Verification

Lecture 16

Bernd Finkbeiner
Peter Faymonville
Michael Gerke

Olm UNIVERSITAT
m]llwll“" DES

UL SAARLANDES

REVIEW: Bisimulation on states

R € SxSisabisimulation on TS if for any (g1,q2) € R:
> L(g1) = L(q2)
» if g7 € Post(g;) then there exists an g5 € Post(q,) with (g},g5) € R
» if g, € Post(g,) then there exists an g} € Post(q,) with (g7,g5) € R

g1 and g, are bisimilar, g1 ~7s g2, if (g1, g2) € R for some bisimulation R for TS

g1 ~s G2 ifandonlyif TSy ~ TSg,

Bisimulation vs. CTL* and CTL equivalence

Let TS be a finite transition system and s, s’ states in TS

The following statements are equivalent:
(1) s~ s

(2) sands’ are CTL-equivalent,i.e, s = s’

(3) sand s’ are CTL*-equivalent, i.e., s =+

thisis proveninthreesteps:i=cn € ~ S =+ S =1

important: equivalence is also obtained for any sub-logic containing -, A and X

REVIEW: An algorithm for bisimulation quotienting

Input: Transition system (S, Act, -, [, AP, L)
Output: Bisimulation quotient

1. I =S/~pp (99")e~ar = L(q) = L(q")

2. while some block B € IT is a splitter of IT loop invariant: IT is coarser

2.1 pick a block B that is a splitter of IT than S/~7s
2.2 II = Refine(IL, B)

3. return II

REVIEW: Simulation order on states

A simulation for TS = (S, Act, >, 1,AP, L) is a binary relation R ¢ Sx§
such that for all (g1,92) € R:

1. L(q1) = L(q2)
2. if g} € Post(qy)
then there exists an g € Post(g,) with (g7,95) € R

g1 is simulated by g,, denoted by g1 <75 g2,
if there exists a simulation R for TSwith (g1,92) € R

G1 <15 q2 ifandonlyif TS; < TSq,

g1 ~5 q2 ifandonlyif g1 <5 gaand gy <5 G

Similar but not bisimilar

oo
o}

TSteft = Tsright but TSjef 7L TSright

REVIEW: ~, VCTL", and 3CTL" equivalence

For finite transition system TS without terminal states:

S = SyCTLY T TwCTL T S3CTLr T TaCuL

REVIEW: Skeleton for simulation preorder checking

Require: finite transition system TS = (S, Act, >, 1, AP, L) over AP
Ensure: simulation order <

R={(q1,92) | L(q1) = L(q2) }:

while R is not a simulation do
choose (g1,G2) € R
suchthat (g1,q}) € E, butforall g5 with (g2,g5) €E, (q7.95) ¢ R;
R:=R~{(q1,92) }
end while
return R

The number of iterations is bounded above by |S|?, since:

QxQ 2Ry 27%1 2732 giRn =<

Checking trace equivalence

Let TS; and TS, be finite transition systems over AP. Then:
1. The problem whether

Tracesg, (TS1) = Tracesf;,(TS;) is PSPACE-complete
2. The problem whether

Traces(TSy) = Traces(TS;) is PSPACE-complete

Overview implementation relations

minimization

bisimulation simulation trace
equivalence order equivalence
preservation of CTL” VCTL*/3CTL” LTL
temporal-logical CTL VCTL/3CTL
properties
checking PTIME PTIME PSPACE-
equivalence complete
graph PTIME PTIME -

Motivation: Stutter Equivalence

» Bisimulation, simulation and trace equivalence are strong
» each transition s — s’ must be matched by a transition of a
related state
» for comparing models at different abstraction levels, this is too
fine
» consider e.g., modeling an abstract action by a sequence of
concrete actions

» ldea: allow for sequences of “invisible” actions
» each transition s — s’ must be matched by a path fragment of a
related state
» matching means: ending in a state related to s’, and all previous
states invisible
» Abstraction of such internal computations yields coarser
quotients
» but: what kind of properties are preserved?
» but: can such quotients still be obtained efficiently?
» but: how to treat infinite internal computations?

