Verification

Lecture 11

Bernd Finkbeiner
Peter Faymonville
Michael Gerke

Olm UNIVERSITAT
m]llwll“" DES

UL SAARLANDES

Randomized arbiter

TSq || Arbiter || TS, # AGAF crit
But: TS; || Arbiter || TSy =qir AGAF crity A AG AF crit, with
fair = GF head A GF tail

REVIEW: CTL fairness constraints

» A strong CTL fairness constraint is a formula of the form:

sfair= N\ (GF®; > GFY))
O<i<k

where @; and V¥; (for 0 < i < k) are CTL-formulas over AP.
» A weak CTL fairness constraint is a formula of the form:

wfair= A\ (FG®; - GFY))
O<i<k

» a CTL fairness assumption fair is a conjunction of CTL fairness
constraints.

= a CTL fairness constraint is an LTL formula over CTL state formulas!

REVIEW: Semantics of fair CTL

For CTL fairness assumption fair, relation ¢, is defined by:

S Efgir 4 iff a e Label(s)

S Eggir =@ iff = (s Efir @)

SEmir @ vV ff (SEGi @) Vv (SERr P)

SEmirEg iff 7 Eir @ for some fair path 7 that startsin s
S Efir A @ iff 7 £ ¢ for all fair paths 7 that startin s

7T Efgir X O iff 7'[[1] Etair O
7T Efgir ©UWY iff(ﬂj > 0. ”[f] Efair ¥ A (VO <k <J. ”[k] Ffair (D))

m is a fair path iff 7 = fair for CTL fairness assumption fair

REVIEW: Fair CTL model checking

v

Determine Saty,;,(EGtrue) = {q €S| FairPaths(q) # @ }
» Introduce an atomic proposition ag,;, such that:
» amir €L(q) if q e Saty; (EGtrue)

Compute the sets Saty,;, (V) for all subformulas ¥ of @ (in ENF)

v

Satir(a) = {qeS|lacl(q)}
Satri(-a) = S\ Satg(a)
by: Satgi(ana) = Satg(a) n Satg(a’)
Sat}‘air(EX a) = Sat (EX (a A afair))
Satgi(E(aUa’)) = Sat(E(aU(d A agi)))
Sati;(EGa) = (to be discussed)
Thus: model checking CTL under fairness constraints is

» CTL model checking + algorithm for computing Saty,;,(EGa)!

v

Characterization of Sat;,(EGa)

q =stair EGa where sfair=)\ (GFb; > GF¢)
O<i<k

iff there exists a finite path fragment go...g, and acycle gy ... q;
with:
1. go=q and gn=q,=q;
2. q;iza,foraIIOSISn,andq; Ea,forall0<j<rand
3. Sat(bj)) n {4q},....,q/ } =@ or
Sat(ci) n {q7,....q; } # @forO<i<k

Computing Saty,;,(EGa)

» Consider state g only if g £ g, otherwise eliminate g
» change TSinto TS[a] = (S', Act,—',I', AP, L") with S’ = Sat(a),
» >'=5 n (S xActxS),I'=1nS,andL’(s) =L(s) forse S
= each infinite path fragment in TS[a] satisfies Ga
» q Efir EGa iff there is a non-trivial SCC D in TS[a] reachable
from g such that
» D n Sat(b;) =@ or
» D n Sat(¢) + @
for 0<i<k
> Satsi(EGa) = {qeS| ReaChTs[a] (s)nT#2}
» T is the union of all such SCCs D.

how to compute T?

Unconditional fairness

ufair =)\ GFb;
O<i<k

Let T be the set union of all non-trivial SCCs C of TS[a] satisfying
CnSatb;)) #+ o forall0<i<k
It now follows:

s Fufair EGa ifand only if Reachgq1(s) N T # @

= T can be determined by a simple graph analysis (DFS)

Strong fairness: single constraint (k = 1)

» sfair = GFb; - GFcy
» q Esqair EGaiff Cis a non-trivial SCCin TS[a] reachable from g
with:
(1) C n Sat(c;) +# @, or
(2) there exists a non-trivial SCC D in C[-b1]

» For the union T of all such SCCs C:

q Fstair EGa ifandonly if Reachsq(q) N T # @

Strong fairness: general case (k > 1)

Check each non-trivial SCC C recursively as follows:
Check(C, A (GFb; - GFq¢)):
O<i<k
if Vie {1,...,k} : CnSat(c;) + & return true

else
choose someje {1,...,k}: CnSat(q) = 2.

remove all states in Sat(b;) from C
for all non-trivial SCCs D do

if Check(D, A (GFb; - GFc)) return true

0<izk,i%j

return false

T is the union of all SCCs C that pass the check.

Time complexity

For state graph TS with N states and M edges,
CTL formula @, and CTL fairness constraint fair with k conjuncts,
the CTL model-checking problem TS ¢, ©
can be determined in time O (| @ |-(N + M)-k)

Syntax of CTL*

CTL* state-formulas are formed according to:
@ := true | a | D7 A Dy ‘ -0 | Eo

where a € AP and ¢ is a path-formula

CTL* path-formulas are formed according to the grammar:

pu=@ | P11 92 | K4 \ X¢ \ p1Ug2
where @ is a state-formula, and ¢, ¢1 and ¢, are path-formulas

inCTL*:Ag = —Eg.

