
Verification

Lecture 13

Bernd Finkbeiner

Peter Faymonville

Michael Gerke

REVIEW: (explicit-state) LTL model checking

model checker

‘No’ (counter-example)

Transition system

State graph S

Negation of property

Product

S⊗A¬φ

no reachable cycle with F-state? yes

LTL-formula ¬φ

Büchi automatonA¬φ

Generalized Büchi automaton G¬φ

Program

‘Yes’

REVIEW: (explicit-state) CTL model checking

{compute the sets Sat(Φ) = {q ∈ S ∣ q ⊧ Φ }}
for all i ≤ ∣Φ ∣ do

for all Ψ ∈ Sub(Φ)with ∣Ψ ∣ = i do

compute Sat(Ψ) from Sat(Ψ′) {for maximal proper Ψ′ ∈ Sub(Ψ)}
end for

end for

return I ⊆ Sat(Φ)

Sat(true) = Q

Sat(a) = {q ∈ Q ∣ a ∈ L(q) }, for any a ∈ AP

Sat(Φ ∧Ψ) = Sat(Φ) ∩ Sat(Ψ)

Sat(¬Φ) = Q ∖ Sat(Φ)

Sat(EXΦ) = {q ∈ Q ∣ Post(q) ∩ Sat(Φ) /= ∅}

REVIEW: ROBDDs

▸ Binary decision diagram (OBDD) is a directed graph over ⟨X , <⟩
with:

▸ each leaf v is labeled with a boolean value val(v) ∈ {0, 1}
▸ non-leaf v is labeled by a boolean variable Var(v) ∈ X
▸ such that for each non-leaf v and vertexw:

w ∈ { left(v), right(v) } ⇒ (Var(v) < Var(w) ∨ w is a leaf)

▸ OBDD B over ⟨X , <⟩ is called reduced (ROBDD) iff:

1. for each leaf v,w: (val(v) = val(w)) ⇒ v = w

2. for each non-leaf v: left(v) ≠ right(v)
3. for each non-leaf v,w:

(Var(v) = Var(w) ∧ right(v) ≅ right(w) ∧ left(v) ≅ left(w)) ⇒ v = w

REVIEW: The importance of canonicity

▸ Absence of redundant vertices
▸ if fB does not depend on xi, ROBDD B does not contain an xi
vertex

▸ Test for equivalence: f(x1, . . . , xn) ≡ g(x1, . . . , xn)?
▸ generate ROBDDs Bf and Bg, and check isomorphism

▸ Test for validity: f(x1, . . . , xn) = 1?
▸ generate ROBDD Bf and check whether it only consists of a

1-leaf

▸ Test for implication: f(x1, . . . , xn)→ g(x1, . . . , xn)?
▸ generate ROBDD Bf ∧ ¬Bg and check if it just consist of a 0-leaf

▸ Test for satisfiability
▸ f is satisfiable if and only if Bf is not just the 0-leaf

Operations on ROBDDs

Algorithm Output Time complexity Space complexity

Reduce B′ (reduced) with fB = fB′ O(∣Bf ∣⋅ log ∣Bf ∣) O(∣Bf ∣)

Not B¬f O(∣Bf ∣) O(∣Bf ∣)

Apply Bf op g O(∣Bf ∣⋅∣Bg∣) O(∣Bf ∣⋅∣Bg∣)

Restrict Bf[x∶=b] O(∣Bf ∣) O(∣Bf ∣)

Rename Bf[x∶=y] O(∣Bf ∣) O(∣Bf ∣)

Abstract B∃x . f O(∣Bf ∣2) O(∣Bf ∣2)

operations are only efficient if f and g have compact ROBDD representations

OBDDs versus deterministic automata

1

1

1

1

1

1

0

0

0

0 0

0

x1

x2

x′2

x′1

0 1

x′1

x′2

each OBDD B is a deterministic automaton AB with f−1B (1) = L(AB)

