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REVIEW: (explicit-state) LTL model checking

model checker

‘No’ (counter-example)

Transition system

State graph S

Negation of property

Product

S⊗A¬φ

no reachable cycle with F-state? yes

LTL-formula ¬φ

Büchi automatonA¬φ

Generalized Büchi automaton G¬φ

Program

‘Yes’



REVIEW: (explicit-state) CTL model checking

{compute the sets Sat(Φ) = {q ∈ S ∣ q ⊧ Φ }}
for all i ≤ ∣Φ ∣ do

for all Ψ ∈ Sub(Φ)with ∣Ψ ∣ = i do

compute Sat(Ψ) from Sat(Ψ′) {for maximal proper Ψ′ ∈ Sub(Ψ)}
end for

end for

return I ⊆ Sat(Φ)

Sat(true) = Q

Sat(a) = {q ∈ Q ∣ a ∈ L(q) }, for any a ∈ AP

Sat(Φ ∧Ψ) = Sat(Φ) ∩ Sat(Ψ)

Sat(¬Φ) = Q ∖ Sat(Φ)

Sat(EXΦ) = {q ∈ Q ∣ Post(q) ∩ Sat(Φ) /= ∅}



REVIEW: ROBDDs

▸ Binary decision diagram (OBDD) is a directed graph over ⟨X , <⟩
with:

▸ each leaf v is labeled with a boolean value val(v) ∈ {0, 1}
▸ non-leaf v is labeled by a boolean variable Var(v) ∈ X
▸ such that for each non-leaf v and vertexw:

w ∈ { left(v), right(v) } ⇒ (Var(v) < Var(w) ∨ w is a leaf)

▸ OBDD B over ⟨X , <⟩ is called reduced (ROBDD) iff:

1. for each leaf v,w: (val(v) = val(w)) ⇒ v = w

2. for each non-leaf v: left(v) ≠ right(v)
3. for each non-leaf v,w:

(Var(v) = Var(w) ∧ right(v) ≅ right(w) ∧ left(v) ≅ left(w)) ⇒ v = w



REVIEW: The importance of canonicity

▸ Absence of redundant vertices
▸ if fB does not depend on xi, ROBDD B does not contain an xi
vertex

▸ Test for equivalence: f(x1, . . . , xn) ≡ g(x1, . . . , xn)?
▸ generate ROBDDs Bf and Bg, and check isomorphism

▸ Test for validity: f(x1, . . . , xn) = 1?
▸ generate ROBDD Bf and check whether it only consists of a

1-leaf

▸ Test for implication: f(x1, . . . , xn)→ g(x1, . . . , xn)?
▸ generate ROBDD Bf ∧ ¬Bg and check if it just consist of a 0-leaf

▸ Test for satisfiability
▸ f is satisfiable if and only if Bf is not just the 0-leaf



Operations on ROBDDs

Algorithm Output Time complexity Space complexity

Reduce B′ (reduced) with fB = fB′ O(∣Bf ∣⋅ log ∣Bf ∣) O(∣Bf ∣)

Not B¬f O(∣Bf ∣) O(∣Bf ∣)

Apply Bf op g O(∣Bf ∣⋅∣Bg∣) O(∣Bf ∣⋅∣Bg∣)

Restrict Bf[x∶=b] O(∣Bf ∣) O(∣Bf ∣)

Rename Bf[x∶=y] O(∣Bf ∣) O(∣Bf ∣)

Abstract B∃x . f O(∣Bf ∣2) O(∣Bf ∣2)

operations are only efficient if f and g have compact ROBDD representations



OBDDs versus deterministic automata

1

1

1

1

1

1

0

0

0

0 0

0

x1

x2

x′2

x′1

0 1

x′1

x′2

each OBDD B is a deterministic automaton AB with f−1B (1) = L(AB)



Analogies between ROBDDs and deterministic automata

▸ For language L, a minimized automaton is unique up to
isomorphism

▸ for a given variable ordering <, and function f , an ROBDD is

unique upto ≅
▸ L = L′? can be checked by verifying isomorphism of their
automata

▸ f = f ′? for boolean functions can be checked by verifying

Bf ≅ Bf ′

⇒ in both cases, efficient algorithms do exist for this

▸ L ≠ ∅? ≡ is there a reachable accept state?
▸ is f satisfiable? ≡ its ROBDD has a reachable leaf 1

▸ Union, intersection, and complementation on det. automata is
efficient

▸ disjunction, conjunction, and negation on ROBDDs are efficient



Symbolic CTL model checking: Computing Sat(Φ)

Require: CTL-formulaΦ in ENF

Ensure: ROBDD BSat(Φ)

switch(Φ):

true : return Const(1);

false : return Const(0);

xi : return ROBDD Bf for f(x1 , . . . , xn) = xi;

