
Verification

Lecture 14

Bernd Finkbeiner

Peter Faymonville

Michael Gerke Coming up in twoweeks...

Midterm Exam will take place

on Dec 20th, 4pm-7pm

Günter-Hotz-Hörsaal (building E2 2,

formerly called Audimo)

Open Book

REVIEW: Bounded model checking

Search for counterexamples of bounded length

There exists a counterexample of length k to the invariant AGp

iff the following formula is satisfiable:

fI(v⃗0)∧f→(v⃗0, v⃗1)∧f→(v⃗1, v⃗2)∧. . . f→(v⃗k−2, v⃗k−1)∧(¬p0∨¬p1∨. . .∨¬pk−1)

REVIEW: Automata-based approach

Automata-based approach:

▸ Translate LTL formula ¬φ to Büchi automaton

▸ Build product with transition system

▸ Encode all paths that start in initial state and are k steps long

▸ Require that path contains loop with accepting state

fI(v⃗0) ∧
k−2

⋀
i=0

f→(v⃗i , v⃗i+1) ∧
k−1

⋁
i=0

((v⃗i = v⃗k) ∧
k−1

⋁
j=i

fF(v⃗j))

Formula size: O(k ⋅ ∣TS∣ ⋅ 2∣φ∣)

REVIEW: Fixpoint-based translation

ψTS ∧ ψloop ∧ [ψ]0

▸ ψTS = fI(v⃗0) ∧ ⋀k−2
i=0 f→(v⃗i , v⃗i+1)

▸ ψloop: loop constraint, ensures the existence of exactly one

loop

▸ [φ]0: fixpoint formula, ensures that LTL formula holds

Formula size: O(k ⋅ (∣TS∣ + ∣φ∣))

REVIEW: The Completeness Threshold

The bound k is increased incrementally until

▸ a counterexample is found, or

▸ the problem becomes intractable due to the complexity of the

SAT problem

▸ k reaches a precomputed threshold that guarantees that there

is no counterexample

→ this threshold is called the completeness threshold CL.

The completeness threshold

▸ Computing CL is as hard as model checking

▸ Idea: Compute an overapproximation of CL based on the

graph structure

Basic notions:

▸ Diameter D: Longest shortest path between any two reachable

states

▸ Recurrence diameter RD: Longest loop-free path between any

two reachable states

▸ Initialized diameter DI: Longest shortest path between some

initial state and some reachable state

▸ Initialized recurrence diameter RDI: Longest loop-free path

between some initial state and some reachable state

Completeness thresholds

▸ For ◻p properties, CT ≤ DI.

▸ For◇p properties, CT ≤ RDI + 1.

▸ For general LTL properties, CT ≤min(RDI + 1,DI + D)
(where D,DI , RD, RDI refer to the product graph)

Complexity

▸ k chosen as min(RDI + 1,DI + D) is exponential in number of

state variables

▸ Size of SAT instance is O(k ⋅ (∣TS∣ + ∣φ∣))
▸ SAT is solved in exponential time

⇒ double exponential in number of state variables

(Compare: BDD-based model checking is single-exponential)

▸ In practice, bounded model checking is very successful

▸ Finds shallow errors fast

▸ In practice, RD,D are often not exponential

Implementation Relations

Implementation relations

▸ A binary relation on transition systems
▸ when does a transition systems correctly implement another?

▸ Important for system synthesis
▸ stepwise refinement of a system specification TS into an

‘‘implementation’’ TS′

▸ Important for system analysis
▸ use the implementation relation as a means for abstraction
▸ replace TS ⊧ φ by TS′ ⊧ φ where ∣ TS′ ∣ << ∣ TS ∣ such that:

TS ⊧ φ iff TS′ ⊧ φ or TS′ ⊧ φ ⇒ TS ⊧ φ

⇒ Focus on state-based bisimulation and simulation
▸ logical characterization: which logical formulas are preserved

by bisimulation?

