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TS1 ∥ Arbiter ∥ TS2 /⊧ AGAF crit1
But: TS1 ∥ Arbiter ∥ TS2 ⊧fair AGAF crit1 ∧ AGAF crit2 with

fair = GFhead ∧ GF tail



REVIEW: CTL fairness constraints

▸ A strong CTL fairness constraint is a formula of the form:

sfair = ⋀
0<i≤k

(GFΦi → GFΨi)

whereΦi and Ψi (for 0 < i ≤ k) are CTL-formulas over AP.

▸ A weak CTL fairness constraint is a formula of the form:

wfair = ⋀
0<i≤k

(FGΦi → GFΨi)

▸ a CTL fairness assumption fair is a conjunction of CTL fairness
constraints.

⇒ a CTL fairness constraint is an LTL formula over CTL state formulas!



REVIEW: Semantics of fair CTL

For CTL fairness assumption fair, relation ⊧fair is defined by:

s ⊧fair a iff a ∈ Label(s)

s ⊧fair ¬Φ iff ¬(s ⊧fair Φ)

s ⊧fair Φ ∨ Ψ iff (s ⊧fair Φ) ∨ (s ⊧fair Ψ)

s ⊧fair Eφ iff π ⊧fair φ for some fair path π that starts in s

s ⊧fair Aφ iff π ⊧fair φ for all fair paths π that start in s

π ⊧fair XΦ iff π[1] ⊧fair Φ

π ⊧fair ΦUΨ iff (∃ j ≥ 0. π[j] ⊧fair Ψ ∧ (∀0 ≤ k < j. π[k] ⊧fair Φ))

π is a fair path iff π ⊧ fair for CTL fairness assumption fair



REVIEW: Fair CTL model checking

▸ Determine Satfair(EG true) = {q ∈ S ∣ FairPaths(q) /= ∅}
▸ Introduce an atomic proposition afair such that:

▸ afair ∈ L(q) if q ∈ Satfair(EG true)
▸ Compute the sets Satfair(Ψ) for all subformulas Ψ ofΦ (in ENF)

by:

Satfair(a) = {q ∈ S ∣ a ∈ L(q) }
Satfair(¬a) = S ∖ Satfair(a)

Satfair(a ∧ a′) = Satfair(a) ∩ Satfair(a′)
Satfair(EXa) = Sat (EX (a ∧ afair))

Satfair(E (aUa′)) = Sat (E (aU (a′ ∧ afair)))
Satfair(EGa) = (to be discussed)

▸ Thus: model checking CTL under fairness constraints is
▸ CTL model checking + algorithm for computing Satfair(EGa)!



Characterization of Satfair(EGa)

q ⊧sfair EGa where sfair = ⋀
0<i≤k

(GFbi → GF ci)

iff there exists a finite path fragment q0 . . . qn and a cycle q′0 . . . q
′
r

with:

1. q0 = q and qn = q′0 = q′r

2. qi ⊧ a, for all 0 ≤ i ≤ n, and q′j ⊧ a, for all 0 ≤ j ≤ r, and

3. Sat(bi) ∩ {q′1, . . . , q
′
r } = ∅ or

Sat(ci) ∩ {q′1, . . . , q
′
r } /= ∅ for 0 < i ≤ k



Computing Satfair(EGa)

▸ Consider state q only if q ⊧ a, otherwise eliminate q
▸ change TS into TS[a] = (S′ ,Act,→′ , I′ ,AP, L′)with S′ = Sat(a),
▸ →

′ =→ ∩ (S′ × Act × S′), I′ = I ∩ S′, and L′(s) = L(s) for s ∈ S′
⇒ each infinite path fragment in TS[a] satisfies Ga

▸ q ⊧fair EGa iff there is a non-trivial SCC D in TS[a] reachable
from q such that

▸ D ∩ Sat(bi) = ∅ or
▸ D ∩ Sat(ci) /= ∅

for 0 < i ≤ k

▸ Satsfair(EGa) = {q ∈ S ∣ ReachTS[a](s) ∩ T /= ∅}
▸ T is the union of all such SCCs D.

how to compute T?