CTL* semantics

sEa iff ael(s)
SE-® iff notsk @
SEQ® AY iff (se®)and(sEY)
sEEg iff 7= ¢ forsome € Paths(s)
mE® iff #[0]=®
TE@iAgy, iff mEg@andmE @)
TE - iff notmkg
mEXO iff #[1..]=®

rE®UY iff 3j20. (a[l.]EY A (VO<k<j n[k.]E D))

State graph semantics

» For CTL*-state-formula @, the satisfaction set Sat(®) is defined
by:
Sat(®) = {geS|qe D}

» TS satisfies CTL*-formula @ iff @ holds in all its initial states:

TSE® ifandonlyif Vgel.goe®

this is exactly as for CTL

Embedding of LTL in CTL"

For LTL formula ¢ and TS without terminal states (both over AP) and
foreachgeS:

qE ¢ if and only if qgFEAp
— ———
LTL semantics CTL* semantics

In particular:

TSEm ¢ ifandonlyif TSEcn. Ag

CTL" is more expressive than LTL and CTL

For the CTL*-formula over AP = {a,b }:
® = (AFGa) v (AGEF b)

there does not exist any equivalent LTL- or CTL formula

This logic is as expressive as CTL

CTL* state-formulas are formed according to:
®i=true |a| @ A @y | <0 | Eg | Ag

where a € AP and ¢ is a path-formula

CTL" path-formulas are formed according to the grammar:
Q=1 A @2 |) ‘ Xo ‘ O,V D,

where @, @4, @, are state-formulas, and ¢, ¢1 and ¢, are
path-formulas

CTL* is as expressive as CTL
For example: E(FanFb) =EF(anEFb) v EF(bAEFa)

CTL* formula CTL formula
Some rules for transforming CTL* formulas into equivalent CTL ones:
E(—(21UD,))
E(XD AXD,)
E(X® A (Q1UD,))
E((@1UD,) A (F1UY,))

E((®1A-D)U(-D1A-D;)) v EG-D,
= EX(DADy)

(02 AEX®) v (@7 AEX(DAE(DUD,)))
E((@1A¥)U(QPAE(HUE))) v

E((@1 A Y1) U(F AE(D1UD,)))

adding boolean combinations of path formulas to CTL does not change its
expressiveness
but CTL* formulas can be much shorter than shortest equivalent CTL formulas

CTL* model checking

v

Adopt the same bottom-up procedure as for (fair) CTL
» Replace each maximal proper state subformula ¥ by new
proposition ay
» ay € L(s) ifand only if s € Sat(\¥)
Most interesting case: formulas of the form E ¢
» by replacing all maximal state sub-formulas in ¢, an
LTL-formula results!

q = Eep iff q# A-gp iff q -
———— ———
CTL* semantics LTL semantics

> SatCTL*(Ego) = S\SatLTL(_‘(P)

v

v

CTL* model-checking algorithm

foralli<|®|do
forall ¥ € Sub(®) with | ¥| =ido

switch(\P):
true : Sat(¥):=S;
a : Sat(¥):={qeS|acl(q)};
a, A a, : Sat(¥):=Sat(a) nSat(ay);
-a : Sat(¥) := S\ Sat(a);
Eg : determine Sat; 7, (-~¢) by means of an LTL model checker;
: Sat(\I’) =S5\ SGtm(ﬁ(p)
end switch

AP := AP u { ay }; {introduce fresh atomic proposition}
replace ¥ with ay
forall g € Sat(¥) do L(q) :=L(q) u {ay }; od
end for
end for
return / ¢ Sat(D)

Time complexity

For transition system TS with N states and M transitions,
CTL* formula @, the CTL* model-checking problem TS £ ®
can be determined in time O((N+M)-2/*1).

the CTL* model-checking problem is PSPACE-complete

Counterexamples

v

Model checking is an effective and efficient “bug hunting”
technique
» Counterexamples are of utmost importance:
» diagnostic feedback, the key to abstraction-refinement,
schedule synthesis . ..
LTL: counterexamples are finite paths
» X ®:a path on which the next state refutes ®
» G O: a path leading to a -®-state
» F @:a ~-®-path leading to a - @ cycle
Counterexample generation for LTL:
» use stack contents of nested DFS on encountering an accept
cycle
» use a variant of BFS to find shortest counterexamples

v

v

Counterexamples in CTL

» TS # A ¢ where ¢ only contains universal path quantifiers

» counterexample = a sufficiently long prefix of a path refuting ¢
(asin LTL)
» this fragment of the logic is known as universal fragment of CTL

» TS # E ¢ where ¢ is arbitrary CTL formula
» all paths satisfy ~¢! = no clear notion of counterexample
» witness = a sufficiently long prefix of a path satisfying ¢
» So:
» for A ¢, a prefix of = with 7 i ¢ acts as counterexample
» for E ¢, a prefix of = with 7 = ¢ acts as witness

