Verification

Lecture 12

Bernd Finkbeiner
Peter Faymonville
Michael Gerke

Olm UNIVERSITAT
m]llwll“" DES

UL SAARLANDES

REVIEW: Boolean functions

» Boolean functions f : B” - B forn > 0where B={0,1}
» examples: f(x1,%) =x1 A (X2 vV =x7),and f(x1,X2) = X1 < X3
» Finite sets are boolean functions
> let|S|=Nand 2" " <N <2"
» encode any element s € S as boolean vector of length n:
([(]:5-B"
» T c Sisrepresented by fr such that:

fr([s])=1 iff seT

» this is the characteristic function of T
» Relations are boolean functions
» R c Sx Sisrepresented by fz such that:

(s, Mt =1 iff (st)eR

REVIEW: Representing boolean functions

representation \ compact? sat A v -
propositional
formula often hard easy easy easy
DNF | sometimes easy hard easy hard
CNF | sometimes hard easy hard hard
(ordered)
truth table never hard hard hard hard

reduced ordered
binary
decision diagram often easy | medium medium easy

Explicitly representing transition systems

TS = (S, Act,—,1,AP,L) with |S| = N, |Act| = M and |AP| = K:

» ldentify the N states by numbers

» Represent the set of initial states / as boolean vector i
» i(sj) = 1ifand only if state s; € /

» Represent <% by M boolean matrices T,, of size NxN
» To(si,55) = 1ifand only if s; = s;

» Represent L by an NxK-boolean matrix L
» L(sj,a;) = Tifand only if g; € L(s;)

= Use sparse matrix representations for Tand L

Example (no actions)

I~
I
o - 0O =

{a,b) bl

and T-= and L=

—ooo
O = = =
— a0
—_—_ o =

for simplicity, actions are omitted here

- O -0

Transition systems as boolean functions

» Assume each state is uniquely labeled

» L(s) =L(s") impliess =5

» no restriction: if needed extend AP and label states uniquely
» Assume a fixed total order on propositions: a; <a; < ... < ag
» Represent a state by a boolean function

» over the boolean variables x; through xx such that

[s]] = x5 AX3 Ao A Xg

» where the literal x;* equals x; if a; € L(s), and - x; otherwise
= no need to explicitly represent function L

Represent | and — by their characteristic (boolean) functions
red. L ([s]h [« [t]]) = 1ifand onlyif s %> ¢

v

An example (no actions)

(=

{a,b} b
state | bit-vector boolean function
So (0,0) X7 A =X
» States: 1 (0,1) =X1 A X2
S? (1,0) X1 N X2
S3 (1,1) X1 N X2

» Initial states: fix1,x2)=(=x1 A =x2) v (X1 A =X2)

Example (continued)

f. | (0,0) (0,1) (1,0) (1,1)

(0,0 | © 1 0 1
» Transition relation: (0,1) 0 1 1 0
(1,0 | o 1 1 1
(1,1 | 1 0 1 1
» Alternatively: f, (x1,x2, x1,x5) = 1ifand only if s > s’
— ——
s s/
fo(X1,X2,X7,X5) = (=X1 A =Xx2 A =X] A X5)
Vo (=X A 2Xa A XA XS)
V(=X AXa AXS A X))
Voo
v A Xa A XA XY)

Binary decision trees

» Let X be a set of boolean variables and < a total order on X
» Binary decision tree (BDT) is a complete binary tree over (X, <)

» each leaf v is labeled with a boolean value val(v) € B
» non-leaf v is labeled by a boolean variable Var(v) € X
» such that for each non-leaf v and vertex w:

w e { left(v),right(v) } = (Var(v) < Var(w) v wis a leaf)

= On each path from root to leaf, variables occur in the same
order

Shannon expansion

» Each boolean function f : B" — B can be written as:

f(x1,...,xn) = (i A flx;:=1]) v (=X A f[x;:=0])

» where f[x; := 1] stands for f(x1, ..., Xi—1, 1, Xix1 - - - 5 Xn)
» and fx; := 0] for f(X1, ..., Xi-1,0,Xj41, - - - Xn)
» The boolean function fg(v) represented by vertex v in BDT Bis:

» forvaleaf: fg(v) = val(v)
» otherwise:

fa(v) = (Var(v) A fg(right(v))) v (=Var(v) A fg(left(v)))

» fg = fg(v) where v is the root of B

Considerations on BDTs

» BDTs are not compact

» a BDT for boolean function f : B® — B has 2" leafs
= they are as space inefficient as truth tables!