Unconditional fairness

ufair ≡ ⋀
0<i≤k

GFbi

Let T be the set union of all non-trivial SCCs C of TS[a] satisfying

C ∩ Sat(bi) /= ∅ for all 0 < i ≤ k

It now follows:

s ⊧ufair EGa if and only if ReachG[a](s) ∩ T /= ∅

⇒ T can be determined by a simple graph analysis (DFS)



Strong fairness: single constraint (k = 1)

▸ sfair = GFb1 → GF c1
▸ q ⊧sfair EGa iff C is a non-trivial SCC in TS[a] reachable from q
with:

(1) C ∩ Sat(c1) /= ∅, or
(2) there exists a non-trivial SCC D in C[¬b1]

▸ For the union T of all such SCCs C:

q ⊧sfair EGa if and only if ReachS[a](q) ∩ T /= ∅



Strong fairness: general case (k > 1)

Check each non-trivial SCC C recursively as follows:

Check(C, ⋀
0<i≤k

(GFbi → GF ci)):
if ∀i ∈ {1, . . . , k} ∶ C ∩ Sat(ci) ≠ ∅ return true

else

choose some j ∈ {1, . . . , k} ∶ C ∩ Sat(cj) = ∅.
remove all states in Sat(bj) from C
for all non-trivial SCCs D do

if Check(D, ⋀
0<i≤k,i≠j

(GFbi → GF ci)) return true

return false

T is the union of all SCCs C that pass the check.



Time complexity

For state graph TSwith N states andM edges,

CTL formulaΦ, and CTL fairness constraint fair with k conjuncts,

the CTL model-checking problem TS ⊧fair Φ

can be determined in timeO(∣Φ ∣⋅(N +M)⋅k)



Syntax of CTL∗

CTL∗ state-formulas are formed according to:

Φ ∶∶= true ∣ a ∣ Φ1 ∧ Φ2 ∣ ¬Φ ∣ Eφ

where a ∈ AP and φ is a path-formula

CTL∗ path-formulas are formed according to the grammar:

φ ∶∶= Φ ∣ φ1 ∧ φ2 ∣ ¬φ ∣ Xφ ∣ φ1 Uφ2

whereΦ is a state-formula, and φ, φ1 and φ2 are path-formulas

in CTL∗: Aφ = ¬E¬φ.



CTL∗ semantics

s ⊧ a iff a ∈ L(s)
s ⊧ ¬Φ iff not s ⊧ Φ

s ⊧ Φ ∧ Ψ iff (s ⊧ Φ) and (s ⊧ Ψ)
s ⊧ Eφ iff π ⊧ φ for some π ∈ Paths(s)

π ⊧ Φ iff π[0] ⊧ Φ
π ⊧ φ1 ∧ φ2 iff π ⊧ φ1 and π ⊧ φ2

π ⊧ ¬φ iff not π ⊧ φ

π ⊧ XΦ iff π[1..] ⊧ Φ
π ⊧ ΦUΨ iff ∃ j ≥ 0. (π[j..] ⊧ Ψ ∧ (∀0 ≤ k < j. π[k..] ⊧ Φ))



State graph semantics

▸ For CTL∗-state-formulaΦ, the satisfaction set Sat(Φ) is defined
by:

Sat(Φ) = {q ∈ S ∣ q ⊧ Φ }
▸ TS satisfies CTL∗-formulaΦ iffΦ holds in all its initial states:

TS ⊧ Φ if and only if ∀q ∈ I. q0 ⊧ Φ

this is exactly as for CTL



Embedding of LTL in CTL∗

For LTL formula φ and TSwithout terminal states (both over AP) and

for each q ∈ S:

q ⊧ φ
´¹¹¹¹¹¸¹¹¹¹¹¶

LTL semantics

if and only if q ⊧ Aφ
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

CTL∗ semantics

In particular:

TS ⊧LTL φ if and only if TS ⊧CTL∗ Aφ



CTL∗ is more expressive than LTL and CTL

For the CTL∗-formula over AP = {a, b}:

Φ = (AFG a) ∨ (AGEF b)

there does not exist any equivalent LTL- or CTL formula



This logic is as expressive as CTL

CTL+ state-formulas are formed according to:

Φ ∶∶= true ∣ a ∣ Φ1 ∧ Φ2 ∣ ¬Φ ∣ Eφ ∣ Aφ

where a ∈ AP and φ is a path-formula

CTL+ path-formulas are formed according to the grammar:

φ ∶∶= φ1 ∧ φ2 ∣ ¬φ ∣ XΦ ∣ Φ1 UΦ2

whereΦ,Φ1,Φ2 are state-formulas, and φ, φ1 and φ2 are

path-formulas



CTL+ is as expressive as CTL

For example: E (Fa ∧ Fb)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

CTL+ formula

≡ E F (a ∧ E Fb) ∨ E F (b ∧ E Fa)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

CTL formula

Some rules for transforming CTL+ formulas into equivalent CTL ones:

E (¬(Φ1 UΦ2)) ≡ E ( (Φ1 ∧ ¬Φ2)U (¬Φ1 ∧ ¬Φ2) ) ∨ EG¬Φ2

E (XΦ1 ∧ XΦ2) ≡ EX (Φ1 ∧Φ2)
E (XΦ ∧ (Φ1 UΦ2)) ≡ (Φ2 ∧ EXΦ) ∨ (Φ1 ∧ EX (Φ ∧ E (Φ1 UΦ2)))

E ((Φ1 UΦ2) ∧ (Ψ1 UΨ2)) ≡ E ((Φ1 ∧Ψ1)U (Φ2 ∧ E (Ψ1 UΨ2))) ∨
E ((Φ1 ∧Ψ1)U (Ψ2 ∧ E (Φ1 UΦ2)))

⋮

adding boolean combinations of path formulas to CTL does not change its

expressiveness

but CTL+ formulas can be much shorter than shortest equivalent CTL formulas



CTL∗ model checking

▸ Adopt the same bottom-up procedure as for (fair) CTL

▸ Replace each maximal proper state subformula Ψ by new
proposition aΨ

▸ aΨ ∈ L(s) if and only if s ∈ Sat(Ψ)
▸ Most interesting case: formulas of the form Eφ

▸ by replacing all maximal state sub-formulas in φ, an

LTL-formula results!

▸ q ⊧ Eφ iff q /⊧ A¬φ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

CTL∗ semantics

iff q /⊧ ¬φ
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

LTL semantics
▸ SatCTL∗(Eφ) = S ∖ SatLTL(¬φ)



CTL∗ model-checking algorithm

for all i ≤ ∣Φ ∣ do
for all Ψ ∈ Sub(Φ)with ∣Ψ ∣ = i do

switch(Ψ):

true : Sat(Ψ) ∶= S;

a : Sat(Ψ) ∶= {q ∈ S ∣ a ∈ L(q) };
a1 ∧ a2 : Sat(Ψ) ∶= Sat(a1) ∩ Sat(a2);
¬a : Sat(Ψ) ∶= S ∖ Sat(a);
Eφ : determine SatLTL(¬φ) by means of an LTL model checker;

: Sat(Ψ) ∶= S ∖ SatLTL(¬φ)
end switch

AP ∶= AP ∪ {aΨ }; {introduce fresh atomic proposition}

replace Ψ with aΨ
forall q ∈ Sat(Ψ) do L(q) ∶= L(q) ∪ {aΨ }; od

end for

end for

return I ⊆ Sat(Φ)



Time complexity

For transition system TSwith N states andM transitions,

CTL∗ formulaΦ, the CTL∗ model-checking problem TS ⊧ Φ

can be determined in timeO((N+M)⋅2∣Φ∣).

the CTL∗ model-checking problem is PSPACE-complete



Counterexamples

▸ Model checking is an effective and efficient ‘‘bug hunting’’

technique

▸ Counterexamples are of utmost importance:
▸ diagnostic feedback, the key to abstraction-refinement,

schedule synthesis . . .

