Verification

Lecture 14

Bernd Finkbeiner
Peter Faymonville
Michael Gerke

COlm UNIVERSITAT
"""Hu"“" DES
JIQd SAARLANDES

Coming up in two weeks...

Midterm Exam will take place

on Dec 20th, 4pm-7pm
Glinter-Hotz-Horsaal (building E2 2,
formerly called Audimo)

Open Book

REVIEW: Bounded model checking

Search for counterexamples of bounded length

There exists a counterexample of length k to the invariant AGp
iff the following formula is satisfiable:

fi(Vo) Af (Vo, Vi)AFL (Ve Vo)A o (Vi 2, Vi) A (=poV=p1 V.. .V=Pk_1)

REVIEW: Automata-based approach

Automata-based approach:
» Translate LTL formula —¢ to Biichi automaton
» Build product with transition system
» Encode all paths that start in initial state and are k steps long
» Require that path contains loop with accepting state

k-2 k-1 k-1
f/(\70) N /\f_,(\7i, V,‘H) A \/ ((\7,':\7/()/\ \/fF(Vj))
i=0 i=0 j=i

Formula size: O(k - |TS] - 2I¢))

REVIEW: Fixpoint-based translation

Y1 A 1//Io()p A [W]O

» y1s = fi(vo) A ACE (Vi Vier)
> Yioop* loop constraint, ensures the existence of exactly one
loop

» [¢]o: fixpoint formula, ensures that LTL formula holds

Formula size: O(k - (|TS| + |¢|))

REVIEW: The Completeness Threshold

The bound k is increased incrementally until

» a counterexample is found, or
» the problem becomes intractable due to the complexity of the
SAT problem

» k reaches a precomputed threshold that guarantees that there
is no counterexample

— this threshold is called the completeness threshold CL.

The completeness threshold

» Computing CL is as hard as model checking

» ldea: Compute an overapproximation of CL based on the
graph structure

Basic notions:

» Diameter D: Longest shortest path between any two reachable
states

» Recurrence diameter RD: Longest loop-free path between any
two reachable states

» Initialized diameter D': Longest shortest path between some
initial state and some reachable state

» Initialized recurrence diameter RD': Longest loop-free path
between some initial state and some reachable state

Completeness thresholds

» For 0p properties, CT < D'.
» For & p properties, CT < RD' + 1.

» For general LTL properties, CT < min(RD' + 1,D' + D)
(where D, D', RD, RD' refer to the product graph)

Complexity

» k chosen as min(RD' + 1,D' + D) is exponential in number of
state variables

» Size of SAT instance is O(k - (|TS| + |¢]))
» SAT is solved in exponential time
= double exponential in number of state variables
(Compare: BDD-based model checking is single-exponential)
» In practice, bounded model checking is very successful
» Finds shallow errors fast
» In practice, RD, D are often not exponential

Implementation Relations

Implementation relations

» A binary relation on transition systems
» when does a transition systems correctly implement another?
» Important for system synthesis

» stepwise refinement of a system specification TS into an
“implementation” TS’

» Important for system analysis

» use the implementation relation as a means for abstraction
» replace TS E ¢ by TS' & ¢ where | TS'| < | TS| such that:

TSE@iff TS =g or TS E¢@ = TSE

= Focus on state-based bisimulation and simulation

» logical characterization: which logical formulas are preserved
by bisimulation?

Bisimulation equivalence

Let TS; = (S;, Actj, >, i, AP, L;), i=1, 2, be transition systems
A bisimulation for (757, TS;) is a binary relation R ¢ $; x S such
that:

1. VS] € I] 352 € I2. (51,52) €eR and VSZ € /2 351 € /1. (51,52) eR
2. forall states sy € Sy, 55 € S; with (s1,5,) € R it holds:
2.1 I_1 (51) = L2(52)
2.2 if s} € Post(sy) then there exists s} € Post(sy) with (s7,55) € R

2.3 if s, € Post(s;) then there exists s} € Post(s1) with (s7,s5) e R

TS; and TS, are bisimilar, denoted TS; ~ TS, if there exists a bisimulation for
(TS1,7S2)

Bisimulation equivalence

and

a1

q>

a1

q>

q;

can be completed to

can be completed to

a1
R

(%))

a1
R

aq>

Example (1)

{ beer } { sprite }

R = {(So, to), (S], t), (S2,t2), (Sz,t3), (S3,t4)}

is a bisimulation for (751, TS,) where AP = { pay, beer, sprite }

Example (2)

{ sprite } { beer} { sprite }

TS, ¢ TS5 for AP = { pay, beer, sprite }
But: { (SO) U()), (S'Ia U)) (S'I)UZ)) (521 U3), (SZa U4), (S3> U3), (S3,U4) }

is a bisimulation for (TSy, TS3) for AP = { pay, drink }

~ is an equivalence

For any transition systems TS, 7S¢, TS, and TS; over AP:
TS ~ TS (reflexivity)
TS1 ~ TS, implies TS, ~ TSq (symmetry)
TSy ~ TS; and TS, ~ TS3 implies TS; ~ TS3 (transitivity)

Bisimulation on paths

Whenever we have:

So
R
fo

this can be completed to

S0
R
fo

R R

53

53

t3

proof: by induction on index i of state s;

Bisimulation vs. trace equivalence

TS1 ~ TS, implies Traces(TS1) = Traces(TS;)

bisimilar transition systems thus satisfy the same LT properties!