¬Ψ : return Not(bddSat(Ψ))

Φ1 ∧ Φ2 : return Apply(∧, bddSat(Φ1), bddSat(Φ2))

EXΨ : return bddEX(Ψ);

E (Φ1 UΦ2) : return bddEU(Φ1 , Φ2)

EGΨ : return bddEG(Ψ)
end switch



Symbolic CTL model checking: The next-step operator

Sat(XΦ) = {q ∈ Q ∣ ∃q′. (q, q′) ∈ E and q′ ∈ Sat(Φ) }

Require: CTL-formulaΦ in ENF

Ensure: ROBDD B
Sat(X Φ)

B ∶= bddSat(Φ); {Sat(Φ)}
B ∶= Rename(B, x1 , . . . , xn , x′1 , . . . , x

′
n);

B ∶= Apply(∧, Bρ , B); {Pre(Sat(Φ))}
return Abstract(B, x′1 , . . . , x

′
n)



Symbolic CTL model checking: Existential until

Require: CTL-formulasΦ, Ψ in ENF

Ensure: ROBDD B
Sat(∃(ΦU Ψ))

var N, P, B ∶ ROBDD;
N ∶= bddSat(Ψ);
P ∶= Const(0);
B ∶= bddSat(Φ);
while (N ≠ P) do

P ∶= N; {Ti}

N ∶= Rename(N, x1 , . . . , xn , x′1 , . . . , x
′
n);

N ∶= Apply(∧, Bρ ,N); {Pre(Ti)}
N ∶= Abstract(N, x′1 , . . . , x

′
n);

N ∶= Apply(∧,N, B); {Pre(Ti) ∩ Sat(Φ)}
N ∶= Apply(∨, P,N); {Ti+1 = Ti ∪ . . . . . .}

end while

return N



Symbolic CTL model checking: Possibly always

Require: CTL-formulaΦ in ENF

Ensure: ROBDD B
Sat(EG Φ)

var N, P, B ∶ ROBDD;
B ∶= bddSat(Φ);
N ∶= B;

P ∶= Const(0);
while (N ≠ P) do

P ∶= N; {Ti}

N ∶= Rename(N, x1 , . . . , xn , x′1 , . . . , x
′
n);

N ∶= Apply(∧, Bρ ,N); {Pre(Ti)}
N ∶= Abstract(N, x′1 , . . . , x

′
n);

N ∶= Apply(∧,N, B); {Pre(Ti) ∩ Sat(Φ)}
N ∶= Apply(∧, P,N); {Ti+1 = Ti ∩ . . . . . .}

end while

return N



REVIEW: The GNBA of LTL-formula φ

For LTL-formula φ, let Gφ = (Q, 2AP, δ,Q0,F)where
▸ Q = all elementary sets B ⊆ closure(φ) , Q0 = {B ∈ Q ∣ φ ∈ B}
▸ F = {{B ∈ Q ∣ φ1 Uφ2 /∈ B or φ2 ∈ B} ∣ φ1Uφ2 ∈ closure(φ)}

▸ The transition relation δ ∶ Q × 2AP → 2Q is given by:
▸ If A /= B ∩ AP then δ(B,A) = ∅
▸ δ(B, B ∩ AP) is the set of all elementary sets of formulas B′

satisfying:

(i) For every Xψ ∈ closure(φ): Xψ ∈ B ⇔ ψ ∈ B′, and
(ii) For every φ1 Uφ2 ∈ closure(φ):

φ1 U φ2 ∈ B ⇔ (φ2 ∈ B ∨ (φ1 ∈ B ∧ φ1 Uφ2 ∈ B′))



A symbolic representation of S⊗ G¬φ

▸ variables V ∪ {vψ ∣ ψ ∈ el(φ) ∖ AP}, where
▸ el(p) = {p} if p ∈ AP,
▸ el(¬ψ) = el(ψ),
▸ el(ψ1 ∧ ψ2) = el(ψ1) ∪ el(ψ2),
▸ el(Xψ) = {Xψ} ∪ el(ψ),
▸ el(ψ1 Uψ2) = {ψ1 Uψ2} ∪ el(ψ1) ∪ el(ψ1).

▸ initial condition θ ∧ ¬φ∧ consistency, where

▸ p = p if p ∈ AP,
▸ ¬ψ = ¬ψ,
▸ ψ1 ∧ ψ2 = ψ1 ∧ ψ2,
▸ Xψ = vX ψ

,
▸ ψ1 Uψ2 = v

ψ1 U ψ2
,

and consistency = ⋀
(ψ1U ψ2)∈el(φ)

(ψ2 → vψ1U ψ2
) ∧ (¬vψ1U ψ2

∨ ψ1 ∨ ψ2).