= BDTs contain quite some redundancy

» all leafs with value one (zero) could be collapsed into a single
leaf
» asimilar scheme could be adopted for isomorphic subtrees

» The size of a BDT does not change if the variable order changes

Ordered Binary Decision Diagram

share equivalent expressions [Akers 76, Lee 59]

» Binary decision diagram (OBDD) is a directed graph over (X, <)
with:
» each leaf v is labeled with a boolean value val(v) € {0,1}
» non-leaf v is labeled by a boolean variable Var(v) € X
» such that for each non-leaf v and vertex w:

w e { left(v),right(v) } = (Var(v) < Var(w) v wis a leaf)

= An OBDD is acyclic
» fz for OBDD B is obtained as for BDTs

Isomorphism

» Band B’ over (X, <) are isomorphic iff their roots are isomorphic
» Vertices v in Band w in B’ are isomorphic, denoted v = w, iff

there exists a bijection H between the vertices of B and B’ such
that:

1. if vis aleaf, then H(v) = wis a leaf with val(v) = val(H(v))
2. if vis a non-leaf, then H(v) = w is a non-leaf such that

Var(v) = Var(w) A H(left(v)) = left(H(v)) A H(right(v)) = right(H(v))

» Testing B = B’ can be done in linear time
» due to the labels (0 and 1) of the edges.

Reducing OBDDs

» Generate an OBDD (or BDT) for a boolean expression, then
reduce

» by means of a recursive descent over the OBDD
» Elimination of duplicate leafs

» for a duplicate 0-leaf (or 1-leaf), redirect all incoming edges to
just one of them

v

Elimination of “don’t care” (non-leaf) vertices
» if left(v) = right(v) = w, eliminate v and redirect all its incoming
edges tow
» Elimination of isomorphic subtrees

» if v # w are roots of isomorphic subtrees, remove w
» and redirect all incoming edgestow to v

How to reduce an OBDD?

S

eliminating identical leafs

How to reduce an OBDD?

O

becomes

eliminating “don’t care” vertices

How to reduce a BDD?

%

.) O O becomes

eliminating isomorphic subtrees

Reduced OBDDs

OBDD B over (X, <) is called reduced iff:
1. foreach leaf v,w: (val(v) =val(w)) = v=w
= identical terminal vertices are forbidden
2. for each non-leaf v: left(v) + right(v)
= non-leafs may not have identical children

3. for each non-leaf v, w:

(Var(v) = Var(w) A right(v) = right(w) A left(v) = left(w)) = v=w

= vertices may not have isomorphic sub-dags

this is what is mostly called BDD; in fact it is an ROBDD!

Dynamic generation of ROBDDs

Main idea:
» Construct directly an ROBDD from a boolean expression

» Create vertices in depth-first search order
» On-the-fly reduction by applying hashing
» on encountering a new vertex v, check whether:
» an equivalent vertex w has been created (same label and
children)
» left(v) = right(v), i.e., vertex v is a “"don't care” vertex

ROBDDs are canonical

[Fortune, Hopcroft & Schmidt, 1978]

For ROBDDs B and B’ over (X, <) we have:

(fg = fg) implies B and B’ are isomorphic

= for a fixed variable ordering, any boolean function
can be uniquely represented by an ROBDD (up to isomorphism)

The importance of canonicity

» Absence of redundant vertices

» if f3 does not depend on x;, ROBDD B does not contain an x;
vertex

» Test for equivalence: f(xq,...,Xxn) = g(x1,...,%n)?
» generate ROBDDs Br and By, and check isomorphism
Test for validity: f(x7,...,X,) = 17
» generate ROBDD B and check whether it only consists of a
1-leaf

Test for implication: f(x1,...,%,) = g(X1,...,Xn)?

» generate ROBDD Bf A -Bg and check if it just consist of a 0-leaf
Test for satisfiability

» fis satisfiable if and only if By is not just the 0-leaf

v

v

v

Variable ordering

v

Different ROBDDs are obtained for different variable orderings

v

The size of the ROBDD depends on the variable ordering
» Some boolean functions have linear and exponential ROBDDs
» Some boolean functions only have polynomial ROBDDs
» Some boolean functions only have exponential ROBDDs

The even parity function

f(x1,...,Xn) = 1iff the number of variables x; with value 1 is even

truth table or propositional formula for f has exponential size

but an ROBDD of linear size is possible

Symmetric functions

f(x1:=b1,...,%X0:=bp] =f[x1 :=bj,, ..., X, := bj,]
for each permutation (iy,...,ip) of (1,...,n)

= The value of f depends only on the number of ones!

Examples: f(...)=x1®... ® Xy,
f(...) = 1iff > k variables x; are true

symmetric boolean functions have ROBDDs of size in O(n?)

