Verification

Lecture 15

Bernd Finkbeiner
Peter Faymonville
Michael Gerke

Olm UNIVERSITAT
m]llwll“" DES

UL SAARLANDES

REVIEW: Bisimulation equivalence

Let TS; = (S;, Actj, —j, i, AP, L;), i=1, 2, be transition systems
A bisimulation for (757, TS;) is a binary relation R ¢ $; x S such
that:

1. VS] € I] 352 € I2. (51,52) €eR and VSZ € /2 351 € /1. (51,52) eR
2. forall states sy € Sy, 55 € S; with (s1,5,) € R it holds:
2.1 Li(s1) = La(s2)
2.2 if s} € Post(sy) then there exists s} € Post(sy) with (s7,55) € R

2.3 if s, € Post(s;) then there exists s} € Post(s1) with (s7,s5) e R

TS; and TS, are bisimilar, denoted TS; ~ TS, if there exists a bisimulation for
(TS1,7S2)

REVIEW: Bisimulation on states

R € SxSisabisimulation on TS if for any (g1,q2) € R:
> L(g1) = L(q2)
» if g7 € Post(g;) then there exists an g5 € Post(q,) with (g},g5) € R
» if g, € Post(g,) then there exists an g} € Post(q,) with (g},g5) € R

g1 and g, are bisimilar, g1 ~7s g2, if (g1, g2) € R for some bisimulation R for TS

g1 ~s G2 ifandonlyif TSy ~ TSg,

REVIEW: CTL* equivalence

States g1 and g in TS (over AP) are CTL*-equivalent:
G1 =+ 2 ifandonlyif (g1 = @ iff g F @)
for all CTL* state formulas over AP

TS1 = TS, ifandonlyif (TS; E @ iff TS, = @)

for any sublogic of CTL*, logical equivalence is defined analogously

Bisimulation vs. CTL* and CTL equivalence

Let TS be a finite transition system and s, s’ states in TS

The following statements are equivalent:
(1) s~ s

(2) sands’ are CTL-equivalent,i.e, s = s’

(3) sand s’ are CTL*-equivalent, i.e., s =+

thisis proveninthreesteps:i=cn € ~ S =+ S =1

important: equivalence is also obtained for any sub-logic containing -, A and X

REVIEW: The importance of this result

v

CTL and CTL* equivalence coincide
» despite the fact that CTL* is more expressive than CTL
Bisimilar transition systems preserve the same CTL* formulas
» and thus the same LTL formulas (and LT properties)

» Non-bisimilarity can be shown by a single CTL (or CTL*)
formula

» TS; E ® and TS, i @ implies TSy ¢ TS,
» You even do not need to use an until-operator!
To check TS = @, it suffices to check TS/ ~= @

v

v

Computing bisimulation quotients

A partition IT = {By, ..., B¢} of Sis a set of nonempty (B; + @) and
pairwise disjoint blocks B; that decompose S (S = i1« Bi).

A partition defines an equivalence relation ~

((9,9')e ~< IB; € 11.q,q" € By).

Likewise, an equivalence relation ~ defines a partition II = S/~.
A nonempty union C = 4 B; of blocks is called a superblock.

A block B; of a partition IT is called stable w.r.t. a set B if either
Bi n Pre(B) = @, or B; ¢ Pre(B).

(Pre(B) = {q € S| Post(q) N B + @})
A partition IT is called stable w.r.t. a set Biif all blocks of IT are.

Lemma 1. A partition IT with consistently labeled blocks is stable
with respect to all of its (super)blocks if, and only if, it defines a
bisimulation relation.

Partition refinement

For two partitions IT = {B1,..., B¢} and IT" = {By, ..., B/} of S, we
say that IT is finer than I1" iff every block of IT" is a superblock of II.

For a given partition IT = {By, ..., Bk}, we call a (super)block C of I1
a splitter of a block B; / the partition IT if B; / IT is not stable w.r.t. C.

Refine(B;, C) denotes {B;} if B; is stable w.r.t. C, and
{BinPre(C),B;\ Pre(C)} if Cis a splitter of C.

Refine(I1, C) = ;-1 kRefine(B;, C).

.....

Lemma 2. Refine(II, C) is finer than II.