Counterexamples for X ®

» A counterexample of X @ is a path fragment g g’ with
» geland g’ € Post(q) with g’ # @

» A witness of X @ is a is a path fragment g g’ with
» geland g’ € Post(q) with g’ £ ©®

» Algorithm: inspection of direct successors of initial states

Counterexamples for G ®

» Counterexample is initial path fragment g g1 . .. g5 such that:
* Go>--->qn-1 E ®and g, # ©
» Algorithm: backward search starting in —~®-states

» A witness of ¢ = G ® consists of an initial path fragment of the
form:

> QOQ1qnqqq, Wlth qn:q;

satisfy o

Algorithm: cycle search in the digraph G = (S, E’) where the set
of edges E':

» E' = {(9,9')| g €Post(q) n gD}

v

Counterexamples for ® U ¥

» A witness is an initial path fragment go g1 . . . gn with
» gh=¥Y and giE®for0<i<n

v

Algorithm: backward search starting in the set of W-states
» A counterexample is an initial path fragment that indicates a
path 7
» for which either
TEG(® A YY) or 7(D A -Y)U(-D A -¥)
» Counterexample is initial path fragment of either form:

> go.--Gn-1 Gnqq...q, With gn=q; or
| ——
cycle

satisfy @ A =¥

Go..-Gn-1 Gn Withg, E-® A =¥
———
satisfy @ A ¥

Counterexample generation

» Determine the SCCs of the digraph G = (S, E') where
E' = {(9.9) €5x5q cPost(q) A q=® A ~¥)

» Each path in G that starts in an initial state go € / and leads to a
non-trivial SCC C in G provides a counterexample of the form:

q0q1-.-Gnq1...q; With gn=g;
———
eC
» Each path in G that leads from an initial state gg to a
trivial terminal SCCC ={q'} with q'# ¥
provides a counterexample of the form go g ... g, with
dn E-OA-Y

Example

(wi,nz,y=1) (n1,wa,y=1)

—
10} v

SCC graph

(n,n2,y=1)

(w1, n2,y=1)

(c1,n2,y=0)

{c1, w,y=0)

Time complexity

Let TS be a transition system TS with N states and K transitions and
¢ a CTL- path formula

If TS # A ¢ then a counterexample for ¢ in TS can be determined in
time O(N+K).

The same holds for a witness for ¢, provided that TS = E ¢.

Summary of CTL model checking (1)

v

CTL is a logic for formalizing properties over computation trees

» The expressiveness of LTL and CTL is incomparable
» Fairness constraints cannot be expressed in CTL

» but are incorporated by adapting the CTL semantics such that
quantification is over fair paths
CTL model checking is by a recursive descent over parse tree
of ®
» Sat(E(®UVY)) is determined using a least fixed point
computation
» Sat(EG @) is determined by a greatest fixed point computation

v

Summary of CTL model checking (2)

» Time complexity of CTL model-checking TS £ @ is:
» is linear in |TS| and |®| and linear in k for k fairness constraints
» Checking TS &, @ is TS £ @ plus computing Saty,;,(EGa)

» Counterexamples and witnesses for CTL path-formulas can be
determined using graph algorithms

» CTL* is more expressive than both CTL and LTL

» The CTL* model-checking problem can be solved by an
appropriate combination of the CTL and the LTL
model-checking algorithm

» The CTL*-model checking problem is PSPACE-complete

Symbolic Model Checking

Boolean functions

» Boolean functions f : B” - B forn > 0where B={0,1}
» examples: f(x1,%) =x1 A (X2 vV =x7),and f(x1,X2) = X1 < X,
» Finite sets are boolean functions
> let|S|=Nand 2" " <N <2"
» encode any element s € S as boolean vector of length n:
([(]:5-B"
» T c Sisrepresented by fr such that:

fr([s])=1 iff seT

» this is the characteristic function of T
» Relations are boolean functions
» R c Sx Sisrepresented by fz such that:

(s, Mt =1 iff (st)eR

Representing boolean functions

v

Truth tables
» very space inefficient (2" lines)
» satisfiability and equivalence check: easy; boolean operations
also easy
» ... but have to consider exponentially many lines (so are hard)

» Propositional formulas

» more compact representation
» satisfiability problem is NP-complete (Cook’s theorem)
» boolean operations are just syntactic operations

» ...in Disjunctive Normal Form (DNF)

» satisfiability is easy: find a disjunct that does have
complementary literals

» negation expensive (dnf of -® may be exponentially longer
than @)

» conjunction complicated (O A (¥ v¥;) = (O AY) V(O AY,)

» ...in Conjunctive Normal Form (CNF)

Representing boolean functions

representation \ compact? sat A v -
propositional
formula often hard | easy easy easy
DNF | sometimes easy | hard easy hard
CNF | sometimes hard | easy hard hard
(ordered)
truth table never hard | hard hard hard

Representing boolean functions

representation \ compact? sat A v -
propositional
formula often hard easy easy easy
DNF | sometimes easy hard easy hard
CNF | sometimes hard easy hard hard
(ordered)
truth table never hard hard hard hard

reduced ordered
binary
decision diagram often easy | medium medium easy

