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REVIEW: CTL Syntax

modal logic over infinite trees [Clarke & Emerson 1981]

▸ State formulas
▸ a ∈ AP atomic proposition
▸ ¬Φ andΦ ∧ Ψ negation and conjunction
▸ Eφ there exists a path fulfilling φ
▸ Aφ all paths fulfill φ

▸ Path formulas
▸ XΦ the next state fulfillsΦ
▸ ΦUΨ Φ holds until a Ψ-state is reached

⇒ note that X and U alternate with A and E
▸ AXXΦ and AEX Φ /∈ CTL, but AXAX Φ and AXEX Φ ∈ CTL

Alternative syntax: E ≈ ∃, A ≈ ∀, X ≈ ◯ , G ≈ ◻ , F ≈ ◇ .



REVIEW: Basic model checking algorithm

Require: finite transition system TSwith states S and initial states I, and

CTL formulaΦ (both over AP)

Ensure: TS ⊧ Φ

{compute the sets Sat(Φ) = {q ∈ S ∣ q ⊧ Φ }}
for all i ≤ ∣Φ ∣ do

for all Ψ ∈ Sub(Φ)with ∣Ψ ∣ = i do

compute Sat(Ψ) from Sat(Ψ′) {for maximal proper Ψ′ ∈ Sub(Ψ)}
end for

end for

return I ⊆ Sat(Φ)



REVIEW: Computing Sat(E (ΦUΨ)) (3)

Require: finite transition system with states S CTL-formula E (ΦUΨ)
Ensure: Sat(E (ΦUΨ)) = {q ∈ S ∣ q ⊧ E (ΦUΨ) }

V ∶= Sat(Ψ); {V administers states qwith q ⊧ E (ΦUΨ)}

T ∶= V ; {T contains the already visited states qwith q ⊧ E (ΦUΨ)}

while V /= ∅ do

let q′ ∈ V ;
V ∶= V ∖ {q′ };
for all q ∈ Pre(q′) do

if q ∈ Sat(Φ) ∖ T then V ∶= V ∪ {q}; T ∶= T ∪ {q}; endif
end for

end while

return T



REVIEW: Computing Sat(EGΦ)

V ∶= S ∖ Sat(Φ); {V contains any not visited q′ with q′ /⊧ EGΦ}

T ∶= Sat(Φ); {T contains any q for which q ⊧ EGΦ has not yet been disproven}

for all q ∈ Sat(Φ) do c[q] ∶= ∣Post(q) ∣; od {initialize array c}

while V ≠ ∅ do

{loop invariant: c[q] = ∣Post(q) ∩ (T ∪ V) ∣}
let q′ ∈ V ; {q′ /⊧ Φ}

V ∶= V ∖ {q′ }; {q′ has been considered}

for all q ∈ Pre(q′) do
if q ∈ T then

c[q] ∶= c[q] − 1; {update counter c[q] for predecessor q of q′}
if c[q] = 0 then

T ∶= T ∖ {q}; V ∶= V ∪ {q}; {q does not have any successor in T}

end if

end if

end for

end while

return T



Time complexity

For transition system TSwith N states and K edges,

and CTL formulaΦ, the CTL model-checking problem TS ⊧ Φ

can be determined in timeO(∣Φ ∣⋅(N +M))

this applies to both algorithms for EGΦ



Model-checking LTL versus CTL

▸ Let TS be a transition system with N states andM edges

▸ Model-checking LTL-formulaΦ has time-complexity

O((N+M)⋅2∣Φ ∣)
▸ linear in the state space of the systemmodel
▸ exponential in the length of the formula

▸ Model-checking CTL-formulaΦ has time-complexity
O((N+M)⋅∣Φ ∣)

▸ linear in the state space of the systemmodel and the formula

▸ Is model-checking CTL more efficient?



Hamiltonian path problem

⇒ LTL-formulae can be exponentially shorter than their

CTL-equivalent

v1 v2 v3 v4

w

{p3 }{p0 }

{p1 } {p2 }

{q}

▸ Existence of Hamiltonian path in LTL:

⋀i ( Fpi ∧ G (pi → XG¬pi) )
▸ In CTL, all possible (= 4!) routes need to be encoded



Equivalence of LTL and CTL formulas

CTL-formulaΦ and LTL-formula φ (both over AP) are equivalent,

denotedΦ ≡ φ, if for any state graph TS (over AP):

TS ⊧ Φ if and only if TS ⊧ φ



Examples (1)

CTL-formula AGAFa and LTL-formula GFa are equivalent.



