
Verification

Lecture 17

Bernd Finkbeiner

Peter Faymonville

Michael Gerke



REVIEW: Timed automaton

A timed automaton is a tuple

TA = (Loc,Act, C,↝, Loc0, inv,AP, L) where:

▸ Loc is a finite set of locations.

▸ Loc0 ⊆ Loc is a set of initial locations

▸ C is a finite set of clocks

▸ L ∶ Loc→ 2AP is a labeling function for the locations

▸ ↝ ⊆ Loc × CC(C) × Act × 2C × Loc is a transition relation, and

▸ inv ∶ Loc→ CC(C) is an invariant-assignment function



REVIEW: Clock constraints

▸ Clock constraints over set C of clocks are defined by:

g ∶∶= true ∣ x < c ∣ x − y < c ∣ x ≤ c ∣ x − y ≤ c ∣ ¬g ∣ g ∧ g

▸ where c ∈ N and clocks x, y ∈ C
▸ rational constants would do; neither reals nor addition of clocks!
▸ let CC(C) denote the set of clock constraints over C
▸ shorthands: x ≥ c denotes ¬(x < c) and x ∈ [c1 , c2) or
c1 ≤ x < c2 denotes ¬(x < c1) ∧ (x < c2)

▸ Atomic clock constraints do not contain true, ¬ and ∧
▸ let ACC(C) denote the set of atomic clock constraints over C

▸ Simplification: In the following, we assume constraints are

diagonal-free, i.e., do neither contain x − y ≤ c nor x − y < c.



REVIEW: Guards versus location invariants

The effect of a lowerbound guard:

2

4

time

2 4 6 8 10

value
of x

x ≥ 2
{ x }



REVIEW: Guards versus location invariants

The effect of a lowerbound and upperbound guard:

2

4

time

2 4 6 8 10

value
of x 3

2 ≤ x ≤ 3
{ x }



REVIEW: Guards versus location invariants

The effect of a guard and an invariant:

2

4

time

2 4 6 8 10

value
of x

x ≥ 2
{ x }

x ≤ 3

3



Arbitrary clock differences

clock x

clock y

2

4

time

2 4 6 8 10

clock
value

y ≥ 2

{ y }

x ≥ 2
{ x }



Composing timed automata

Let TAi = (Loci ,Acti , Ci ,↝i , Loc0,i , invi ,AP, Li) and H an action-set

TA1 ∣∣H TA2 = (Loc,Act1 ∪ Act2, C,↝, Loc0, inv,AP, L) where:

▸ Loc = Loc1 × Loc2 and Loc0 = Loc0,1 × Loc0,2 and C = C1 ∪ C2

▸ inv(⟨ℓ1, ℓ2⟩) = inv1(ℓ1) ∧ inv2(ℓ2) and
L(⟨ℓ1, ℓ2⟩) = L1(ℓ1) ∪ L2(ℓ2)

▸ ↝ is defined by the inference rules:

for α ∈ H
ℓ1

g1∶α ,D1↝1 ℓ
′

1 ∧ ℓ2
g2∶α ,D2↝2 ℓ

′

2

⟨ℓ1 , ℓ2⟩ g1∧g2∶α ,D1∪D2↝ ⟨ℓ′1 , ℓ′2⟩

for α /∈ H: ℓ1
g∶α ,D
↝1 ℓ

′

1

⟨ℓ1 , ℓ2⟩ g∶α ,D↝ ⟨ℓ′1 , ℓ2⟩
and

ℓ2
g∶α ,D
↝2 ℓ

′

2

⟨ℓ1 , ℓ2⟩ g∶α ,D↝ ⟨ℓ1 , ℓ′2⟩



Clock valuations

▸ A clock valuation v for set C of clocks is a function v ∶ C Ð→ R≥0

▸ assigning to each clock x ∈ C its current value v(x)
▸ Clock valuation v+d for d ∈ R≥0 is defined by:

▸ (v+d)(x) = v(x) + d for all clocks x ∈ C
▸ Clock valuation reset x in v for clock x is defined by:

(reset x in v)(y) = { v(y) if y ≠ x

0 if y = x.