A symbolic representation of S⊗ G¬φ, cont’d

▸ transition relation ρ:

consistency′ ∧ ⋀
X ψ∈el(φ)

Xψ↔ ψ′

∧ ⋀
ψ1U ψ2∈el(φ)

ψ1Uψ2 ↔ ψ2 ∨ (ψ1 ∧ ψ1 Uψ2
′)

▸ acceptance condition F = ⋀
ψ1 U ψ2∈el(φ)

◻ ◇ Fψ1U ψ2
where

Fψ1U ψ2
= ¬(ψ1Uψ2) ∨ ψ2.



Symbolic Emptiness Check

The language of S⊗ G¬φ is nonempty

iff there exists a non-empty set Z of reachable states such that

for all states s ∈ Z and for all ψ1 Uψ2 ∈ el(φ),
there is a path of length ≥ 1 to a state in Z ∩ Sat(Fψ1U ψ2

).



Symbolic Emptiness Check

The language of S⊗ G¬φ is nonempty

iff there exists a non-empty set Z of reachable states such that

for all states s ∈ Z and for all ψ1 Uψ2 ∈ el(φ),
there is a path of length ≥ 1 to a state in Z ∩ Sat(Fψ1U ψ2

).

1. Compute Z as the greatest fixpoint of the equation

Z = ⋂
ψ1U ψ2∈el(φ)

Sat(EXEF (aZ ∧ Fψ1U ψ2
))

where aZ is true iff a state is in Z.

2. Check if the intersection of Z and the initial states is non-empty.



Bounded Model Checking



BDD vs. SAT based approaches

BDD-based approaches

▸ Approach used by many ‘‘industrial-strength’’ model checkers

▸ Hundreds of state variables

▸ Canonical representation⇒ BDDs often too large

▸ Variable order uniform along all paths, selection of good order

very difficult

SAT-based approaches

▸ Avoid space explosion of BDDs

▸ Different split orders possible on different branches

▸ Very efficient implementations available



Basic idea

Search for counterexamples of bounded length

There exists a counterexample of length k to the invariant AGp

iff the following formula is satisfiable:

fI(v⃗0)∧f→(v⃗0, v⃗1)∧f→(v⃗1, v⃗2)∧. . . f→(v⃗k−2, v⃗k−1)∧(¬p0∨¬p1∨. . .∨¬pk−1)



Example: two-bit counter

▸ Initial state: fI = (¬l ∧ ¬r)
▸ Transition: f→(l, r, l′, r′) = (r′ ↔ ¬r) ∧ (l′ ↔ (l↔ ¬r))
▸ Property: AG (¬l ∨ ¬r)

Counterexample of length 3?

¬l0 ∧ ¬r0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

fI(v⃗0)

∧ r1 ↔ ¬r0 ∧ l1 ↔ (l0 ↔ ¬r0)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

f→(v⃗0 ,v⃗1)

∧ r2 ↔ ¬r1 ∧ l2 ↔ (l1 ↔ ¬r1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

f→(v⃗1 ,v⃗2)

∧ ( l0 ∧ r0
²
¬p0

∨ l1 ∧ r1
²
¬p1

∨ l2 ∧ r2
²
¬p2

)

unsatisfiable⇒ no counterexample



Example: two-bit counter

▸ Initial state: fI = (¬l ∧ ¬r)
▸ Transition: f→(l, r, l′, r′) = (r′ ↔ ¬r) ∧ (l′ ↔ (l↔ ¬r))
▸ Property: AG (¬l ∨ ¬r)

Counterexample of length 4?

¬l0 ∧ ¬r0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

fI(v⃗0)

∧ r1 ↔ ¬r0 ∧ l1 ↔ (l0 ↔ ¬r0)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

f→(v⃗0 ,v⃗1)

∧ r2 ↔ ¬r1 ∧ l2 ↔ (l1 ↔ ¬r1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

f→(v⃗1 ,v⃗2)

∧ r3 ↔ ¬r2 ∧ l3 ↔ (l2 ↔ ¬r2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

f→(v⃗2 ,v⃗3)

∧ ( l0 ∧ r0
²
¬p0

∨ l1 ∧ r1
²
¬p1

∨ l2 ∧ r2
²
¬p2

∨ l3 ∧ r3
²
¬p3

)

satisfiable⇒ counterexample!



SAT

▸ Given a propositional formula ψ,

does there exist a variable assignment

under which ψ evaluates to true?