Bisimulation equivalence

Let TSi = (Si ,Acti ,→i , Ii ,AP, Li), i=1, 2, be transition systems

A bisimulation for (TS1, TS2) is a binary relationR ⊆ S1 × S2 such

that:

1. ∀s1 ∈ I1 ∃s2 ∈ I2 . (s1 , s2) ∈ R and ∀s2 ∈ I2 ∃s1 ∈ I1 . (s1 , s2) ∈ R

2. for all states s1 ∈ S1, s2 ∈ S2 with (s1 , s2) ∈ R it holds:

2.1 L1(s1) = L2(s2)

2.2 if s′1 ∈ Post(s1) then there exists s′2 ∈ Post(s2)with (s
′

1 , s
′

2) ∈R

2.3 if s′2 ∈ Post(s2) then there exists s′1 ∈ Post(s1)with (s
′

1 , s
′

2) ∈R

TS1 and TS2 are bisimilar, denoted TS1 ∼ TS2, if there exists a bisimulation for

(TS1 , TS2)

Bisimulation equivalence

q1 −→ q′1 q1 −→ q′1

R can be completed to R R

q2 q2 −→ q′2

and

q1 q1 −→ q′1

R can be completed to R R

q2 −→ q′2 q2 −→ q′2

Example (1)

s0

s1

s2 s3

t0

t1

t2

t4t3

{pay} {pay}

∅ ∅

{beer} { sprite} {beer} { sprite}

{beer}

R = {(s0 , t0), (s1 , t1), (s2 , t2), (s2 , t3), (s3 , t4)}

is a bisimulation for (TS1 , TS2)where AP = {pay, beer, sprite}

Example (2)

s0

s1

s2 s3

u0

u1

u4u3

{pay} {pay}

∅ ∅

{beer} { sprite} {beer} { sprite}

∅u2

TS1 /∼ TS3 for AP = {pay, beer, sprite}

But: { (s0 , u0), (s1 , u1), (s1 , u2), (s2 , u3), (s2 , u4), (s3 , u3), (s3 , u4) }

is a bisimulation for (TS1 , TS3) for AP = {pay, drink}

∼ is an equivalence

For any transition systems TS, TS1, TS2 and TS3 over AP:

TS ∼ TS (reflexivity)

TS1 ∼ TS2 implies TS2 ∼ TS1 (symmetry)

TS1 ∼ TS2 and TS2 ∼ TS3 implies TS1 ∼ TS3 (transitivity)

Bisimulation on paths

Whenever we have:

s0 −→ s1 −→ s2 −→ s3 −→ s4

R

t0

this can be completed to

s0 −→ s1 −→ s2 −→ s3 −→ s4

R R R R R

t0 −→ t1 −→ t2 −→ t3 −→ t4

proof: by induction on index i of state si

Bisimulation vs. trace equivalence

TS1 ∼ TS2 implies Traces(TS1) = Traces(TS2)

bisimilar transition systems thus satisfy the same LT properties!

Bisimulation on states

R ⊆ S × S is a bisimulation on TS if for any (q1 , q2) ∈R:

▸ L(q1) = L(q2)
▸ if q′1 ∈ Post(q1) then there exists an q′2 ∈ Post(q2)with (q

′

1 , q
′

2) ∈R
▸ if q′2 ∈ Post(q2) then there exists an q′1 ∈ Post(q1)with (q

′

1 , q
′

2) ∈R

q1 and q2 are bisimilar, q1 ∼TS q2, if (q1 , q2) ∈R for some bisimulationR for TS

q1 ∼TS q2 if and only if TSq1 ∼ TSq2

Coarsest bisimulation

∼TS is an equivalence and the coarsest bisimulation for TS

Quotient transition system

For TS = (S,Act,→, I,AP, L) and bisimulation ∼TS ⊆ S × S on TS let

TS/∼TS = (S′, { τ },→′, I′,AP, L′), the quotient of TS under ∼TS

where

▸ S′ = S/∼TS = { [s]∼ ∣ s ∈ S}with [s]∼ = { s′ ∈ S ∣ s ∼TS s
′ }

▸ →′ is defined by:
s α−−→ s′

[s]
∼

τ−−→′ [s′]
∼

▸ I′ = { [s]
∼
∣ s ∈ I }

▸ L′([s]
∼
) = L(s)

The Bakery algorithm

P1 ∶∶

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

loop forever do

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

noncritical

n1 ∶ y1 ∶= y2 + 1

w1 ∶ await (y2 = 0 ∨ y1 < y2)

c1 ∶ critical

y1 ∶= 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∣∣ P2 ∶∶

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

loop forever do

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

noncritical

n1 ∶ y2 ∶= y1 + 1

w1 ∶ await (y1 = 0 ∨ y2 < y1)

c1 ∶ critical

y2 ∶= 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Example path fragment

process P1 process P2 y1 y2 effect

n1 n2 0 0 P1 requests access to critical section

w1 n2 1 0 P2 requests access to critical section

w1 w2 1 2 P1 enters the critical section

c1 w2 1 2 P1 leaves the critical section

n1 w2 0 2 P1 requests access to critical section

w1 w2 3 2 P2 enters the critical section

w1 c2 3 2 P2 leaves the critical section

w1 n2 3 0 P2 requests access to critical section

w1 w2 3 4 P2 enters the critical section

.