Stuttering equivalence

» s — s’ in transition system TS is a stutter step if L(s) = L(s")
» stutter steps do not affect the state labels of successor states
» Paths 777 and 73 are stuttering equivalent, denoted m 2 m:

» if there exists an infinite sequence ApA A, ... with A; € AP and
» natural numbers ng, ny,ny, ..., mg,my,my,... > 1such that:

trace(m) = Ao...Ao A1 ...A1 Az...Az...
—_ — e —
no-times ni-times n,-times
Ags..., A0 Ar.. AT Ar. A
———— —— —, —
mo-times m;-times m,-times

trace(m,)

1 2 715 if their traces only differ in their stutter steps
i.e., if both their traces are of the form AJATA; ... for A; ¢ AP

Stutter trace equivalence

Transition systems TS; over AP, i=1, 2, are stutter-trace equivalent:

TS;2TS, ifandonlyif TS;cTS;andTS; © TS,
where C is defined by:

TS1cTS, iff Voy € Traces(TS1) (303 € Traces(TS;). 012 07)

clearly: Traces(TSy) = Traces(TS,) implies TS; 2 TS, but not always the
reverse

Example

The X operator

Stuttering equivalence does not preserve the validity of
next-formulas:

01 =ABBB...and o, =AAABBBB...forA,BCcAPand A+ B

Thenforbe B\ A:

0120, but o1=Xb and oy ¥ Xb.

= a logical characterization of = can only be obtained by omitting X

in fact, it turns out that this is the only modal operator that is not
preserved by !

Stutter trace and LTL , equivalence

For traces o; and o, over 24P it holds:
o120y = (o1 =¢ifandonlyifo; = @)

forany LTL.x formula ¢ over AP

LTL.x denotes the class of LTL formulas without the next step operator X

Stutter trace and LTL , equivalence

For transition systems TSy, TS, over AP (without terminal states):
(@) TS =TS, implies TS, =LTL, TS,

(b) if TS1 =TS, then for any LTL.x formula ¢: TS, = ¢ implies TS = ¢

Stutter insensitivity

» LT property Pis stutter-insensitive if [c]~ ¢ P,forany o € P
» Pis stutter insensitive if it is closed under stutter equivalence

» For any stutter-insensitive LT property P:

TS12TS; implies TS =P iffTS; =P

v

Moreover: TS1ETS; and TS, E P implies TS, =P
For any LTL.x formula ¢, LT property Words(¢) is stutter
insensitive

» but: some stutter insensitive LT properties cannot be expressed
in LTL.x
» for LTL formula ¢ with Words(¢) stutter insensitive:

v

there exists y € LTL.x suchthaty =11 ¢

Stutter bisimulation

ST RS

$

$1

(with s1 #57)

can be completed to

51

51

51

51

51

R

Q

Q

24

Stutter bisimulation

Let TS = (S, Act, >, 1,AP, L) be a transition systemand R c Sx S
R is a stutter-bisimulation for TS if for all (s1,5,) € R:

1. L(s7) =L(s2)

2. if s} € Post(s1) with (s1,57) ¢ R, then there exists a finite path
fragment sy uy ... uy s, withn > 0and (s;,u;) € R and
(s1,55) €R

3. if s, € Post(sy) with (s2,55) ¢ R, then there exists a finite path
fragment sy vy ... vy s} withn > 0and (s1,v;) € R and
(s).55) € R

51,57 are stutter-bisimulation equivalent, denoted s =15 s, if there exists a stutter
bisimulation R for TS with (s1,52) € R

Example

(n1,n2,y=1)

78

(w1, wa,y=1)

‘o

‘R inducing the following partitioning of the state space is a stutter
bisimulation:

{{{n1, n2), (n1, wa), (w1, ma), (wr, wa) }, {{c1,ma), (e, wa) b, {{n1,), (wi, o) }}

In fact, this is the coarsest stutter bisimulation, i.e., R equals ~s

Stutter-bisimilar transition systems

Let TS; = (Sj, Actj, =, I;, AP, L;), i = 1, 2, be transition systems over AP
A stutter bisimulation for (TSq, TS;) is a binary relation R € S; x S,
such that:

1. R and R~" are stutter-bisimulations for TS; & TS,, and

2. Vsyelh.(3s3 € h.(s1,52) € R) and
Vsy € Iz. (351 € I]. (S1,Sz) € R)

TSy and TS, are stutter-bisimulation equivalent (stutter-bisimilar, for
short), denoted TS; ~ TS,, if there exists a stutter bisimulation for (TS, TS,)

Stutter bisimulation quotient

For TS = (S, Act, —,1,AP, L) and stutter bisimulation ~7¢ € S x S let
TS/~ = (8", {1}, ", I, AP,L"), be the quotient of TS under ~s

where
» §"=5/ms= {[q]n | geSTwith [g]e, = {q €S| grsq’}
> I'={[a]s [qel}

» -’ is defined by:
> L'([g]~) = L(9)

s-%s'ands# s’
[s]« = [s']

note that (a) no self-loops occur in TS/ ~s and (b) TS ~s TS/~

Stutter trace and stutter bisimulation

For transition systems TS; and TS, over AP:
» Known fact: TSy ~ TS, implies Traces(TS,) = Traces(TS;)
» Butnot: TSy ~ TS, implies TSy 2TS,!
> So:
» bisimilar transition systems are trace equivalent
» but stutter-bisimilar transition systems are not always stutter
trace-equivalent!
» Why? Stutter paths!
» stutter bisimulation does not impose any constraint on such

paths
» but 2 requires the existence of a stuttering equivalent trace

Stutter trace and stutter bisimulation are incomparable

!