An algorithm for bisimulation quotienting

Input: Transition system (S, Act, -, [, AP, L)
Output: Bisimulation quotient

1. I =S/~pp (99")e~ar = L(q) = L(q")

2. while some block B € IT is a splitter of IT loop invariant: IT is coarser

2.1 pick a block B that is a splitter of IT than S/~7s
2.2 II = Refine(IL, B)

3. return II

Example

1. I =5/~ap (9.9")e~pp = L(q) = L(q")
2. while some block B € IT is a splitter of IT loop invariant: IT is coarser than S/~7s
2.1 pick a block B that is a splitter of IT
2.2 TI = Refine(Il, B)
3. returnI1

AN
NV

Example

1. T =S/~ap (9.9")e~pp < L(a) = L(q")
2. while some block B € IT is a splitter of IT loop invariant: IT is coarser than S/~7s
2.1 pick a block B that is a splitter of IT
2.2 TI = Refine(Il, B)
3. returnI1

AW
NNy

Example

1. T =S/~ap (9.9")e~pp < L(a) = L(q")
2. while some block B € IT is a splitter of IT loop invariant: IT is coarser than S/~7s
2.1 pick a block B that is a splitter of IT
2.2 TI = Refine(Il, B)
3. returnI1

Example

1. T =S/~ap (9.9")e~pp < L(a) = L(q")
2. while some block B € IT is a splitter of IT loop invariant: IT is coarser than S/~7s
2.1 pick a block B that is a splitter of IT
2.2 TI = Refine(Il, B)
3. returnI1

NV

Example

1. I =5/~ap (9.9")e~pp = L(q) = L(q")
2. while some block B € IT is a splitter of IT loop invariant: IT is coarser than S/~7s
2.1 pick a block B that is a splitter of IT
2.2 TI = Refine(Il, B)
3. returnI1

NV

Correctness and termination

1. II = S/NAP (9,0)e~ap <= L(q) = L(q")
2. while some block B € IT is a splitter of IT loop invariant: IT is coarser than S/~7s
2.1 pick a block B that is a splitter of IT
2.2 II = Refine(IL, B)

3. return Il

Lemma 3. The algorithm terminates.

Lemma 4. The loop invariant holds initially.

Lemma 5. The loop invariant is preserved.

Theorem. The algorithm returns the quotient S/~7s of the coarsest
bisimulation ~7s.

Simulation order

Let TS; = (Si, Act, —i, i, AP, L) , i=1, 2, be two transition systems over
AP.
A simulation for (TS1,TS;) is a binary relation R € S1 x S, such that:

1. Vgrelh3g2€h.(q1,92) € R
2. forall (g1,92) € R it holds:
2.1 Li(q1) = La(q2)

2.2 if g} € Post(qr)
then there exists g5 € Post(q2) with (g7,g5) € R

TS, < TS, iff there exists a simulation R for (TS, TS;)

Simulation order

!/

a1 - q
R

q>

but not necessarily:

a1
R

@ - q

can be completed to

can be completed to

a1

(%))

a1

(%))

The use of simulations

» As a notion of correctness for refinement
» TS < TS' whenever TS is obtained by deleting transitions from
TS’
» e.g., nondeterminism is resolved by choosing one alternative
» As a notion of correctness for abstraction

» abstract from concrete values of certain program or control
variables

» use instead abstract values or ignore their value completely

» used in e.g., software model checking of C and Java

» formalized by an abstraction function f that maps s onto its
abstraction f(s)

Abstraction function

» f:S — Sisan abstraction function if
f(q)=f(a") = L(@)=L(d)
> SA is a set of concrete states and S a set of abstract states, i.e.
SR
» Abstraction functions are useful for:
» data abstraction: abstract from values of program or control
variables

f : concrete data domain — abstract data domain

» predicate abstraction: use predicates over the program
variables

f : state — valuations of the predicates

» localization reduction: partition program variables into visible
and invisible

f : all variables — visible variables

Abstract transition system

For TS = (S, Act,—, 1, AP, L) and abstraction function f : § — S let:

TS; = (?,Act, -1, AP, L), the abstraction of TS under f

where
o !/
» —yis defined by: 5—5,
f(s) ¢ £(s")