▸ reset x in (reset y in v) is abbreviated by reset x, y in v



Timed automaton semantics

For timed automaton TA = (Loc,Act, C,↝, Loc0, inv,AP, L):
Transition system TS(TA) = (S,Act′,→, I,AP′, L′)where:
▸ S = Loc × val(C), state s = ⟨ℓ, v⟩ for location ℓ and clock

valuation v

▸ Act′ = Act ∪ R≥0, (discrete) actions and time passage actions

▸ I = { ⟨ℓ0, v0⟩ ∣ ℓ0 ∈ Loc0 ∧ v0(x) = 0 for all x ∈ C }
▸ AP′ = AP ∪ ACC(C)
▸ L′(⟨ℓ, v⟩) = L(ℓ) ∪ {g ∈ ACC(C) ∣ v ⊧ g}
▸ → is the transition relation defined on the next slide



Timed automaton semantics

The transition relation −→ is defined by the following two rules:

▸ Discrete transition: ⟨ℓ, v⟩ d−−→ ⟨ℓ′, v′⟩ if all following conditions
hold:

▸ there is an edge labeled (g ∶ α,D) from location ℓ to ℓ
′

such that:
▸ g is satisfied by v, i.e., v ⊧ g
▸ v′ = v with all clocks in D reset to 0, i.e., v′ = reset D in v
▸ v′ fulfills the invariant of location ℓ

′

, i.e., v′ ⊧ inv(ℓ′)
▸ Delay transition: ⟨ℓ, v⟩ α−−→ ⟨ℓ, v+d⟩ for positive real d

▸ if for any 0 ≤ d′ ≤ d the invariant of ℓ holds for v+d′, i.e.
v+d′ ⊧ inv(ℓ)



Time divergence

▸ Let for any t < d, for fixed d ∈ R>0, clock valuation η+t ⊧ inv(ℓ)
▸ A possible execution fragment starting from the location ℓ is:

⟨ℓ, η⟩ d1−−−→ ⟨ℓ, η+d1⟩ d2−−−→ ⟨ℓ, η+d1+d2⟩ d3−−−→ ⟨ℓ, η+d1+d2+d3⟩ d4−−−→ . . .

▸ where di > 0 and the infinite sequence d1 + d2 + . . . converges

towards d
▸ such path fragments are called time-convergent

⇒ time advances only up to a certain value

▸ Time-convergent execution fragments are unrealistic and
ignored

▸ much like unfair paths (as we will see later on)



Time divergence

▸ Infinite path fragment π is time-divergent if ExecTime(π) = ∞
▸ The function ExecTime ∶ Act ∪R>0 → R≥0 is defined as:

ExecTime(τ) = { 0 if τ ∈ Act
d if τ = d ∈ R>0

▸ For infinite execution fragment ρ = s0
τ1−−→ s1

τ2−−→ s2 . . . in TS(TA)
let:

ExecTime(ρ) = ∞

∑
i=0

ExecTime(τi)
▸ for path fragment π in TS(TA) induced by ρ:
ExecTime(π) = ExecTime(ρ)

▸ For state s in TS(TA):
Pathsdiv(s) = { π ∈ Paths(s) ∣ π is time-divergent}



Example: light switch

off on

x ≤ 2
{x}

x ≥ 1

The path π in TS(Switch) in which on- and of-periods of one minute

alternate:

π = ⟨off , 0⟩ ⟨off , 1⟩ ⟨on, 0⟩ ⟨on, 1⟩ ⟨off , 1⟩ ⟨off , 2⟩ ⟨on, 0⟩ ⟨on, 1⟩ ⟨off , 1⟩ . . .
is time-divergent as ExecTime(π) = 1 + 1 + 1 + . . . = ∞.

The path:

π′ = ⟨off , 0⟩ ⟨off , 1/2⟩ ⟨off , 3/4⟩ ⟨off , 7/8⟩ ⟨off , 15/16⟩ . . .
is time-convergent, since ExecTime(π′) = ∑

i≥1
(1
2
)i = 1 < ∞



Timelock

▸ State s ∈ TS(TA) contains a timelock if Pathsdiv(s) = ∅
▸ there is no behavior in swhere time can progress ad infinitum
▸ clearly: any terminal state contains a timelock (but also

non-terminal states may do)
▸ terminal location does not necessarily yield a state with

timelock (e.g. inv = true)

