Verification

Lecture 10

Bernd Finkbeiner
Peter Faymonville
Michael Gerke

Olm UNIVERSITAT
m]llwll“" DES

UL SAARLANDES

REVIEW: CTL Syntax

modal logic over infinite trees [Clarke & Emerson 1981]

» State formulas

» acAP atomic proposition

» ~®and® A ¥ negation and conjunction

» Eg there exists a path fulfilling ¢

» Ag all paths fulfill ¢
» Path formulas

» XO the next state fulfills @

» OUVY @ holds until a ¥-state is reached

= note that Xand U alternate with A and E
» AXX® and AEX @ ¢ CTL, but AXAX ® and AXEX @ € CTL

Alternative syntax:E~ 3, A~ V, X~ O,G~0,F~ O,

REVIEW: Basic model checking algorithm

Require: finite transition system TS with states S and initial states /, and
CTL formula @ (both over AP)
Ensure: TS ©

{compute the sets Sat(®) = {qeS|qeD}}
foralli<|®|do
forall ¥ € Sub(®) with | ¥| =i do
compute Sat('¥) from Sat(¥') {for maximal proper ¥’ € Sub(\¥)}
end for
end for
return / ¢ Sat(D)

REVIEW: Computing Sat(E (® U ¥)) (3)

Require: finite transition system with states S CTL-formula E (® U V)
Ensure: Sat(E(®UV¥))={qeS|g=E(DUVY)}

V := Sat(\¥); {V administers states g with g = E (® U ¥)}
T := V; {T contains the already visited states g with g = E (® U ¥)}
while V # & do
let g’ € V;
V=V~{q}
forallg € Pre(q’) do
if geSat(®)~TthenV:=V u {qg};T:=T u {g},; endif
end for
end while
return T

REVIEW: Computing Sat(EG @)

V := S\ Sat(®); {V contains any not visited g’ with " # EG ®}
T := Sat(®); {T contains any g for which g = EG ® has not yet been disproven}
forall g € Sat(®) do c[q] := | Post(q) |; od {initialize array c}

while V + @ do
{loop invariant: c[q] = | Post(q) n (Tu V) |}
letq € V;{q' # @}
V:=V ~{q'};{g’ has been considered}
forall g ¢ Pre(q") do
if g € T then
clq] = c[q] - 1;{update counter c[q] for predecessor g of g’}
if c[q] = 0 then
T:=T~{qg};V:=Vu{q};{gdoesnot have any successor in T}
end if
end if
end for
end while
return T

Time complexity

For transition system TS with N states and K edges,
and CTL formula @, the CTL model-checking problem TS = ®
can be determined in time O(| @ |-(N + M))

this applies to both algorithms for EG @

Model-checking LTL versus CTL

v

v

v

v

Let TS be a transition system with N states and M edges
Model-checking LTL-formula @ has time-complexity
O((N+M)-21®1)

» linear in the state space of the system model

» exponential in the length of the formula

Model-checking CTL-formula ® has time-complexity
O((N+M)-| D)
» linear in the state space of the system model and the formula

Is model-checking CTL more efficient?

Hamiltonian path problem

= LTL-formulae can be exponentially shorter than their
CTL-equivalent

» Existence of Hamiltonian path in LTL:
Ni(Fpi A G(pi—~ XG-p;))
» In CTL, all possible (= 4!) routes need to be encoded

Equivalence of LTL and CTL formulas

CTL-formula @ and LTL-formula ¢ (both over AP) are equivalent,
denoted @ = ¢, if for any state graph TS (over AP):

TSE® ifandonlyif TSE¢

Examples (1)

CTL-formulaAGAFa and LTL-formulaGFa areequivalent.