Analogies between ROBDDs and deterministic automata

▸ For language L, a minimized automaton is unique up to
isomorphism

▸ for a given variable ordering <, and function f , an ROBDD is

unique upto ≅
▸ L = L′? can be checked by verifying isomorphism of their
automata

▸ f = f ′? for boolean functions can be checked by verifying

Bf ≅ Bf ′

⇒ in both cases, efficient algorithms do exist for this

▸ L ≠ ∅? ≡ is there a reachable accept state?
▸ is f satisfiable? ≡ its ROBDD has a reachable leaf 1

▸ Union, intersection, and complementation on det. automata is
efficient

▸ disjunction, conjunction, and negation on ROBDDs are efficient

Symbolic CTL model checking: Computing Sat(Φ)

Require: CTL-formulaΦ in ENF

Ensure: ROBDD BSat(Φ)

switch(Φ):

true : return Const(1);

false : return Const(0);

xi : return ROBDD Bf for f(x1 , . . . , xn) = xi;

¬Ψ : return Not(bddSat(Ψ))

Φ1 ∧ Φ2 : return Apply(∧, bddSat(Φ1), bddSat(Φ2))

EXΨ : return bddEX(Ψ);

E (Φ1 UΦ2) : return bddEU(Φ1 , Φ2)

EGΨ : return bddEG(Ψ)
end switch

Symbolic CTL model checking: The next-step operator

Sat(XΦ) = {q ∈ Q ∣ ∃q′. (q, q′) ∈ E and q′ ∈ Sat(Φ) }

Require: CTL-formulaΦ in ENF

Ensure: ROBDD B
Sat(X Φ)

B ∶= bddSat(Φ); {Sat(Φ)}
B ∶= Rename(B, x1 , . . . , xn , x′1 , . . . , x

′
n);

B ∶= Apply(∧, Bρ , B); {Pre(Sat(Φ))}
return Abstract(B, x′1 , . . . , x

′
n)

Symbolic CTL model checking: Existential until

Require: CTL-formulasΦ, Ψ in ENF

Ensure: ROBDD B
Sat(∃(ΦU Ψ))

var N, P, B ∶ ROBDD;
N ∶= bddSat(Ψ);
P ∶= Const(0);
B ∶= bddSat(Φ);
while (N ≠ P) do

P ∶= N; {Ti}

N ∶= Rename(N, x1 , . . . , xn , x′1 , . . . , x
′
n);

N ∶= Apply(∧, Bρ ,N); {Pre(Ti)}
N ∶= Abstract(N, x′1 , . . . , x

′
n);

N ∶= Apply(∧,N, B); {Pre(Ti) ∩ Sat(Φ)}
N ∶= Apply(∨, P,N); {Ti+1 = Ti ∪}

end while

return N

Symbolic CTL model checking: Possibly always

Require: CTL-formulaΦ in ENF

Ensure: ROBDD B
Sat(EG Φ)

var N, P, B ∶ ROBDD;
B ∶= bddSat(Φ);
N ∶= B;

P ∶= Const(0);
while (N ≠ P) do

P ∶= N; {Ti}

N ∶= Rename(N, x1 , . . . , xn , x′1 , . . . , x
′
n);

N ∶= Apply(∧, Bρ ,N); {Pre(Ti)}
N ∶= Abstract(N, x′1 , . . . , x

′
n);

N ∶= Apply(∧,N, B); {Pre(Ti) ∩ Sat(Φ)}
N ∶= Apply(∧, P,N); {Ti+1 = Ti ∩}

end while

return N

REVIEW: The GNBA of LTL-formula φ

For LTL-formula φ, let Gφ = (Q, 2AP, δ,Q0,F)where
▸ Q = all elementary sets B ⊆ closure(φ) , Q0 = {B ∈ Q ∣ φ ∈ B}
▸ F = {{B ∈ Q ∣ φ1 Uφ2 /∈ B or φ2 ∈ B} ∣ φ1Uφ2 ∈ closure(φ)}