Examples (2)

AFAGa is not equivalent to FGa

s0 s2s1



Examples (3)

F (a ∧ Xa) is not equivalent to AF (a ∧ AXa)

{a}

∅

s0

s3

s4

s1s2

{a} {a}∅



LTL and CTL are incomparable

▸ Some LTL-formulas cannot be expressed in CTL, e.g.,
▸ FGa
▸ F (a ∧ Xa)

▸ Some CTL-formulas cannot be expressed in LTL, e.g.,
▸ AFAGa
▸ AF (a ∧ AXa)
▸ AGEFa

⇒ Cannot be expressed = there does not exist an equivalent

formula



Example

The CTL-formula AGEFa cannot be expressed in LTL



Comparing LTL and CTL

LetΦ be a CTL-formula, and φ the LTL-formula obtained by
eliminating all path quantifiers inΦ. Then: [Clarke & Draghicescu]

Φ ≡ φ or there does not exist any LTL-formula that is equivalent toΦ



Comparing LTL and CTL

The LTL-formula FGa cannot be expressed in CTL



REVIEW: LTL Fairness constraints

LetΦ and Ψ be propositional logic formulas over AP.

1. An unconditional LTL fairness constraint is of the form:

ufair = GFΨ

2. A strong LTL fairness condition (compassion) is of the form:

sfair = GFΦ Ð→ GFΨ

3. A weak LTL fairness constraint (justice) is of the form:

wfair = FGΦ Ð→ GFΨ

A LTL fairness assumption fair is a conjunction of LTL fairness constraints.



REVIEW: Fair satisfaction

For state q in transition system TS (over AP) without terminal states, let

FairPathsfair(q) = { π ∈ Paths(q) ∣ π ⊧ fair }

FairTracesfair(q) = { trace(π) ∣ π ∈ FairPathsfair(q) }

For LTL-formula φ, and fairness assumption fair:

q ⊧fair φ if and only if ∀π ∈ FairPathsfair(q). π ⊧φ and

TS ⊧fair φ if and only if ∀q0 ∈ Q0. q0 ⊧fair φ

⊧fair is the fair satisfaction relation for LTL; ⊧ the standard one for LTL



REVIEW: Reducing ⊧fair to ⊧

For:

▸ state graph TSwithout terminal states

▸ LTL formula φ, and

▸ LTL fairness assumption fair

it holds:

TS ⊧fair φ if and only if TS ⊧ (fair → φ)

verifying an LTL-formula under a fairness assumption can be done

using standard LTL model-checking algorithms



Fairness constraints in CTL

▸ For LTL it holds: TS ⊧fair φ if and only if TS ⊧ (fair → φ)
▸ An analogous approach for CTL is not possible!

▸ Formulas of form ∀(fair → φ) and ∃(fair ∧ φ) needed
▸ But: boolean combinations of path formulas

are not allowed in CTL

▸ and: strong fairness constraints

GFb→ GF c ≡ FG¬b ∨ FG c

cannot be expressed, since persistence properties

are not in CTL

▸ Solution: change the semantics of CTL by ignoring unfair paths



CTL fairness constraints

▸ A strong CTL fairness constraint is a formula of the form:

sfair = ⋀
0<i≤k

(GFΦi → GFΨi)

▸ whereΦi and Ψi (for 0 < i ≤ k) are CTL-formulas over AP
▸ weak and unconditional CTL fairness constraints are defined

analogously, e.g.

ufair = ⋀
0<i≤k

GFΨi and wfair = ⋀
0<i≤k

(FGΦi → GFΨi)

▸ a CTL fairness assumption fair is a conjunction of CTL fairness

constraints.

⇒ a CTL fairness constraint is an LTL formula over CTL state

formulas!



Semantics of fair CTL

For CTL fairness assumption fair, relation ⊧fair is defined by:

s ⊧fair a iff a ∈ Label(s)

s ⊧fair ¬Φ iff ¬ (s ⊧fair Φ)

s ⊧fair Φ ∨ Ψ iff (s ⊧fair Φ) ∨ (s ⊧fair Ψ)

s ⊧fair Eφ iff π ⊧fair φ for some fair path π that starts in s

s ⊧fair Aφ iff π ⊧fair φ for all fair paths π that start in s

π ⊧fair XΦ iff π[1] ⊧fair Φ

π ⊧fair ΦUΨ iff (∃ j ≥ 0. π[j] ⊧fair Ψ ∧ (∀0 ≤ k < j. π[k] ⊧fair Φ))

π is a fair path iff π ⊧ fair for CTL fairness assumption fair



Transition system semantics

▸ For CTL-state-formulaΦ, and fairness assumption fair, the

satisfaction set Satfair(Φ) is defined by:

Satfair(Φ) = {q ∈ Q ∣ q ⊧fair Φ }

▸ TS satisfies CTL-formulaΦ iffΦ holds in all its initial states:

TS ⊧fair Φ if and only if ∀q0 ∈ I. q0 ⊧fair Φ

▸ this is equivalent to I ⊆ Satfair(Φ)



Fair CTL model-checking problem

For:

▸ finite transition system

▸ CTL formulaΦ in ENF, and

▸ CTL fairness assumption fair

establish whether or not:

TS ⊧fair Φ

use bottom-up procedure a la CTL to determine Satfair(Φ)

using as much as possible standard CTL model-checking algorithms



CTL fairness constraints

▸ A strong CTL fairness constraint: sfair = ⋀
0<i≤k

(GFΦi → GFΨi)

▸ whereΦi and Ψi (for 0 < i ≤ k) are CTL-formulas over AP

▸ Replace the CTL state-formulas in sfair by fresh atomic

propositions:

sfair ∶= ⋀
0<i≤k

(GFai → GFbi)

▸ where ai ∈ L(s) if and only if s ∈ Sat(Φi) (not Satfair(Φi)!)
▸ . . . bi ∈ L(s) if and only if s ∈ Sat(Ψi) (not Satfair(Ψi)!)
▸ (for unconditional and weak fairness this goes similarly)

▸ Note: π ⊧ fair iff π[j..] ⊧ fair for some j ≥ 0 iff π[j..] ⊧ fair for all j ≥ 0



Results for ⊧fair (1)

s ⊧fair EXa if and only if∃s′ ∈ Post(s)with s′ ⊧ a and FairPaths(s′) /= ∅

s ⊧fair E (aUa′) if and only if there exists a finite path fragment

s0 s1 s2 . . . sn−1sn ∈ Pathsfin(s) with n ≥ 0

such that si ⊧ a for 0 ≤ i < n, sn ⊧ a′, and FairPaths(sn) /= ∅



Results for ⊧fair (2)

s ⊧fair EXa if and only if∃s′ ∈ Post(s)with s′ ⊧ a and FairPaths(s′) /= ∅
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

s′ ⊧fair EG true

s ⊧fair E (aUa′) if and only if there exists a finite path fragment

s0 s1 s2 . . . sn−1sn ∈ Pathsfin(s) with n ≥ 0

such that si ⊧ a for 0 ≤ i < n, sn ⊧ a′, and FairPaths(sn) /= ∅
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

sn ⊧fair EG true



Basic algorithm

▸ Determine Satfair(EG true) = {q ∈ Q ∣ FairPaths(q) /= ∅}
▸ Introduce an atomic proposition afair such that:

▸ afair ∈ L(q) if and only if q ∈ Satfair(EG true)

▸ Compute the sets Satfair(Ψ) for all subformulas Ψ ofΦ (in ENF)

by:

Satfair(a) = {q ∈ Q ∣ a ∈ L(q) }
Satfair(¬a) = Q ∖ Satfair(a)

Satfair(a ∧ a′) = Satfair(a) ∩ Satfair(a
′)

Satfair(EXa) = Sat (EX (a ∧ afair))
Satfair(E (aUa′)) = Sat (E (aU (a′ ∧ afair)))

Satfair(EGa) = . . . . . .

▸ Thus: model checking CTL under fairness constraints is
▸ CTL model checking + algorithm for computing Satfair(EGa)!



Core model-checking algorithm

{states are assumed to be labeled with ai and bi}

compute Satfair(EG true) = {q ∈ Q ∣ FairPaths(q) /= ∅}
forall q ∈ Satfair(EG true) do L(q) ∶= L(q) ∪ {afair } od
{compute Satfair(Φ)}
for all 0 < i ≤ ∣Φ ∣ do

for all Ψ ∈ Sub(Φ)with ∣Ψ ∣ = i do

switch(Ψ):
true : Satfair(Ψ) ∶= Q;

a : Satfair(Ψ) ∶= {q ∈ Q ∣ a ∈ L(s) };
a ∧ a′ : Satfair(Ψ) ∶= {q ∈ Q ∣ a, a

′ ∈ L(s) };
¬a : Satfair(Ψ) ∶= {q ∈ Q ∣ a /∈ L(s) };
EXa : Satfair(Ψ) ∶= Sat(EX (a ∧ afair));
E (aUa′) : Satfair(Ψ) ∶= Sat(E (aU (a′ ∧ afair)));
EGa : compute Satfair(EGa)

end switch

replace all occurrences of Ψ (inΦ) by the fresh atomic proposition aΨ

forall q ∈ Satfair(Ψ) do L(q) ∶= L(q) ∪ {aΨ } od
end for

end for

return I ⊆ Satfair(Φ)



Characterization of Satfair(EGa)

q ⊧sfair EGa where sfair = ⋀
0<i≤k

(GFai → GFbi)

iff there exists a finite path fragment q0 . . . qn and a cycle q′0 . . . q
′
r

with:

1. q0 = q and qn = q′0 = q′r

2. qi ⊧ a, for any 0 ≤ i ≤ n, and q′j ⊧ a, for any 0 ≤ j ≤ r, and

3. Sat(ai) ∩ {q′1, . . . , q
′
r } = ∅ or Sat(bi) ∩ {q′1, . . . , q

′
r } /= ∅ for

0 < i ≤ k