The function stable with exponential ROBDD

The ROBDD of f(X,¥) = (x1 <> y1) A ... A (Xn < Vn)

has 3-2" — 1 vertices under ordering x; < ... <Xp <y1 <...<Ypn

The function stable with linear ROBDD

@R

The ROBDD of f(X,¥) = (x1 < y1) A ... A (Xn < Vn)

has 3:n + 2 vertices under ordering x; <y; <...<Xp <Ypn

The multiplication function

» Consider two n-bit integers
» letb,_1by—2...bpand ¢,_1Ch—2...Co
» where b,,_; is the most significant bit, and by the least
significant bit
» Multiplication yields a 2n-bit integer
» the ROBDD By, _, has at least 1.09" vertices
» where f,,_; denotes the the (n—1)-st output bit of the
multiplication

Optimal variable ordering

v

The size of ROBDDs is dependent on the variable ordering
» s it possible to determine < such that the ROBDD has minimal
size?
» the optimal variable ordering problem for ROBDDs is
NP-complete
» polynomial reduction from the 3SAT problem
(Bollig & Wegener, 1996)
» There are many boolean functions with large ROBDDs
» for almost all boolean functions the minimal size is in Q(%)

How to deal with this problem in practice?

» guess a variable ordering in advance
» rearrange the variable ordering during the manipulations of
ROBDDs

v

Sifting algorithm

(Rudell, 1993)

Dynamic variable ordering using variable swapping:
1. Select a variable x;
2. By successive swapping of x;, determine |B| at any position for x;
3. Shift x; to its optimal position
4. Go back to the first step until no improvement is made

o Characteristics:

» avariable may change position several times during a single
sifting iteration
» often yields a local optimum, but works well in practice

Interleaved variable ordering

» Which variable ordering to use for transition relations?
» The interleaved variable ordering:

» forencodings x1,...,x,and yq,...,y, of statesand t
respectively:

X1 <Y1 <X2<Yy)<...<Xp<Yn
» This variable ordering yields compact ROBDDs for binary
relations

Negation

negation amounts to interchange the 0- and 1-leaf

Apply

» Shannon expansion for binary operations:

fopg = (x1 A (flx1:=1]opg[x; :=1]))
v (=x1 A (f[x1:=0]opg[xs:=0]))

» A top-down evaluation scheme using Shannon’s expansion:
» let v be the variable highest in the ordering occurring in B orBy
» split the problem into subproblems for v :=0and v := 1, and
solve recursively
» at the leaves, apply the boolean operator op directly
» reduce afterwards to turn the resulting OBDD into an ROBDD
» Efficiency gain is obtained by dynamic programming
> the time complexity of constructing the ROBDD of B gp 4 is in
O (IBr[|Bq)

Algorithm Apply(op, Bf, By)
B.root := Apply(op, Br.root, By.root);

if G(v1,v,) # empty then return G(v1, v») fi; {lookup in hashtable}
if (v; and v, are terminals) then res := val(v,) op val(v.) fi;
elseif (v; is terminal and v; is nonterminal)
then res :=
MakeNode(Var(v,), Apply(op, vi, left(v2)), Apply(op, v, right(v2)));
else if (v; is nonterminal and v is terminal)
then res :=
MakeNode(Var(v+), Apply(op, left(v:), v2), Apply(op, right(v1),v2));
elseif (Var(v:) = Var(v2))
then res :=
MakeNode(Var(vy), Apply(op, left(v:), left(v2)), Apply(op, right(v1), right(v2)));
elseif (Var(v:) < Var(v2))
then res :=
MakeNode(Var(v+), Apply(op, left(v:), v2), Apply(op, right(v1),v2));
else {Var(v,) > Var(v>)}
res := MakeNode(Var(v>), Apply(op, v, left(v>)), Apply(op, v1, right(v2)));
G(v1,Vv2) := res; {memoize result}
return res

Algorithm Restrict(B, x, b)

» For each vertex v labeled with variable x:

» if b = 1 then redirect incoming edges to right(v)

» if b = 0 then redirect incoming edges to left(v)

» remove vertex v, and all vertices only reachable through v
» (if necessary) reduce (only above v)

Restrict

performing Restrict(B, x>, 1): replace x, by constant 1

Abstract

v

Existential quantification over x;:
3. f(x1,....,xn) = f[x;:=1] v f[x;:=0]

» Naive realization: Apply(v, Restrict(B¢, x;, 1), Restrict(B¢, x;,0))
» Efficiency gain:
» observe that Restrict(By, X;, 1) and Restrict(By, x;, 0) are equal
up tox;
» ...theresulting ROBDD also has the same structure up to x;
» replace each node labeled with x; by the result of applying v on
its children

v

This can easily be generalized to 3xq. ... Ixk. f(X1,...Xpn)

Example

ROBBDs By (left up), Br(x,:-0] (right up), By,:-1] (left down), and B, . f (right down)

Operations on ROBDDs

Algorithm Output Time complexity ~ Space complexity

Reduce B’ (reduced) with fg = fg: ~ O(|B¢|-log |By|) O(|B¢])

Not By O(JBfl) O(IBfl)
Apply Bropg O([B¢|-[Bg|) O([B¢|-[Bg|)
Restrict Bf[x:cb] O(|B¢]) O(|Bsl)
Rename Bf(x=y] O(|By]) O(|Brl)
Abstract Bay O(|B¢?) O(|B¢)

operations are only efficient if f and g have compact ROBDD representations