▸ The transition relation δ ∶ Q × 2AP → 2Q is given by:
▸ If A /= B ∩ AP then δ(B,A) = ∅
▸ δ(B, B ∩ AP) is the set of all elementary sets of formulas B′

satisfying:

(i) For every Xψ ∈ closure(φ): Xψ ∈ B ⇔ ψ ∈ B′, and
(ii) For every φ1 Uφ2 ∈ closure(φ):

φ1 U φ2 ∈ B ⇔ (φ2 ∈ B ∨ (φ1 ∈ B ∧ φ1 Uφ2 ∈ B′))

A symbolic representation of S⊗ G¬φ

▸ variables V ∪ {vψ ∣ ψ ∈ el(φ) ∖ AP}, where
▸ el(p) = {p} if p ∈ AP,
▸ el(¬ψ) = el(ψ),
▸ el(ψ1 ∧ ψ2) = el(ψ1) ∪ el(ψ2),
▸ el(Xψ) = {Xψ} ∪ el(ψ),
▸ el(ψ1 Uψ2) = {ψ1 Uψ2} ∪ el(ψ1) ∪ el(ψ1).

▸ initial condition θ ∧ ¬φ∧ consistency, where

▸ p = p if p ∈ AP,
▸ ¬ψ = ¬ψ,
▸ ψ1 ∧ ψ2 = ψ1 ∧ ψ2,
▸ Xψ = vX ψ

,
▸ ψ1 Uψ2 = v

ψ1 U ψ2
,

and consistency = ⋀
(ψ1U ψ2)∈el(φ)

(ψ2 → vψ1U ψ2
) ∧ (¬vψ1U ψ2

∨ ψ1 ∨ ψ2).

A symbolic representation of S⊗ G¬φ, cont’d

▸ transition relation ρ:

consistency′ ∧ ⋀
X ψ∈el(φ)

Xψ↔ ψ′

∧ ⋀
ψ1U ψ2∈el(φ)

ψ1Uψ2 ↔ ψ2 ∨ (ψ1 ∧ ψ1 Uψ2
′)

▸ acceptance condition F = ⋀
ψ1 U ψ2∈el(φ)

◻ ◇ Fψ1U ψ2
where

Fψ1U ψ2
= ¬(ψ1Uψ2) ∨ ψ2.

Symbolic Emptiness Check

The language of S⊗ G¬φ is nonempty

iff there exists a non-empty set Z of reachable states such that

for all states s ∈ Z and for all ψ1 Uψ2 ∈ el(φ),
there is a path of length ≥ 1 to a state in Z ∩ Sat(Fψ1U ψ2

).

Symbolic Emptiness Check

The language of S⊗ G¬φ is nonempty

iff there exists a non-empty set Z of reachable states such that

for all states s ∈ Z and for all ψ1 Uψ2 ∈ el(φ),
there is a path of length ≥ 1 to a state in Z ∩ Sat(Fψ1U ψ2

).

1. Compute Z as the greatest fixpoint of the equation

Z = ⋂
ψ1U ψ2∈el(φ)

Sat(EXEF (aZ ∧ Fψ1U ψ2
))

where aZ is true iff a state is in Z.

2. Check if the intersection of Z and the initial states is non-empty.

Bounded Model Checking

BDD vs. SAT based approaches

BDD-based approaches

▸ Approach used by many ‘‘industrial-strength’’ model checkers

▸ Hundreds of state variables

▸ Canonical representation⇒ BDDs often too large

▸ Variable order uniform along all paths, selection of good order

very difficult

SAT-based approaches

▸ Avoid space explosion of BDDs

▸ Different split orders possible on different branches

▸ Very efficient implementations available

Basic idea

Search for counterexamples of bounded length

There exists a counterexample of length k to the invariant AGp

iff the following formula is satisfiable:

fI(v⃗0)∧f→(v⃗0, v⃗1)∧f→(v⃗1, v⃗2)∧. . . f→(v⃗k−2, v⃗k−1)∧(¬p0∨¬p1∨. . .∨¬pk−1)

Example: two-bit counter

▸ Initial state: fI = (¬l ∧ ¬r)
▸ Transition: f→(l, r, l′, r′) = (r′ ↔ ¬r) ∧ (l′ ↔ (l↔ ¬r))
▸ Property: AG (¬l ∨ ¬r)

Counterexample of length 3?