Cl={f(s) |sel}
» Le(f(s)) = L(s); fors e S\ £(S), labeling is undefined

’ R ={(s,f(s)) |seS}isasimulation for (TS, TSf)‘

Simulation order on paths

Whenever we have:
SO & S — S — S3 — S4......
R
to

this can be completed to

So & S1 — S — S3 — Sp......
R R R R R

toh - tH —- tH — t3 —= ftg......

the proof of this fact is by induction on the length of the path

Simulation is a pre-order

<is a preorder, i.e., reflexive and transitive

Simulation equivalence

TSy and TS; are simulation equivalent, denoted TSy ~ TS,,
if TS1 < TS, and TS, < TS,

Similar but not bisimilar

oo
o}

TSteft = Tsright but TSjef 7L TSright

Simulation order on states

A simulation for TS = (S, Act, >, 1,AP, L) is a binary relation R ¢ Sx S
such that for all (g1,92) € R:

1. L(q1) = L(q2)
2. if g} € Post(qy)
then there exists an g € Post(g,) with (q7,95) € R

g1 is simulated by g,, denoted by g1 <75 g2,
if there exists a simulation R for TSwith (g1,92) € R

G1 <15 q2 ifandonlyif TS; < TSq,

g1 ~5 q2 ifandonlyif g1 <5 gzand gy <5 G

Simulation quotient

For TS = (S, Act, »,1,AP, L) and simulation equivalence ~ € S x S let
TS/~= (S, {7},-',I',AP,L"), the quotient of TS under ~

where
» §=5/~= {[s].|seS}tandl' ={[s].|sel}
s

» -’ is defined by: _
; T RPN

> L([s]=) = L(s)

lemma: TS ~ TS/~ ; proof not straightforward!

Universal fragment of CTL*

VCTL* state-formulas are formed according to:
@:::true‘false‘a‘ ﬁa‘dh A®2’®1V®2‘A(p
where a € AP and ¢ is a path-formula
VCTL* path-formulas are formed according to:
<P::=<D\X<p\ ¢1A<Pz|sv1V<Pz|¢1Usvz|</)1R<Pz

where @ is a state-formula, and ¢, ¢1 and ¢, are path-formulas

Universal CTL* contains LTL

For every LTL formula there exists an equivalent VCTL* formula

Proof: Bring LTL formula into positive normal form (PNF).

Simulation order and VCTL*

Let TS be a finite transition system (without terminal states) and g, g’ states in TS.
The following statements are equivalent:
(1) q=rs4q
(2) for all VCTL*-formulas ®: g’ = ® implies g = ®

(3) for all VCTL-formulas ®: ¢’ = ® implies g = ®

proof is carried out in three steps: (1) = (2) = (3) = (1)

Existential fragment of CTL*

JCTL* state-formulas are formed according to:
d):::true|false|a| ﬁa|<D1 A@z‘dh v<D2|3(p

where a € AP and ¢ is a path-formula

JCTL* path-formulas are formed according to:

¢r==®\x¢\ ¢1A¢z]¢1V¢z]¢1U¢z\¢1R¢z

where @ is a state-formula, and ¢, ¢1 and ¢, are path-formulas

Simulation order and 3CTL*

Let TS be a finite transition system (without terminal states) and g, g’ states in TS.
The following statements are equivalent:
(M) g =< q
(2) for all 3ICTL*-formulas ®: g = ® implies g’ = ®
(3) for all 3CTL-formulas ®: g £ @ implies g’ & ®

~, VCTL", and 3CTL" equivalence

For finite transition system TS without terminal states:

S = SyCTLY T TwCTL T S3CTLr T TaCaL

Skeleton for simulation preorder checking

Require: finite transition system TS = (S, Act, >, 1, AP, L) over AP
Ensure: simulation order <

R:={(g1.92) | L(q1) = L(q2) };

while R is not a simulation do
choose (g1,92) € R
suchthat (g1,q}) € E, butforall g5 with (g2,95) €E, (q7.95) ¢ R;
R:=R~{(q1.92) }
end while
return R

The number of iterations is bounded above by |S|?, since:

QxQ 2Ry 27%1 2732 giRn =<