▸ TA is timelock-free if no state in Reach(TS(TA)) contains a
timelock

▸ Timelocks are considered as modeling flaws that should be

avoided



Zenoness

▸ A TA that performs infinitely many actions in finite time is Zeno

▸ Path π in TS(TA) is Zeno if:
▸ it is time-convergent, and
▸ infinitely many actions α ∈ Act are executed along π

▸ TA is non-Zeno if there does not exist an initial Zeno path in
TS(TA)

▸ any π in TS(TA) is time-divergent or
▸ is time-convergent with nearly all (i.e., all except for finitely

many) transitions being delay transitions

▸ Zeno paths are considered as modeling flaws that should be

avoided



A sufficient criterion for Non-Zenoness

Let TAwith set C of clocks such that for every control cycle:

ℓ0
g1∶α1 ,C1↝ ℓ1

g2∶α2 ,C2↝ . . .
gn∶αn ,Cn
↝ ℓn

there exists a clock x ∈ C such that:

1. x ∈ Ci for some 0 < i ≤ n, and

2. there exists a constant c ∈ N>0 such that for all clock

evaluations η:

η(x) < c implies (η /⊧ gj or η /⊧ inv(ℓj)), for some 0 < j ≤ n

Then: TA is non-Zeno



Timelock, time-divergence and Zenoness

▸ A timed automaton is only considered an adequate model of a
time-critical system if it is:

non-Zeno and timelock-free

▸ Time-convergent paths will be explicitly excluded from the

analysis.



Timed CTL

Syntax of TCTL state-formulas over AP and set C:

Φ ∶∶= true ∣ a ∣ g ∣ Φ ∧ Φ ∣ ¬Φ ∣ Eφ ∣ Aφ

where a ∈ AP, g ∈ ACC(C) and φ is a path-formula defined by:

φ ∶∶= ΦUJΦ

where J ⊆ R≥0 is an interval whose bounds are naturals

Forms of J: [n,m], (n,m], [n,m) or (n,m) for n,m ∈ N and n ≤ m

for right-open intervals,m =∞ is also allowed



Some abbreviations

▸ ◇JΦ = trueUJΦ

▸ E ◻J Φ = ¬A ◇J ¬Φ and A ◻J Φ = ¬E ◇J ¬Φ
▸ ◇Φ = ◇[0,∞)Φ and ◻ Φ = ◻[0,∞)Φ



Semantics of TCTL

For state s = ⟨ℓ, η⟩ in TS(TA) the satisfaction relation ⊧ is defined by:

s ⊧ true

s ⊧ a iff a ∈ L(ℓ)
s ⊧ g iff η ⊧ g

s ⊧ ¬Φ iff not s ⊧ Φ

s ⊧ Φ ∧ Ψ iff (s ⊧ Φ) and (s ⊧ Ψ)
s ⊧ Eφ iff π ⊧ φ for some π ∈ Pathsdiv(s)
s ⊧ Aφ iff π ⊧ φ for all π ∈ Pathsdiv(s)
path quantification over time-divergent paths only



The ⇒ relation

For infinite path fragments in TS(TA) performing∞many actions

let:

s0
d0
⇒ s1

d1
⇒ s2

d2
⇒ . . . with d0, d1, d2 . . . ≥ 0

denote the equivalence class containing all infinite path fragments

induced by execution fragments of the form:

s0
d10→ . . .

d
k0
0→´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

time passage of
d0 time-units

s0+d0 α1Ð→ s1
d11→ . . .

d
k1
1→´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

time passage of
d1 time-units

s1+d1 α2Ð→ s2
d12→ . . .

d
k2
2→´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

time passage of
d2 time-units

s2+d2 α3Ð→ . . .

where ki ∈ IN, di ∈ R≥0 and αi ∈ Act such that∑ki
j=1 d

j
i = di.

Notation: si+d = ⟨ℓi , ηi+d⟩where si = ⟨ℓi , ηi⟩.



