Verification

Lecture 18

Bernd Finkbeiner
Peter Faymonville
Michael Gerke

Olm UNIVERSITAT
m]llwll“" DES

UL SAARLANDES

REVIEW: Timed automaton semantics

The transition relation — is defined by the following two rules:

» Discrete transition: (¢, v) -2 (¢/,v') if all following conditions
hold:
» thereis an edge labeled (g : a, D) from location £ to £ such that:
» gissatisfied by v,i.e,vEg
» v/ = vwith all clocks in Dresetto 0, i.e.,, v/ = resetDinv
» v/ fulfills the invariant of location £', i.e., v/ & inv(¢")

» Delay transition: (¢, v) -% (¢, v+d) for positive real d

» ifforany 0 < d’ < d the invariant of £ holds for v+d’, i.e.
v+d' Einv(l)

REVIEW: Timelock, time-divergence and Zenoness

» Atimed automaton is only considered an adequate model of a
time-critical system if it is:
non-Zeno and timelock-free
» Time-convergent paths will be explicitly excluded from the
analysis.

REVIEW: Timed CTL

Syntax of TCTL state-formulas over AP and set C:
(D::=true|a|g|(1)/\(D‘ —|CD|E(p‘Ag0
where a € AP, g € ACC(C) and ¢ is a path-formula defined by:
=0 U o

where J ¢ R,q is an interval whose bounds are naturals
Forms of J: [n,m], (n,m], [n,m) or (n,m) forn,me Nandn<m

for right-open intervals, m = o is also allowed

REVIEW: Semantics of TCTL

For state s = (¢, n7) in TS(TA) the satisfaction relation k= is defined by:

s E true

SEa iff
SEg iff
sE-O iff
SED A Y iff
skEEg iff
sEAg iff

ael(l)

neEg

nots = ®

(sE®)and (sEVY)

m = ¢ for some 7 € Paths;,(s)

n = ¢ for all 7 € Paths;,(s)

path quantification over time-divergent paths only

REVIEW: TCTL model checking

v

TCTL model-checking problem: TA £ @ for non-Zeno TA

TAE® iff TS(TA)E @
——

|

timed automaton infinite state graph

v

Idea: consider a finite region graph RG(TA)
Transform TCTL formula @ into an “equivalent” CTL-formula ®

» Then: TAEqen, @ iff RG(TA) Ecq @

—
finite state graph

v

REVIEW: Eliminating timing parameters

» Eliminate all intervals J # [0, co) from TCTL formulas
» introduce a fresh clock, z say, that does not occur in TA
» sEE O/ Diffresetzins = O(ze) A @)

» Formally: for any state s of TS(TA) it holds:
seEQUY iff s{z:=0} FE((®VY¥)U(ze)AY)

———
state in TS(TA @ z)

sEAOUY iff s{z:=0} EA((PVY¥)U(zel)rY)
N——
state in TS(TA @ z)

» where TA @ zis TA (over C) extended with z ¢ C

REVIEW: Clock equivalence

Impose an equivalence, denoted =, on the clock valuations such
that:

(A) Equivalent clock valuations satisfy the same clock constraints g
in TAand ©:

ney = (lqi:g iff q'lzg)

» no diagonal clock constraints are considered
» all the constraints in TA and @ are thus either of the form x < ¢
orx<c
(B) Time-divergent paths emanating from equivalent states are
equivalent
» this property guarantees that equivalent states satisfy the same
path formulas

(C) The number of equivalence classes under 2 is finite

REVIEW: First observation

» 1 E x < cwhenever (x) < ¢, orequivalently, | #(x)| < ¢
» |d] = max{ceIN|c<d}andfrac(d) = d-|d|
» nEx < cwhenever |5(x)] <cor|n(x)] =cand frac(n(x)) =0
= 1 E gonly depends on |7(x) |, and whether frac(n(x)) =0
» Initial suggestion: clock valuations 7 and 7’ are equivalent if:

[100)) = |'(0)] and frac(n(x)) = Oiff frac(y’(x)) = 0

» Note: it is crucial that in x < cand x < ¢, cis a natural

REVIEW: Second observation

» Consider location ¢ with inv(¢) = true and only outgoing
transitions:

» one guarded with x > 2 (action &) and y > 1 (action f3)