Bisimulation on states

R € SxSisabisimulation on TS if for any (g1,q2) € R:
> L(g1) = L(q2)
» if g7 € Post(g;) then there exists an g5 € Post(q,) with (g},g5) € R
» if g, € Post(g,) then there exists an g} € Post(q,) with (g7,g5) € R

g1 and g, are bisimilar, g1 ~7s g2, if (g1, g2) € R for some bisimulation R for TS

g1 ~s G2 ifandonlyif TSy ~ TSg,

Coarsest bisimulation

~7s is an equivalence and the coarsest bisimulation for TS

Quotient transition system

For TS = (S, Act, -, 1,AP, L) and bisimulation ~5 € S x Son TS let
TS/~ = (S, {t},~",I''AP,L"), the quotient of TS under ~

where
» S =5)~= {[s].|seS}twith[s]. = {s'eS|s~xs"}
» -’ is defined by: L,S,,
[s]. = [s']-
c = {[s). |sel)
> LU'([s]-) =L(s)

The Bakery algorithm

Py

[loop forever do
noncritical
nm: yr=y+1
await (y, =0 v y; <y2)

c1: critical

y1:=0

Py

loop forever do
noncritical
ny: Y=y + 1

await (y; =0 vy, <y)
critical

y2:=0

Example path fragment

process P,

process P, |

=

NS

) | effect

n

1
m

n;
n;

Q

wwwwo—=—= =0

AP ONDNDNNMNDNOO

P; requests access to critical section
P, requests access to critical section
P, enters the critical section
P, leaves the critical section
P, requests access to critical section
P, enters the critical section
P, leaves the critical section
P, requests access to critical section
P, enters the critical section

Data abstraction

Function f maps a reachable state of TSg, onto an abstract one in nggi

Lets = (1,05, y1 = by, ¥y, = by) be a state of TS with £; € { n;, w;,¢; } and
b,‘EIN
Then:

(€1,03,7=0,y2=0) ifby=b,=0

(€1,02,y1 =0,y >0) ifb; =0and b, >0

f(s) = { ({1,051 >0,y,=0) ifb;>0andb, =0
(f 82,y1>y2>0) ifb1>b2>0
(€1,02,y, >y1 >0) ifby>b; >0

It follows: R = { (s,f(s)) | s € S } is a bisimulation for (TSgax, TSacs)

for any subset of AP = { noncrit;, wait;, crit; | i = 1,2}

Bisimulation quotient

wi

Y2>y1>0

2K}
V1>y2>0

w:

aw,
y2>51>0

TSGor = TSgak/ ~ for AP={crity,crit, }

Remarks

» In this example, data abstraction yields a bisimulation relation

» (typically, only a simulation relation is obtained, more later)
b: : .
» TSgox E ¢ with, e.g.,:
» O(=crity v —crit;) and
(GFwait; = GFcrity) A (GFwait, = GFcrity)

» Since nggi ~ TSgak, it follows TSpq = ¢
Note: Traces(TS) = Traces(TSpax)

v

REVIEW: Syntax of CTL*

CTL* state-formulas are formed according to:
O = true | a | O A Oy ‘ -O | Eo

where a € AP and ¢ is a path-formula

CTL* path-formulas are formed according to the grammar:

¢r==®\<m A¢z\ﬂ<p\xfp\<p1U¢z

where @ is a state-formula, and ¢, ¢1 and ¢, are path-formulas

CTL* equivalence
States g1 and g in TS (over AP) are CTL*-equivalent:
G1 =+ 2 ifandonlyif (g1 = @ iff g F @)
for all CTL* state formulas over AP

TS1 = TS, ifandonlyif (TS; E @ iff TS, = @)

for any sublogic of CTL*, logical equivalence is defined analogously

Bisimulation vs. CTL* and CTL equivalence

Let TS be a finite state graph and s, s’ states in TS

The following statements are equivalent:
(1) s~ s

(2) sands’ are CTL-equivalent, i.e, s =, s’

(3) sand s’ are CTL*-equivalent, i.e., s =+

thisis proveninthreesteps:i=cn € ~ S =g+ S =1

important: equivalence is also obtained for any sub-logic containing -, A and X

The importance of this result

v

CTL and CTL* equivalence coincide
» despite the fact that CTL* is more expressive than CTL
Bisimilar transition systems preserve the same CTL* formulas
» and thus the same LTL formulas (and LT properties)

» Non-bisimilarity can be shown by a single CTL (or CTL*)
formula

» TS; E ® and TS, i @ implies TSy ¢ TS,
» You even do not need to use an until-operator!
To check TS @, it suffices to check TS/ ~= @

v

v