Semantics of TCTL

For time-divergent path π ∈ s0 d0
⇒ s1

d1
⇒ . . .:

π ⊧ ΦUJ Ψ

iff

∃ i ≥ 0. si+d ⊧ Ψ for some d ∈ [0, di]with ∑i−1
k=0 dk + d ∈ J

and

∀j ≤ i. sj+d′ ⊧ Φ ∨Ψ for every d′ ∈ [0, dj]with ∑j−1
j=0 dk + d′ ≤ ∑i−1

k=0 dk + d



TCTL-semantics for timed automata

▸ Let TA be a timed automaton with clocks C and locations Loc

▸ For TCTL-state-formulaΦ, the satisfaction set Sat(Φ) is defined
by:

Sat(Φ) = { s ∈ Loc × Eval(C) ∣ s ⊧ Φ }
▸ TA satisfies TCTL-formulaΦ iffΦ holds in all initial states of TA:

TA ⊧ Φ if and only if ∀ℓ0 ∈ Loc0. ⟨ℓ0, η0⟩ ⊧ Φ

where η0(x) = 0 for all x ∈ C



Timed CTL versus CTL

▸ Due to ignoring time-convergent paths in TCTL semantics,

possibly:

TS(TA) ⊧TCTL Aφ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
TCTL semantics

but TS(TA) /⊧CTL Aφ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
CTL semantics

▸ CTL semantics considers all paths, timed CTL only

time-divergent paths

▸ ForΦ = A ◻ (on Ð→ A ◇ off) and the light switch

TS(Switch) ⊧TCTL Φ whereas TS(TA) /⊧CTL Φ

▸ there are time-convergent paths on which location on is never

left



Characterizing timelock

▸ TCTL semantics is also well-defined for TAwith timelock

▸ A state is timelock-free if and only if it satisfies E ◻ true
▸ some time-divergent path satisfies ◻true, i.e., there is ≥ 1

time-divergent path
▸ note: for fair CTL, the states in which a fair path starts also

satisfy E ◻ true

▸ TA is timelock-free iff ∀s ∈ Reach(TS(TA)): s ⊧ E ◻ true

▸ Timelocks can thus be checked by model checking



TCTL model checking

▸ TCTL model-checking problem: TA ⊧ Φ for non-Zeno TA

TA ⊧ Φ´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
timed automaton

iff TS(TA) ⊧ Φ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
infinite state graph

▸ Idea: consider a finite region graph RG(TA)
▸ Transform TCTL formulaΦ into an ‘‘equivalent’’ CTL-formula Φ̂

▸ Then: TA ⊧TCTL Φ iff RG(TA)´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
finite state graph

⊧CTL Φ̂



Eliminating timing parameters

▸ Eliminate all intervals J ≠ [0,∞) from TCTL formulas
▸ introduce a fresh clock, z say, that does not occur in TA
▸ s ⊧ E ◇J Φ iff reset z in s ⊧ ◇(z ∈ J ∧ Φ)

▸ Formally: for any state s of TS(TA) it holds:
s ⊧ EΦUJ Ψ iff s{z ∶= 0}´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

state in TS(TA⊕ z)

⊧ E ((Φ ∨Ψ)U (z ∈ J) ∧Ψ)

s ⊧ AΦUJ Ψ iff s{z ∶= 0}´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
state in TS(TA⊕ z)

⊧ A ((Φ ∨Ψ)U (z ∈ J) ∧Ψ)

▸ where TA⊕ z is TA (over C) extended with z /∈ C



Clock equivalence

Impose an equivalence, denoted ≅, on the clock valuations such

that:

(A) Equivalent clock valuations satisfy the same clock constraints g

in TA andΦ:

η ≅ η′ ⇒ (η ⊧ g iff η′ ⊧ g)

▸ no diagonal clock constraints are considered
▸ all the constraints in TA andΦ are thus either of the form x ≤ c

or x < c

(B) Time-divergent paths emanating from equivalent states are
equivalent

▸ this property guarantees that equivalent states satisfy the same

path formulas

(C) The number of equivalence classes under ≅ is finite



First observation

▸ η ⊧ x < c whenever η(x) < c, or equivalently, ⌊η(x)⌋ < c
▸ ⌊d⌋ = max{ c ∈ IN ∣ c ≤ d } and frac(d) = d − ⌊d⌋

▸ η ⊧ x ≤ c whenever ⌊η(x)⌋ < c or ⌊η(x)⌋ = c and frac(η(x)) = 0

⇒ η ⊧ g only depends on ⌊η(x)⌋, and whether frac(η(x)) = 0

▸ Initial suggestion: clock valuations η and η′ are equivalent if:

⌊η(x)⌋ = ⌊η′(x)⌋ and frac(η(x)) = 0 iff frac(η′(x)) = 0

▸ Note: it is crucial that in x < c and x ≤ c, c is a natural



Second observation

▸ Consider location ℓwith inv(ℓ) = true and only outgoing
transitions:

▸ one guarded with x ≥ 2 (action α) and y > 1 (action β)

▸ Let state s = ⟨ℓ, η⟩with 1 < η(x) < 2 and 0 < η(y) < 1
▸ α and β are disabled, only time may elapse

▸ Transition that is enabled next depends on x < y or x ≥ y
▸ e.g., if frac(η(x)) ≥ frac(η(y)), action α is enabled first

▸ Suggestion for strengthening of initial proposal for all x, y ∈ C
by:

frac(η(x)) ≤ frac(η(y)) if and only if frac(η′(x)) ≤ frac(η′(y))



Final observation

▸ So far, clock equivalence yield a denumerable though not

finite quotient

▸ For TA ⊧ Φ only the clock constraints in TA andΦ are relevant
▸ let cx ∈ IN the largest constant with which x is compared in TA

orΦ

⇒ If η(x) > cx then the actual value of x is irrelevant
▸ constraints on ≅ so far are only relevant for clock values of x (y)

up to cx (cy)



Midterm Review



Verification -- Part I

▸ Transition systems: sequential circuits, concurrent systems,

channel systems

▸ Linear-time properties: safety vs. liveness

▸ Regular properties: Büchi automata

▸ LTL: from LTL to Büchi automata, LTL model checking

▸ CTL*: LTL vs. CTL, fairness, model checking

▸ Symbolic verification: BDDs, bounded model checking

▸ Implementation relations: Bisimulation, simulation, stuttering



True or False?

AXAGp ≡ AGAXp

TRUE



True or False?

EXEGp ≡ EGEXp

FALSE



True or False?

AFAGp can be expressed in LTL.

FALSE



True or False?

IfΦ is a CTL formula and ψ is an LTL formula such thatΦ ≡ ψ,

then ¬Φ ≡ ¬ψ.

FALSE



True or False?

s ⊧ EF EGp iff

there is a path π from swith π ⊧ FGp

TRUE



True or False?

s ⊧ EGEFp iff

there is a path π from swith π ⊧ GFp

FALSE



True or False?

Let TS be a transition system andΦ a CTL formula.

If TS does not satisfy ¬Φ,

then TS satisfiesΦ.

FALSE



True or False?

Let s1, s2 be states of a transition system and let

Φ = E (aU (EXb ∧ EX c)).
If s1 ⊧ Φ and not s2 ⊧ Φ

then Traces(s1) ≠ Traces(s2).

FALSE



True or False?

CTL* equivalence is strictly finer than CTL equivalence.

FALSE



True or False?

LTL equivalence is strictly finer than CTL equivalence.

FALSE



True or False?

CTL equivalence is strictly finer than LTL equivalence.

TRUE



True or False?

If s ⊧ AFp

then s ⊧fair AFp

TRUE



True or False?

If s ⊧ EFp

then s ⊧fair EFp

FALSE



True or False?

s ⊧fair E (aUb) iff
s ⊧ E (aU (b ∧ EG true))

FALSE



True or False?

s ⊧fair E (aUb) iff
s ⊧ E (aU (b ∧ afair))
where afair is an atomic proposition with

s ⊧ afair iff s ⊧fair EG true

TRUE



True or False?

For each Büchi automaton A there is an LTL formula φ

such that Words(φ) is the language of A.

FALSE



True or False?

If two states s1 an s2 in a finite transition system

satisfy the same CTL∖U formulas,

then s1 and s2 are bisimilar.

TRUE



True or False?

Bisimilar transition systems are simulation equivalent.

TRUE



True or False?

The following two transition systems are stutter-trace equivalent.

S1: S2:

FALSE



True or False?

Let TS1 and TS2 be two stutter-bisimilar transition systems and

let φ be an LTL formula without Next

then either both TS1 and TS2 satisfy φ

or neither satisfies φ.

FALSE



True or False?

The following two transition systems are divergence-sensitive

stutter-bisimilar.

����� �
���� �FALSE



True or False?

For every boolean function there is a variable ordering such that the

size of the ROBDD is polynomial.

FALSE



True or False?

For every boolean function there is a variable ordering such that the

size of the ROBDD is exponential.

FALSE