/\ T

§I an

12

Stutter bisimulation does not preserve LTL

@ {a} @ {a}

stutter-trace inclusion:
TS, TS, iff Vo € Traces(TSy) 30, € Traces(TS,). o120,

stutter-trace equivalence:
TS =2 TS, iff TS, TS, and TS,ETS,

stutter-bisimulation equivalence:
TS; = TS, iff there exists a stutter-bisimulation for (757, TS;)

stutter-bisimulation equivalence with divergence:
TS, ~V TS, iff there exists a divergence-sensitive
stutter bisimulation for (75, TS,)

Divergence sensitivity

v

Stutter paths are paths that only consist of stutter steps

» no restrictions are imposed on such paths by stutter
bisimulation
= stutter trace-equivalence (%) and stutter bisimulation (=) are
incomparable
= =~ and LTL.x equivalence are incomparable

v

Stutter paths diverge: they never leave an equivalence class

» Remedy: only relate divergent states or non-divergent states
» divergent state = a state that has a stutter path
= relate states only if they either both have stutter paths or none
of them
This yields divergence-sensitive stutter bisimulation (~")
= ~9 s strictly finer than = (and)
= «~9 and CTL*, equivalence coincide

v

Divergence sensitivity

Let TS be a transition system and R an equivalence relationon S
» sis R-divergent if there exists an infinite path fragment

$5152... € Paths(s) such that (s,s;) € R forallj> 0

» sis R-divergent if there is an infinite path starting in s that only
visits [s]r

» R is divergence sensitive if for any (s1,5,) € R:

sq1 is R-divergent implies s, is R-divergent

» R is divergence-sensitive if in any [s]x either all or none of the
states are R-divergent

Divergence-sensitive stutter bisimulation

$1, 52 in TS are divergent stutter-bisimilar, denoted s, m‘ﬂs"" Sy, if:

3 divergent-sensitive stutter bisimulation R on TS such that (s1,52) € R

~dV is an equivalence, the coarsest divergence-sensitive stutter

bisimulation for TS

and the union of all divergence-sensitive stutter bisimulations for TS

Quotient transition system under ~?"

For TS = (S, Act, —, 1, AP, L) and divergent-sensitive stutter
bisimulation ~® c § x S,

TS/~ = (S, {7},-',I', AP, L") is the quotient of TS under ~9"

where
» §',I"and L’ are defined as usual (for eq. classes [s]4;, under ~4")
» -’ is defined by:

%5 A s g sis ~¥V-divergent

N o and N]
[slav — g [S'laiv [slav — giv [Slaiv

note that TS ~@ TS/ ~d"

Example

@ {a} {a} {a}

9 {a}

TS/ s

Ts/~d¥

~9V on paths

For infinite path fragments 7; = 50 51,52,...,i=1,2,inTS:
g Nf_!v 0
if and only if there exists an infinite sequence of indexes
O=jo<j1<ja<... and O=ko<k;<ky<...
with:

Sj wdlv sk forallj_q <j<jrand k1 <k <k withr=1,2,....

Comparing paths by ~9Vv

Let TS = (S, Act,—>,1,AP,L), 51,55 € S. Then:

s1 @ s, implies Vm € Paths(sy). (3m, € Paths(sy). my ~3)

Stutter equivalence versus ~@"

Let TS1 and TS, be transition systems over AP. Then:

7S, ~® TS, implies TS; = TS,
~— N—

stutter-bisimulation equivalence stutter-trace equivalence
with divergence

whereas the reverse implication does not hold in general

CTL”, equivalence and ~%v

For finite transition systems TS without terminal states, and s;, s; in TS:

S1 %(Tjsiv S2 iff 51 ECTLfX S2 iff S ECTL\X $2

divergent-sensitive stutter bisimulation coincides with CTL.x and CTLY,
equivalence

Comparative semantics

CTL* equivalence

bisimulation equivalence
TS ~ TS,

_—

R —

LTL equivalence

trace equivalence
Traces(T;) = Traces(TS,)

divergence sensitive _____ stutter trace-equivalence
stutter bisimulation equivalence

TS, =4V TS,

CTL?, equivalence

_—

TS, =TS,

LTL.x equivalence

R —

trace inclusion
Traces(T;) < Traces(TS,)

stutter trace inclusion
TS, TS,

Timed Automata

Time-critical systems

» Timing issues are of crucial importance for many systems, e.g.,
» landing gear controller of an airplane, railway crossing, robot

controllers
» steel production controllers, communication protocols.......

