qquad \text{iff } \pi[1] \vDash_{fair} \Phi$ $\pi \vDash_{fair} \Phi \cup \Psi \qquad \text{iff } (\exists j \ge 0, \pi[j] \vDash_{fair} \Psi \land (\forall 0 \le k < j, \pi[k] \vDash_{fair} \Phi))$ $\pi \text{ is a fair path iff } \pi \vDash_{fair} \text{ for CTL fairness assumption } fair$

Transition system semantics

 For CTL-state-formula Φ, and fairness assumption *fair*, the satisfaction set Sat_{fair}(Φ) is defined by:

 $Sat_{fair}(\Phi) = \{ q \in Q \mid q \vDash_{fair} \Phi \}$

• TS satisfies CTL-formula Φ iff Φ holds in all its initial states:

 $TS \vDash_{fair} \Phi$ if and only if $\forall q_0 \in I. q_0 \vDash_{fair} \Phi$

• this is equivalent to $I \subseteq Sat_{fair}(\Phi)$

Fair CTL model-checking problem

For:

- finite transition system
- CTL formula Φ in ENF, and
- CTL fairness assumption fair

establish whether or not:

 $TS \vDash_{fair} \Phi$

use bottom-up procedure a la CTL to determine $Sat_{fair}(\Phi)$ using as much as possible standard CTL model-checking algorithms

CTL fairness constraints

• A strong CTL fairness constraint: sfair = $\bigwedge (GF \Phi_i \rightarrow GF \Psi_i)$ 0 < i < k

• where Φ_i and Ψ_i (for $0 < i \le k$) are CTL-formulas over AP

Replace the CTL state-formulas in sfair by fresh atomic propositions:

$$sfair := \bigwedge_{0 < i \le k} (\mathsf{GF} \, \underline{a_i} \to \mathsf{GF} \, \underline{b_i})$$

- where $a_i \in L(s)$ if and only if $s \in Sat(\Phi_i)$ (not Sat_{fair}(Φ_i)!) (not $Sat_{fair}(\Psi_i)!$)
- ... $b_i \in L(s)$ if and only if $s \in Sat(\Psi_i)$
- (for unconditional and weak fairness this goes similarly)
- Note: $\pi \models fair$ iff $\pi[j..] \models fair$ for some $j \ge 0$ iff $\pi[j..] \models fair$ for all $j \ge 0$

 $s \models_{fair} EX a$ if and only if $\exists s' \in Post(s)$ with $s' \models a$ and $FairPaths(s') \neq \emptyset$

 $s \models_{fair} E(a \cup a')$ if and only if there exists a finite path fragment

 $s_0 s_1 s_2 \dots s_{n-1} s_n \in Paths_{fin}(s)$ with $n \ge 0$

such that $s_i \models a$ for $0 \le i < n$, $s_n \models a'$, and *FairPaths* $(s_n) \ne \emptyset$

Results for \vDash_{fair} (2)

$s \models_{fair} \mathsf{EX} a$ if and only if $\exists s' \in \mathsf{Post}(s)$ with $s' \models a$ and $\underbrace{\mathsf{FairPaths}(s') \neq \varnothing}_{s' \models_{fair} \mathsf{EG} \mathsf{true}}$

 $s \models_{fair} E(a \cup a')$ if and only if there exists a finite path fragment

 $s_0 s_1 s_2 \dots s_{n-1} s_n \in Paths_{fin}(s)$ with $n \ge 0$

such that $s_i \models a$ for $0 \le i < n$, $s_n \models a'$, and $FairPaths(s_n) \ne \emptyset$

 $s_n \vDash_{fair} EG true$

Basic algorithm

- Determine $Sat_{fair}(EG true) = \{ q \in Q | FairPaths(q) \neq \emptyset \}$
- Introduce an atomic proposition a_{fair} such that:

▶ $a_{fair} \in L(q)$ if and only if $q \in Sat_{fair}(EG true)$

• Compute the sets $Sat_{fair}(\Psi)$ for all subformulas Ψ of Φ (in ENF)

$$\begin{array}{rcl} Sat_{fair}(a) &=& \left\{q \in Q \mid a \in L(q)\right\}\\ Sat_{fair}(\neg a) &=& Q \smallsetminus Sat_{fair}(a)\\ \text{by:} & Sat_{fair}(a \land a') &=& Sat_{fair}(a) \cap Sat_{fair}(a')\\ & Sat_{fair}(\mathsf{EX}a) &=& Sat\left(\mathsf{EX}\left(a \land a_{fair}\right)\right)\\ Sat_{fair}(\mathsf{E}\left(a \cup a'\right)\right) &=& Sat\left(\mathsf{E}\left(a \cup \left(a' \land a_{fair}\right)\right)\right)\\ & Sat_{fair}(\mathsf{EG}a) &=& \dots \end{array}$$

- Thus: model checking CTL under fairness constraints is
 - CTL model checking + algorithm for computing Sat_{fair} (EG a)!

Core model-checking algorithm

```
{states are assumed to be labeled with a_i and b_i}
compute Sat_{fair}(EG true) = \{ q \in Q \mid FairPaths(q) \neq \emptyset \}
forall q \in Sat_{fair}(EG true) do L(q) := L(q) \cup \{a_{fair}\} od
{compute Sat_{fair}(\Phi)}
for all 0 < i \le |\Phi| do
   for all \Psi \in Sub(\Phi) with |\Psi| = i do
       switch(\Psi):
                   true : Sat_{fair}(\Psi) := Q;
                       : Sat_{fair}(\Psi) := \{ q \in Q \mid a \in L(s) \};
                   а
                   a \wedge a' : Sat_{fair}(\Psi) := \{ q \in Q \mid a, a' \in L(s) \};
                   \neg a \qquad : \quad Sat_{fair}(\Psi) := \{ q \in Q \mid a \notin L(s) \};
                   EX a : Sat_{fair}(\Psi) := Sat(EX(a \land a_{fair}));
                   E(a \cup a') : Sat_{fair}(\Psi) := Sat(E(a \cup (a' \land a_{fair})));
                   EGa
                                   : compute Sat_{fair}(EG a)
```

end switch

replace all occurrences of Ψ (in Φ) by the fresh atomic proposition a_{Ψ} forall $q \in Sat_{fair}(\Psi)$ do $L(q) := L(q) \cup \{a_{\Psi}\}$ od

end for

end for

return $I \subseteq Sat_{fair}(\Phi)$

Characterization of *Sat_{fair}*(EG *a*)

$$q \vDash_{sfair} EG a$$
 where $sfair = \bigwedge_{0 \le i \le k} (GFa_i \to GFb_i)$

iff there exists a finite path fragment $q_0 \dots q_n$ and a cycle $q'_0 \dots q'_r$ with:

1.
$$q_0 = q$$
 and $q_n = q'_0 = q'_r$

- 2. $q_i \models a$, for any $0 \le i \le n$, and $q'_i \models a$, for any $0 \le j \le r$, and
- 3. $Sat(a_i) \cap \{q'_1, \ldots, q'_r\} = \emptyset$ or $Sat(b_i) \cap \{q'_1, \ldots, q'_r\} \neq \emptyset$ for $0 < i \le k$