¬l0 ∧ ¬r0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

fI(v⃗0)

∧ r1 ↔ ¬r0 ∧ l1 ↔ (l0 ↔ ¬r0)
´¹¹¹¸¹¹¶

f→(v⃗0 ,v⃗1)

∧ r2 ↔ ¬r1 ∧ l2 ↔ (l1 ↔ ¬r1)
´¹¹¹¸¹¹¶

f→(v⃗1 ,v⃗2)

∧ (l0 ∧ r0
²
¬p0

∨ l1 ∧ r1
²
¬p1

∨ l2 ∧ r2
²
¬p2

)

unsatisfiable⇒ no counterexample

Example: two-bit counter

▸ Initial state: fI = (¬l ∧ ¬r)
▸ Transition: f→(l, r, l′, r′) = (r′ ↔ ¬r) ∧ (l′ ↔ (l↔ ¬r))
▸ Property: AG (¬l ∨ ¬r)

Counterexample of length 4?

¬l0 ∧ ¬r0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

fI(v⃗0)

∧ r1 ↔ ¬r0 ∧ l1 ↔ (l0 ↔ ¬r0)
´¹¹¹¸¹¹¶

f→(v⃗0 ,v⃗1)

∧ r2 ↔ ¬r1 ∧ l2 ↔ (l1 ↔ ¬r1)
´¹¹¹¸¹¹¶

f→(v⃗1 ,v⃗2)

∧ r3 ↔ ¬r2 ∧ l3 ↔ (l2 ↔ ¬r2)
´¹¹¹¸¹¹¶

f→(v⃗2 ,v⃗3)

∧ (l0 ∧ r0
²
¬p0

∨ l1 ∧ r1
²
¬p1

∨ l2 ∧ r2
²
¬p2

∨ l3 ∧ r3
²
¬p3

)

satisfiable⇒ counterexample!

SAT

▸ Given a propositional formula ψ,

does there exist a variable assignment

under which ψ evaluates to true?

▸ NP-complete

▸ In practice, tremendous progress over the last years

▸ Most solvers use Conjunctive Normal Form (CNF)

▸ Arbitrary formulas can be transformed in polynomial time into

satisfiability equivalent formulas in CNF

Davis-Putnam-Logemann-Loveland (DPLL) algorithm

if preprocess() = CONFLICT then

return UNSAT;

while TRUE do

if not decide-next-branch() then

return SAT;

while deduce() = CONFLICT do

blevel := analyze-conflict();

if blevel=0 then

return UNSAT;

backtrack(blevel);

done;

done;

Conflict analysis using an implication graph

Implication Graph

Clauses:

C1: x1’+ x2 + x6

C2: x2 + x3 + x7’

C3: x3 + x4’+ x8

C4: x1’+ x6’+ x5’

C5: x6’+ x7+ x8’+ x9’

C6: x5 + x9 + x10

C7: x9 + x10’

Conflict Clause C8:

x1’+ x2 + x3 + x8’

Due to conflict

(x10, x10’)

Conflicting

Nodes

x1

x2’

x3’

x8

x5’

x6

x7’
x9’

x10

x10’

C1

C1

C2

C2

C4

C4

C5

C5

C5

C6

C6

C7

x4

C3

C3

Cutset

Figure 2. Conflict Analysis using an Implication Graph

Prasad/Biere/Gupta: A Survey of Recent Advances in SAT-Based Formal Verification

Efficiency

▸ conflict learning: adding conflict clauses

▸ non-chronological backtracking

▸ heuristics for decisions

▸ efficient data structures

▸ incremental satisfiability

Bounded LTL model checking

Automata-based approach:

▸ Translate LTL formula ¬φ to Büchi automaton

▸ Build product with transition system

▸ Encode all paths that start in initial state and are k steps long

▸ Require that path contains loop with accepting state

fI(v⃗0) ∧
k−2

⋀
i=0

f→(v⃗i , v⃗i+1) ∧
k−1

⋁
i=0

((v⃗i = v⃗k) ∧
k−1

⋁
j=i

fF(v⃗j))

Formula size: O(k ⋅ ∣TS∣ ⋅ 2∣φ∣)

Fixpoint-based translation

ψTS ∧ ψloop ∧ [ψ]0

▸ ψTS = fI(v⃗0) ∧ ⋀k−2
i=0 f→(v⃗i , v⃗i+1)

▸ ψloop: loop constraint, ensures the existence of exactly one

loop

▸ [φ]0: fixpoint formula, ensures that LTL formula holds

Formula size: O(k ⋅ (∣TS∣ + ∣φ∣))

Loop constraint

▸ ψloop = AtLeastOneLoop ∧ AtMostOneLoop

▸ AtLeastOneLoop = ⋀k−2
i=0 (li ⇒ (v⃗i = v⃗k−1))

▸ AtMostOneLoop = ⋀k−2
i=0 (SmallerExistsi ⇒ ¬li

▸ SmallerExists0 = false

▸ SmallerExistsi+1 = SmallerExistsi ∨ li for 0 ≤ i < k − 1.

Fixpoint formula

Let φ be in PNF.

▸ [p]i = pi for i < k − 1

[p]i = ⋁k−2
j=0 (lj ∧ pj) for i = k − 1

▸ [¬p]i = ¬pi for i < k − 1

[¬p]i = ⋁k−2
j=0 (lj ∧ ¬pj) for i = k − 1

▸ [◯φ′]i = [φ′]i+1 for i < k − 2

[◯φ′]i = ⋁k−2
j=0 (lj ∧ [φ

′]) for i = k − 2

▸ [φ1 U φ2]i = [φ2]i ∨ ([φ1]i ∧ [φ1 U φ2]i+1 for i < k − 1

[φ1 U φ2]i = ⋁k−2
j=0 (lj ∧ ⟨φ1 U φ2⟩j) for i = k − 1

▸ [φ1 R φ2]i = [φ2]i ∧ ([φ1]i ∨ [φ1 R φ2]i+1 for i < k − 1

[φ1 R φ2]i = ⋁k−2
j=0 (lj ∧ ⟨φ1 R φ2⟩j) for i = k − 1

▸ ⟨φ1 U φ2⟩i = [φ2]i ∨ ([φ1]i ∧ ⟨φ1 U φ2⟩i+1 for i < k − 1

⟨φ1 U φ2⟩i = false for i = k − 1

▸ ⟨φ1 R φ2⟩i = [φ2]i ∧ ([φ1]i ∨ ⟨φ1 R φ2⟩i+1 for i < k − 1

⟨φ1 R φ2⟩i = true for i = k − 1

The Completeness Threshold

The bound k is increased incrementally until

▸ a counterexample is found, or

▸ the problem becomes intractable due to the complexity of the

SAT problem

▸ k reaches a precomputed threshold that guarantees that there

is no counterexample

→ this threshold is called the completeness threshold CL.

The completeness threshold

▸ Computing CL is as hard as model checking

▸ Idea: Compute an overapproximation of CL based on the

graph structure

Basic notions:

▸ Diameter D: Longest shortest path between any two reachable

states

▸ Recurrence diameter RD: Longest loop-free path between any

two reachable states

▸ Initialized diameter DI: Longest shortest path between some

initial state and some reachable state

▸ Initialized recurrence diameter RDI: Longest loop-free path

between some initial state and some reachable state