» Letstates=(¢,n) with1 <#(x) <2and0<5(y) <1
» a and f3 are disabled, only time may elapse

» Transition that is enabled next dependsonx <yorx >y
» e.g. if frac(n(x)) > frac(y(y)), action « is enabled first

» Suggestion for strengthening of initial proposal for all x,y € C
by:

frac(n(x)) < frac(y(y)) ifandonlyif frac(n'(x)) < frac(y'(y))

REVIEW: Final observation

» So far, clock equivalence yield a denumerable though not
finite quotient
» For TA E @ only the clock constraints in TA and @ are relevant

» let ¢« € IN the largest constant with which x is compared in TA
or®

= If (x) > cx then the actual value of x is irrelevant

» constraints on 2 so far are only relevant for clock values of x (y)
up to ¢ (¢y)

Clock equivalence

Clock valuations 7, 1" € Eval(C) are equivalent, denoted 7 = #//, if:
(1) foranyx € C: (1(x) > cx) A (5'(x) > ¢) or
(n(x) <) A (7' (%) < &)
(2) foranyx € C:if (x),5'(x) < ¢ then:

[n0)) =17’ (x)] and frac(y(x)) = Oiff frac(n2(x)) = 0

(3) foranyx,y € C:if n(x),n'(x) < cxand 5(y),4'(y) < ¢y, then:

frac(n(x)) < frac(y(y)) iff frac(n'(x)) < frac(y'(y)).

szs' iff £=¢ and nzy

Clock equivalence is a bisimulation

Clock equivalence is a bisimulation equivalence over AP’

Regions

» The clock region of 4 € Eval(C), denoted [7], is defined by:

(7] = {n" eEval(C) | n=7"}

» The state region of s = (¢, 1) € TS(TA) is defined by:
[s] = {&[n]) = {{s:n"} | n" e [n]}

Number of regions

The number of clock regions is bounded from below and above by:

'+ [Tex < | Eval(Q)f= | < [C]t* 21" % T (2¢c +2)
xeC — xeC
number of regions

where for the upper bound it is assumed that ¢, > 1 forany x € C

the number of state regions is |Loc| times larger

Preservation of atomic properties

1. Forn,n’ € Eval(C) such that n = n":
neg ifandonlyif 7' = gforanygeAP \ AP
2. Fors,s' e TS(TA) such thats = s

se=a ifandonlyif s aforanyaeAP'

where AP includes all atomic propositions and atomic clock constraints in
TA and .

Unbounded and successor regions

» Clock region ro, = { 17 € Eval(C) | Vx € C.5(x) > ¢ } i
unbounded

» r"is the successor (clock) region of r, denoted r’ = succ(r), if
either:

1.r=randr=r,or

2. r#re, r+randVyer:

dd eRyo. (y+der’ and VO<d' <d.p+d erur’)

» The successor region: succ({(¢,r)) = (¢,succ(r))

Region automaton

For non-Zeno TA with TS(TA) = (S, Act, —>,1,AP,L) let:

RG(TA, @) = (S, Actu{1},»",LAP',L') with

» §=5/=2={[s]|seS}tand ! ={[s]|s €}, the state regions
» L'((6,r))=L(l) u {geAP'~AP|rEg}

ISP e g resetDinrkEinv({)

and
(0,r) =" (¢, reset Dinr)

» -’ is defined by:

reinv(?) succ(r) Einv({)
(6, r) 5" (£, succ(r))

Example: simple light switch

switch on
xF
xX<2
xX=2
switch off

3

Time convergence

For non-Zeno TAand 7 = 50 51 53 ... aninitial, infinite path in TS(TA):

(a) mistime-convergent = 3 state region (¢, r) such that for
some

sie(lr) foralli>j

(b) If 3 state region (¢,r) with r # ro, and an index j such that:
sie (L, r) foralli>j

then 7 is time-convergent

Timelock freedom

For non-Zeno TA:

TA is timelock-free iff no reachable state in RG(TA) is terminal

Example

switch on
xF

Xx<2
— ()

\/

x=1
switch off

off
X>2

on
X>2

Correctness theorem

Let TA be a non-Zeno timed automaton and @ a TCTL, formula.
Then:

TA=® iff RG(TA, @)k ®

~—— —
TCTL semantics CTL semantics

Overview TCTL model checking

Require: timed automaton TA and TCTL formula ® (both over AP and C)
Ensure: TA= ©

® := eliminate the timing parameters from ®@;

determine the equivalence classes under ;

construct the region graph TS = RG(TA);

apply the CTL model-checking algorithm to check TS = @;

TAE @ ifandonlyif TS @

Other verification problems

1. The TCTL model-checking problem is PSPACE-complete

2. The model-checking problem for timed LTL (and TCTL") is
undecidable

Zones

Clock constraints are conjunctions of atomic constraints
» x<candx-y<cfor<e {<,<,=,2>,>}
» restrict to TA with only conjunctive clock constraints
» and (as before) assume no difference clock constraints

A clock zone is the set of clock valuations that satisfy a clock
constraint

» aclock zone for g is the maximal set of clock valuations
satisfying g
Clockzoneof g:[[g]] ={n € Eval(C) |nE=g}

> use Z,Z, and soon to range over zones
The state zone of s = (¢,) € TS(TA) is (¢,z) with n € z

Zone automaton: intuition

\: x:=1 : y<2 x22 O
3 3 3
2 2 2
1 1 1
1 2 3 12 s 12 3
leaving initial entering first leaving first
3 3 3
2 2 2 '
1 1 1
071 2 3 U1 2 3 712 3

entering second leaving second entering third

Normalization: intuition

symbolic semantics has infinitely many zones:
30

30 30 30
20 20 20 20
10 10 10 10
{xy} 010 20 30 ¢ 10 20 30 9 10 2 3 % 10 20 2
x<10 x=10
) S normalization yields afinite zone graph:
X220
{xy}
30 30 30 20 '
20 20 20 20
10 10 10 10
10 2 3 ¢ 102 3 ° 1023 O

10 20 30

Successor and reset zones

» 7' is the successor (clock) zone of z, denoted Z’ = Z7, if:
» zl = {y+d|nez,deRyy}

» 7' is the zone obtained from z by resetting clocks D:
» resetDinz = {resetDinn|nez}

Zone graph

For non-Zeno TA let:

ZG(TA, ®) = (Q,Qo,E,L") with

» Q=Loc x Zone(C)and Qo = { ({,20) | £ € Loco }

» L({6z)) =L(H) u{glgez}
» E consists of two types of edges:
» Discrete transitions: (£,z) %> (¢',reset Din (z A g) A inv({"))
if ¢ 75° ¢, and
» Delay transitions: (£,z) <> (¢,z" A inv({)).

Correctness (1)

For timed automaton TA and any initial state (¢, 7o):
» Soundness:
(&, {no})—=>"(",2") implies (€, no)—"(¢',y) forally’ ez
—
20 in TS(TA)
in ZG(TA)

» Completeness:

(€,n0) = (¢, 1) implies (£, { o }) =™ (¢',2') for someZ' withy € 2/

in TS(TA) in ZG(TA)

Zone normalization

» To obtain a finite representation, zone normalization is
employed
Forzonez,norm(z) = {n|nzn',n' ez}

» where ~ is the clock equivalence

v

v

There can only be finitely many normalized zones
(€,2) =norm {¢',norm(2")Yif (¢,z) - (¢',2")

v

Correctness (2)

For timed automaton TA and any initial state (¢, 1):
» Soundness:

(6:{n0}) = nom (€,2') implies (¢,70) =" (¢, ")

» forall n’ € Z’ such that Vx. ' (x) < ¢«

» Completeness:

(€,10) = (€', ")y with Vx. ' (x) < cximplies (¢, { 10 }) = porm (¢',2')

» for some z’ such that i’ € 7/

» Finiteness: the transition relation — o is finite

Forward reachability algorithm

Passed := &; // explored states so far
Wait := { (o, 20) }; // states to be explored
while Wait = @ // still states to go

do select and remove (¢, z) from Wait;
if ({ = goal A z N Zgq + @)thenreturn “reachable”! fi;
if -(3(¢,2') e Passed.z € Z’) // no “super”state explored yet
then add (4, z) to Passed /1 (£,z) is a new state
foreach (¢',z") with (£,2) - porm (¢',2')
doadd (¢',z') toWait; //add symbolic successors
fi
od

return “not reachable”!