▸ LTL: counterexamples are finite paths
▸ XΦ: a path on which the next state refutesΦ
▸ GΦ: a path leading to a ¬Φ-state
▸ F Φ: a ¬Φ-path leading to a ¬Φ cycle

▸ Counterexample generation for LTL:
▸ use stack contents of nested DFS on encountering an accept

cycle
▸ use a variant of BFS to find shortest counterexamples



Counterexamples in CTL

▸ TS /⊧ Aφ where φ only contains universal path quantifiers
▸ counterexample = a sufficiently long prefix of a path refuting φ

(as in LTL)
▸ this fragment of the logic is known as universal fragment of CTL

▸ TS /⊧ Eφ where φ is arbitrary CTL formula
▸ all paths satisfy ¬φ! ⇒ no clear notion of counterexample
▸ witness = a sufficiently long prefix of a path satisfying φ

▸ So:
▸ for Aφ, a prefix of π with π /⊧ φ acts as counterexample
▸ for Eφ, a prefix of π with π ⊧ φ acts as witness



Counterexamples for XΦ

▸ A counterexample of XΦ is a path fragment qq′ with
▸ q ∈ I and q′ ∈ Post(q)with q′ /⊧ Φ

▸ A witness of XΦ is a is a path fragment qq′ with
▸ q ∈ I and q′ ∈ Post(q)with q′ ⊧ Φ

▸ Algorithm: inspection of direct successors of initial states



Counterexamples for GΦ

▸ Counterexample is initial path fragment q0 q1 . . . qn such that:
▸ q0 , . . . , qn−1 ⊧ Φ and qn /⊧ Φ

▸ Algorithm: backward search starting in ¬Φ-states

▸ A witness of φ = GΦ consists of an initial path fragment of the
form:

▸ q0 q1 . . . qn q
′
1 . . . q

′
r´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

satisfy Φ

with qn = q′r

▸ Algorithm: cycle search in the digraph G = (S, E′)where the set
of edges E′:

▸ E′ = { (q, q′) ∣ q′ ∈ Post(q) ∧ q ⊧ Φ }



Counterexamples forΦUΨ

▸ A witness is an initial path fragment q0 q1 . . . qn with
▸ qn ⊧ Ψ and qi ⊧ Φ for 0 ≤ i < n

▸ Algorithm: backward search starting in the set of Ψ-states

▸ A counterexample is an initial path fragment that indicates a
path π:

▸ for which either

π ⊧ G (Φ ∧ ¬Ψ) or π ⊧ (Φ ∧ ¬Ψ)U (¬Φ ∧ ¬Ψ)
▸ Counterexample is initial path fragment of either form:

▸ q0 . . . qn−1 qn q
′
1 . . . q

′
r´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

cycle
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

satisfyΦ ∧ ¬Ψ

with qn=q′r or

q0 . . . qn−1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
satisfyΦ ∧ ¬Ψ

qn with qn ⊧ ¬Φ ∧ ¬Ψ



Counterexample generation

▸ Determine the SCCs of the digraph G = (S, E′)where

E′ = { (q, q′) ∈ S × S ∣ q′ ∈ Post(q) ∧ q ⊧ Φ ∧ ¬Ψ }

▸ Each path in G that starts in an initial state q0 ∈ I and leads to a

non-trivial SCC C in G provides a counterexample of the form:

q0 q1 . . . qn q
′
1 . . . q

′
r´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

∈C

with qn = q′r

▸ Each path in G that leads from an initial state q0 to a

trivial terminal SCC C = {q′ } with q′ /⊧ Ψ

provides a counterexample of the form q0 q1 . . . qn with

qn ⊧ ¬Φ ∧ ¬Ψ



Example

⟨n1 , n2 , y=1⟩

⟨w1 , n2 , y=1⟩ ⟨n1 ,w2 , y=1⟩

⟨c1 , n2 , y=0⟩ ⟨w1 ,w2 , y=1⟩ ⟨n1 , c2 , y=0⟩

⟨c1 ,w2 , y=0⟩ ⟨w1 , c2 , y=0⟩

A (((n1 ∧ n2) ∨ w2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Φ

U c2®
Ψ

)