Examples (2)

AFAGa is not equivalentto FGa

e

So S1 $2

Examples (3)

F(a A Xa) is not equivalent to AF (a A AXa)

1%}
52 S \1/ 7
e
B {a} {a}

LTL and CTL are incomparable

» Some LTL-formulas cannot be expressed in CTL, e.g.,
» FGa
» F(a A Xa)

» Some CTL-formulas cannot be expressed in LTL, e.g.,
» AFAGa
» AF(a A AXa)
» AGEFa

= Cannot be expressed = there does not exist an equivalent
formula

Example

The CTL-formula AG EF a cannot be expressed in LTL

Comparing LTL and CTL

Let ® be a CTL-formula, and ¢ the LTL-formula obtained by
eliminating all path quantifiers in ®. Then: [Clarke & Draghicescu]

® = ¢ orthere does not exist any LTL-formula that is equivalent to ®

Comparing LTL and CTL

The LTL-formula FG a cannot be expressed in CTL

REVIEW: LTL Fairness constraints

Let ® and ¥ be propositional logic formulas over AP.

1. An unconditional LTL fairness constraint is of the form:

ufair = GFY¥

2. Astrong LTL fairness condition (compassion) is of the form:

sfair = GF® — GFY¥Y

3. A weak LTL fairness constraint (justice) is of the form:

wfair = FGO — GFY

A LTL fairness assumption fair is a conjunction of LTL fairness constraints.

REVIEW: Fair satisfaction

For state g in transition system TS (over AP) without terminal states, let

FairPathsg;,(q) = {m e Paths(q) | m=fair }

FairTracessi;(q) { trace(n) | m € FairPaths;,(q) }

For LTL-formula ¢, and fairness assumption fair:

q Efir ¢ ifandonlyif Ve FairPathsg;,(q). m=¢ and
TS Eqir ¢ ifand only if Vqo € Qo. qo Etir ¢

Erqir 1S the fair satisfaction relation for LTL; & the standard one for LTL

REVIEW: Reducing &, to E

For:
» state graph TS without terminal states
» LTL formula ¢, and

» LTL fairness assumption fair

it holds:

TSEmir @ ifandonlyif — TSE (fair - ¢) \

verifying an LTL-formula under a fairness assumption can be done
using standard LTL model-checking algorithms

Fairness constraints in CTL

» For LTL it holds: TS =¢r ¢ if and only if TS & (fair - ¢)
» An analogous approach for CTL is not possible!
» Formulas of form V(fair - ¢) and 3(fair A ¢) needed

» But: boolean combinations of path formulas
are not allowed in CTL

» and: strong fairness constraints
GFb—>GFc=FG-b v FGc

cannot be expressed, since persistence properties
are notin CTL

» Solution: change the semantics of CTL by ignoring unfair paths

CTL fairness constraints

» A strong CTL fairness constraint is a formula of the form:

sfair= /\ (GF®; - GFY¥;)
O<i<k

» where ®; and ¥; (for 0 < i < k) are CTL-formulas over AP
» weak and unconditional CTL fairness constraints are defined
analogously, e.g.

ufair=/\ GFY; and wfair=)\ (FG®; > GFY))
O<i<k O<i<k

» a CTL fairness assumption fair is a conjunction of CTL fairness
constraints.

= a CTL fairness constraint is an LTL formula over CTL state
formulas!

Semantics of fair CTL

For CTL fairness assumption fair, relation ¢, is defined by:

S Efgir 4 iff a e Label(s)

S Eggir =@ iff = (s Efir @)

SEmir @ vV ff (SEqRi @) V(S ERr P)

SEmirEg iff 7 Eir @ for some fair path 7 that startsin s
S Efir A @ iff 7 £ ¢ for all fair paths 7 that startin s

T Efair X0 iff 7'[[1] FEfair 0}
7 U iff (3> 0.7]j] B ¥ A (V0 <k < j. 71[K] Ear @)

m is a fair path iff 7 = fair for CTL fairness assumption fair

Transition system semantics

» For CTL-state-formula @, and fairness assumption fair, the
satisfaction set Satg,;, (@) is defined by:

Satfair(q)) = {CI € Q | q Htair CD}
» TS satisfies CTL-formula @ iff ® holds in all its initial states:

TS Efiy @ ifandonlyif Vqg €l.qo Efir ©

» this is equivalent to | € Sats;, (D)

Fair CTL model-checking problem

For:
» finite transition system
» CTL formula @ in ENF, and

» CTL fairness assumption fair

establish whether or not:

TS Etair)

use bottom-up procedure a la CTL to determine Saty;, ()
using as much as possible standard CTL model-checking algorithms

CTL fairness constraints

» A strong CTL fairness constraint: sfair = A (GF®; - GFY;)
O<i<k

» where ®; and ¥, (for 0 < j < k) are CTL-formulas over AP

» Replace the CTL state-formulas in sfair by fresh atomic
propositions:

sfair := /\ (GFG,‘ —>GFb,)

O<i<k
» where g; € L(s) if and only if s € Sat(®;) (not Sat g (©;))
» ...bjel(s)ifand onlyif s € Sat(¥;) (not Satg; (¥;)Y

» (for unconditional and weak fairness this goes similarly)

» Note: 7 fair iff n[j..] & fair for some j > 0 iff z[j..] = fair forallj > 0

Results for ¢, (1)

s Erir EXaif and only if 3s” € Post(s) with s’ = a and FairPaths(s") # @

s Erir E(aUa’) if and only if there exists a finite path fragment
S05152...5n-15p € Pathsg,(s) withn >0

such thats; = afor0<i<n,s,Ed,and FairPaths(s,) + @

Results for ¢ (2)

s By EXaif and only if 3s” € Post(s) with s’ = a and FairPaths(s") + @

s' = EGtrue

s Erir E(aUa’) if and only if there exists a finite path fragment
S05152...5n-15p € Pathsg,(s) withn >0

such thats; = afor0<i<n,s,Ed,and FairPaths(s,) + @

sn =i EG true

Basic algorithm

v

Determine Saty,;,(EGtrue) = {q € Q| FairPaths(q) # & }
» Introduce an atomic proposition ag,;, such that:
» arir €L(q) ifandonlyif g e Sate, (EGtrue)

Compute the sets Saty,;, (V) for all subformulas ¥ of @ (in ENF)

v

Satwir(a) = {qeQlacl(q)}
Satgi(-a) = QN Satg(a)
by: Satgi(ana) = Satg(a) n Satg(a’)
Sat}‘air(EX a) = Sat (EX (a A afair))
Satgi(E(aUa’)) = Sat(E(aU(d A agi)))
Satyi(EGa) =
Thus: model checking CTL under fairness constraints is

» CTL model checking + algorithm for computing Saty,;,(EGa)!

v

Core model-checking algorithm

{states are assumed to be labeled with a; and b;}
compute Satz,;, (EGtrue) = {q e Q| FairPaths(q) # @ }
forall g € Sats,;,(EGtrue) do L(q) := L(q) U { drir } od
{compute Satz; (D)}
forallo<i<|®|do

forall ¥ € Sub(®) with | V| =ido

switch(\¥):
true 1 Sate (V) :=Q;
a : o Sat (V) :={qeQlacl(s)};
and 2 Satgi(¥):={qeQla,d el(s)};
-a i Satg (W) :={qeQla¢l(s)};
EXa t Satwi (V) == Sat(EX(a A arir));
E(aUd’) : Satg(¥):=Sat(E(aU(d A awy)));
EGa 1 compute Saty;(EGa)

end switch

replace all occurrences of ¥ (in @) by the fresh atomic proposition ay
forall g € Saty,;,(¥) do L(q) :=L(g) u{av } od
end for
end for
return / c Saty (®)

Characterization of Sat;,(EGa)

q =stqir EGa where sfair=)\ (GFa; » GFb;)
O<i<k

iff there exists a finite path fragment qo...g, and acycle gy .. . q;
with:

1. qo=9 and gn=q, =g,

2. giea,forany0<i<n,and qu Ea,forany0<j<r,and

3. Sat(a;)) N {q},...,q, } =@orSat(b;)) N {q,...,q,} # @ for
0<i<k