Data abstraction

Function f maps a reachable state of TSBak onto an abstract one in TSabsBak

Let s = ⟨ℓ1 , ℓ2 , y1 = b1 , y2 = b2⟩ be a state of TSBak with ℓi ∈ {ni ,wi , ci } and
bi ∈ IN
Then:

f(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⟨ℓ1 , ℓ2 , y1 = 0, y2 = 0⟩ if b1 = b2 = 0

⟨ℓ1 , ℓ2 , y1 = 0, y2 > 0⟩ if b1 = 0 and b2 > 0

⟨ℓ1 , ℓ2 , y1 > 0, y2 = 0⟩ if b1 > 0 and b2 = 0

⟨ℓ1 , ℓ2 , y1 > y2 > 0⟩ if b1 > b2 > 0

⟨ℓ1 , ℓ2 , y2 > y1 > 0⟩ if b2 > b1 > 0

It follows:R = { (s, f(s)) ∣ s ∈ S} is a bisimulation for (TSBak , TS
abs
Bak)

for any subset of AP = {noncriti ,waiti , criti ∣ i = 1, 2}

Bisimulation quotient

n1 n2
y1 = 0

y2 = 0

n1 w2

y1 = 0

y2 > 0

w1 n2
y1 > 0

y2 = 0

n1 c2
y1 = 0

y2 > 0

c1 n2
y1 > 0

y2 = 0

w1 w2

y1 > y2 > 0
w1 w2

y2 > y1 > 0

c1 w2

y2 > y1 > 0

w1 c2
y1 > y2 > 0

TSabsBak = TSBak/ ∼ for AP = { crit1 , crit2 }

Remarks

▸ In this example, data abstraction yields a bisimulation relation
▸ (typically, only a simulation relation is obtained, more later)

▸ TSabsBak ⊧ φ with, e.g.,:
▸ ◻(¬crit1 ∨ ¬crit2) and

(GFwait1 ⇒ GF crit1) ∧ (GFwait2 ⇒ GF crit2)

▸ Since TSabsBak ∼ TSBak , it follows TSBak ⊧ φ

▸ Note: Traces(TSabsBak) = Traces(TSBak)

REVIEW: Syntax of CTL∗

CTL∗ state-formulas are formed according to:

Φ ∶∶= true ∣ a ∣ Φ1 ∧ Φ2 ∣ ¬Φ ∣ Eφ

where a ∈ AP and φ is a path-formula

CTL∗ path-formulas are formed according to the grammar:

φ ∶∶= Φ ∣ φ1 ∧ φ2 ∣ ¬φ ∣ Xφ ∣ φ1 Uφ2

whereΦ is a state-formula, and φ, φ1 and φ2 are path-formulas

CTL∗ equivalence

States q1 and q2 in TS (over AP) are CTL∗-equivalent:

q1 ≡CTL∗ q2 if and only if (q1 ⊧ Φ iff q2 ⊧ Φ)

for all CTL∗ state formulas over AP

TS1 ≡CTL∗ TS2 if and only if (TS1 ⊧ Φ iff TS2 ⊧ Φ)

for any sublogic of CTL∗, logical equivalence is defined analogously

Bisimulation vs. CTL∗ and CTL equivalence

Let TS be a finite state graph and s, s′ states in TS

The following statements are equivalent:

(1) s ∼TS s′

(2) s and s′ are CTL-equivalent, i.e., s ≡CTL s
′

(3) s and s′ are CTL∗-equivalent, i.e., s ≡CTL∗ s
′

this is proven in three steps: ≡CTL ⊆ ∼ ⊆ ≡CTL∗ ⊆ ≡CTL

important: equivalence is also obtained for any sub-logic containing ¬, ∧ and X

The importance of this result

▸ CTL and CTL∗ equivalence coincide
▸ despite the fact that CTL∗ is more expressive than CTL

▸ Bisimilar transition systems preserve the same CTL∗ formulas
▸ and thus the same LTL formulas (and LT properties)

▸ Non-bisimilarity can be shown by a single CTL (or CTL∗)
formula

▸ TS1 ⊧ Φ and TS2 /⊧ Φ implies TS1 /∼ TS2

▸ You even do not need to use an until-operator!

▸ To check TS ⊧ Φ, it suffices to check TS/∼⊧ Φ