SCC graph

⟨n1 , n2 , y=1⟩

⟨w1 , n2 , y=1⟩ ⟨n1 ,w2 , y=1⟩

⟨c1 , n2 , y=0⟩ ⟨w1 ,w2 , y=1⟩ ⟨n1 , c2 , y=0⟩

⟨c1 ,w2 , y=0⟩ ⟨w1 , c2 , y=0⟩



Time complexity

Let TS be a transition system TSwith N states and K transitions and

φ a CTL- path formula

If TS /⊧ Aφ then a counterexample for φ in TS can be determined in

timeO(N+K).
The same holds for a witness for φ, provided that TS ⊧ Eφ.



Summary of CTL model checking (1)

▸ CTL is a logic for formalizing properties over computation trees

▸ The expressiveness of LTL and CTL is incomparable

▸ Fairness constraints cannot be expressed in CTL
▸ but are incorporated by adapting the CTL semantics such that

quantification is over fair paths

▸ CTL model checking is by a recursive descent over parse tree
ofΦ

▸ Sat(E (ΦUΨ)) is determined using a least fixed point

computation
▸ Sat(EGΦ) is determined by a greatest fixed point computation



Summary of CTL model checking (2)

▸ Time complexity of CTL model-checking TS ⊧ Φ is:
▸ is linear in ∣TS∣ and ∣Φ∣ and linear in k for k fairness constraints

▸ Checking TS ⊧fair Φ is TS ⊧ Φ plus computing Satfair(EGa)
▸ Counterexamples and witnesses for CTL path-formulas can be

determined using graph algorithms

▸ CTL∗ is more expressive than both CTL and LTL

▸ The CTL∗ model-checking problem can be solved by an

appropriate combination of the CTL and the LTL

model-checking algorithm

▸ The CTL∗-model checking problem is PSPACE-complete



Symbolic Model Checking



Boolean functions

▸ Boolean functions f ∶ Bn
→ B for n ≥ 0 where B = {0, 1}

▸ examples: f(x1 , x2) = x1 ∧ (x2 ∨ ¬x1), and f(x1 , x2) = x1 ↔ x2

▸ Finite sets are boolean functions
▸ let ∣S∣ = N and 2n−1 < N ≤ 2n

▸ encode any element s ∈ S as boolean vector of length n:

[[ ]] ∶ S→ B
n

▸ T ⊆ S is represented by fT such that:

fT([[ s ]]) = 1 iff s ∈ T

▸ this is the characteristic function of T

▸ Relations are boolean functions
▸ R ⊆ S × S is represented by fR such that:

fR([[ s ]], [[ t ]]) = 1 iff (s, t) ∈R



Representing boolean functions

▸ Truth tables
▸ very space inefficient (2n lines)
▸ satisfiability and equivalence check: easy; boolean operations

also easy
▸ . . . but have to consider exponentially many lines (so are hard)

▸ Propositional formulas
▸ more compact representation
▸ satisfiability problem is NP-complete (Cook’s theorem)
▸ boolean operations are just syntactic operations

▸ . . . in Disjunctive Normal Form (DNF)
▸ satisfiability is easy: find a disjunct that does have

complementary literals
▸ negation expensive (dnf of ¬Φmay be exponentially longer

thanΦ)
▸ conjunction complicated (Φ ∧ (Ψ1 ∨Ψ2) ≡ (Φ ∧Ψ1) ∨ (Φ ∧Ψ2)

▸ . . . in Conjunctive Normal Form (CNF)



Representing boolean functions

representation compact? sat ∧ ∨ ¬

propositional

formula often hard easy easy easy

DNF sometimes easy hard easy hard

CNF sometimes hard easy hard hard

(ordered)

truth table never hard hard hard hard



Representing boolean functions

representation compact? sat ∧ ∨ ¬

propositional

formula often hard easy easy easy

DNF sometimes easy hard easy hard

CNF sometimes hard easy hard hard

(ordered)

truth table never hard hard hard hard

reduced ordered

binary

decision diagram often easy medium medium easy