▸ NP-complete

▸ In practice, tremendous progress over the last years

▸ Most solvers use Conjunctive Normal Form (CNF)

▸ Arbitrary formulas can be transformed in polynomial time into

satisfiability equivalent formulas in CNF



Davis-Putnam-Logemann-Loveland (DPLL) algorithm

if preprocess() = CONFLICT then

return UNSAT;

while TRUE do

if not decide-next-branch() then

return SAT;

while deduce() = CONFLICT do

blevel := analyze-conflict();

if blevel=0 then

return UNSAT;

backtrack(blevel);

done;

done;



Conflict analysis using an implication graph

Implication Graph

Clauses:

C1: x1’+ x2 + x6

C2: x2 + x3 + x7’

C3: x3 + x4’+ x8

C4: x1’+ x6’+ x5’

C5: x6’+ x7+ x8’+ x9’

C6: x5 + x9 + x10

C7: x9 + x10’

Conflict Clause C8:

x1’+ x2 + x3 + x8’

Due to conflict 

(x10, x10’)

Conflicting 

Nodes

x1

x2’

x3’

x8

x5’

x6
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C2
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Figure 2. Conflict Analysis using an Implication Graph

Prasad/Biere/Gupta: A Survey of Recent Advances in SAT-Based Formal Verification



Efficiency

▸ conflict learning: adding conflict clauses

▸ non-chronological backtracking

▸ heuristics for decisions

▸ efficient data structures

▸ incremental satisfiability



Bounded LTL model checking

Automata-based approach:

▸ Translate LTL formula ¬φ to Büchi automaton

▸ Build product with transition system

▸ Encode all paths that start in initial state and are k steps long

▸ Require that path contains loop with accepting state

fI(v⃗0) ∧
k−2

⋀
i=0

f→(v⃗i , v⃗i+1) ∧
k−1

⋁
i=0

((v⃗i = v⃗k) ∧
k−1

⋁
j=i

fF(v⃗j))

Formula size: O(k ⋅ ∣TS∣ ⋅ 2∣φ∣)



Fixpoint-based translation

ψTS ∧ ψloop ∧ [ψ]0

▸ ψTS = fI(v⃗0) ∧ ⋀k−2
i=0 f→(v⃗i , v⃗i+1)

▸ ψloop: loop constraint, ensures the existence of exactly one

loop

▸ [φ]0: fixpoint formula, ensures that LTL formula holds

Formula size: O(k ⋅ (∣TS∣ + ∣φ∣))



Loop constraint

▸ ψloop = AtLeastOneLoop ∧ AtMostOneLoop

▸ AtLeastOneLoop = ⋀k−2
i=0 (li ⇒ (v⃗i = v⃗k−1))

▸ AtMostOneLoop = ⋀k−2
i=0 (SmallerExistsi ⇒ ¬li

▸ SmallerExists0 = false

▸ SmallerExistsi+1 = SmallerExistsi ∨ li for 0 ≤ i < k − 1.



Fixpoint formula

Let φ be in PNF.

▸ [p]i = pi for i < k − 1

[p]i = ⋁k−2
j=0 (lj ∧ pj) for i = k − 1

▸ [¬p]i = ¬pi for i < k − 1

[¬p]i = ⋁k−2
j=0 (lj ∧ ¬pj) for i = k − 1

▸ [◯φ′]i = [φ′]i+1 for i < k − 2

[◯φ′]i = ⋁k−2
j=0 (lj ∧ [φ

′]) for i = k − 2

▸ [φ1 U φ2]i = [φ2]i ∨ ([φ1]i ∧ [φ1 U φ2]i+1 for i < k − 1

[φ1 U φ2]i = ⋁k−2
j=0 (lj ∧ ⟨φ1 U φ2⟩j) for i = k − 1

▸ [φ1 R φ2]i = [φ2]i ∧ ([φ1]i ∨ [φ1 R φ2]i+1 for i < k − 1

[φ1 R φ2]i = ⋁k−2
j=0 (lj ∧ ⟨φ1 R φ2⟩j) for i = k − 1

▸ ⟨φ1 U φ2⟩i = [φ2]i ∨ ([φ1]i ∧ ⟨φ1 U φ2⟩i+1 for i < k − 1

⟨φ1 U φ2⟩i = false for i = k − 1

▸ ⟨φ1 R φ2⟩i = [φ2]i ∧ ([φ1]i ∨ ⟨φ1 R φ2⟩i+1 for i < k − 1

⟨φ1 R φ2⟩i = true for i = k − 1



The Completeness Threshold

The bound k is increased incrementally until

▸ a counterexample is found, or

▸ the problem becomes intractable due to the complexity of the

SAT problem

▸ k reaches a precomputed threshold that guarantees that there

is no counterexample

→ this threshold is called the completeness threshold CL.



The completeness threshold

▸ Computing CL is as hard as model checking

▸ Idea: Compute an overapproximation of CL based on the

graph structure

Basic notions:

▸ Diameter D: Longest shortest path between any two reachable

states

▸ Recurrence diameter RD: Longest loop-free path between any

two reachable states

▸ Initialized diameter DI: Longest shortest path between some

initial state and some reachable state

▸ Initialized recurrence diameter RDI: Longest loop-free path

between some initial state and some reachable state