» In time-critical systems correctness depends on:
» not only on the logical result of the computation, but
» also on the time at which the results are produced

» How to model timing issues:
» discrete-time or continuous-time?

A discrete time domain

» Time has a discrete nature, i.e., time is advanced by discrete
steps

» time is modelled by naturals; actions can only happen at
natural time values

» a specific tick action is used to model the advance of one time
unit

= delay between any two events is always a multiple of the

minimal delay of one time unit

» Properties can be expressed in traditional temporal logic

» the next-operator “measures” time

» two time units after being red, the light is green:
G (red = XXgreen)

» within two time units after red, the light is green:

G(red = (green v Xgreen v XXgreen))

» Main application area: synchronous systems, e.g., hardware

A discrete-time coffee machine

ﬂ\idle

coffee-ordered

coffee-prepared
tick
tick

tea-ordered
tick
tick
tick

tea-prepare
tick
tick
tick

A discrete time domain

» Main advantage: conceptual simplicity
» state graphs systems equipped with a “tick” transition suffice
» standard temporal logics can be used
= traditional model-checking algorithms suffice
» Main limitations:

» (minimal) delay between any pair of actions is a multiple of an a
priori fixed minimal delay
= difficult (or impossible) to determine this in practice
= limits modeling accuracy

= inadequate for asynchronous systems. e.g., distributed systems

A continuous time-domain

If time is continuous, state changes can happen at any point in time:

within four
OM. is modeled by
t=0 t=0.74 t=2 =3 t=nm t=4
o i
t=0 t=0.74 t=2 t=4

but: infinitely many states and infinite branching

How to check a property like:

once in a yellow state, eventually the system is in a blue state
within 7 time-units?

Approach

» Restrict expressivity of the property language
» e.g. only allow reference to natural time units

== Timed CTL
» Model timed systems symbolically rather than explicitly
= Timed Automata
» Consider a finite quotient of the infinite state space
on-demand
» i.e., using an equivalence that depends on the property and the
timed automaton

== Region Automata

What is a timed automaton?

edge
location |
\ N q
Q

» a program graph with locations and edges

» alocation is labeled with the valid atomic propositions

» taking an edge is instantaneous, i.e, consumes no time

What is a timed automaton?

guard

» equipped with real-valued clocks x,y, z, . ..

» clocks advance implicitly, all at the same speed
» logical constraints on clocks can be used as guards of actions

What is a timed automaton?

clock reset X>2

x
[\
N

~
x
—

» clocks can be reset when taking an edge

» assumption:
all clocks are zero when entering the initial location initially

What is a timed automaton?

invariant

~
%
N

» guards indicate when an edge may be taken
» alocation invariant specifies the amount of time that may be
spent in a location

» before a location invariant becomes invalid, an edge must be
taken

A real-time coffee machine

coffee-prepared CB tea-prepare

tea-ordered

x<15

x=15

{x}

x<15

x=15

{x}

Q

Clock constraints

» Clock constraints over set C of clocks are defined by:

g:= true|x<c‘xfy<c‘x£c‘xfygc ‘ -g | gnag

» where c e Nand clocks x,y € C
» rational constants would do; neither reals nor addition of clocks!
» let CC(C) denote the set of clock constraints over C
» shorthands: x > cdenotes - (x < c) and x € [¢y,¢;) or
G <x<cydenotes —(x<¢) & (x<¢c)
» Atomic clock constraints do not contain true, - and A
» let ACC(C) denote the set of atomic clock constraints over C

» Simplification: In the following, we assume constraints are
diagonal-free, i.e., do neither containx —y < cnorx -y <c.

Timed automaton

A timed automaton is a tuple

TA = (Loc,Act, C,«a,Loco,inv,AP,L) where:

» Locis afinite set of locations.

» Locg < Locis a set of initial locations

» Cis afinite set of clocks

» L:Loc — 2" is a labeling function for the locations

~ € Loc x CC(C) x Act x 2¢ x Loc is a transition relation, and

v

v

inv : Loc - CC(C) is an invariant-assignment function

Intuitive interpretation

» Edge ¢ 2%, ¢ means:

» action «a is enabled once guard g holds
» when moving from location £ to ¢/, any clock in C" will be reset
to zero

» inv({) constrains the amount of time that may be spent in
location ¢

» the location ¢ must be left before the invariant inv({) becomes
invalid

Guards versus location invariants

The effect of a lowerbound guard:

P

value

of x :
X2 I
—())

Guards versus location invariants

The effect of a lowerbound and upperbound guard:

P

value

of x 3 :
2<x<3 20— R S e
—())7 -/

Guards versus location invariants

The effect of a guard and an invariant:

P

valee |

ofx 3 3 :
C x22 2 (——— -
x<3 : 3 3

