Verification

Lecture 2

Bernd Finkbeiner
Peter Faymonville
Michael Gerke

Olm UNIVERSITAT
m]llwll“" DES

UL SAARLANDES

REVIEW: Transition systems

A transition system TS is a tuple (S, Act, », 1, AP, L) where

» Sisaset of states

» Actis a set of actions

» —> C SxActx Sis atransition relation
» | c Sisasetof initial states

» APis a set of atomic propositions

» L:S>2%Pisa labeling function

Sand Act are either finite or countably infinite

Notation: s % s’ instead of (s, a,s") € —

REVIEW: Modeling sequential circuits

{y} 3

{r} oy}

Transition system representation of a simple hardware circuit
Input variable x, output variable y, and register r
Output function —(x @ r) and register evaluation function x v r

Modeling data-dependent systems

The beverage vending machine revisited:

“Abstract” transitions:

true:refill

start —UEON, sofect and start ST start
ite>0:sget b 0:bget
select -PE2US9 start and select 1222094 seart

nsprite=0 A nbeer=0:ret_coin

select start

Action \ Effect on variables

coin

ret_coin

sget nsprite := nsprite — 1

bget nbeer := nbeer — 1

refill nsprite := max; nbeer := max

Some preliminaries

» typed variables with a valuation that assigns values to
variables
» eg.,n(x)=17and n(y) = -2
» the set of Boolean conditions over Var
> propositional logic formulas whose propositions are of the
form “x e D”
» (-3<x<5) A (y=green) n (x<2x")
» effect of the actions is formalized by means of a mapping:

Effect : Act x Eval(Var) — Eval(Var)

» e.g., a = x :=y+5 and evaluation n(x) = 17 and y(y) = -2
» Effect(a,n7)(x) = n(y)+5 =3, and Effect(e,) (y) =#n(y) =-2

Program graphs

A program graph PG over set Var of typed variables is a tuple

(Loc, Act, Effect, —, Locy, go) where

» Locis a set of locations with initial locations Locg € Loc
Act is a set of actions
Effect : Act x Eval(Var) — Eval(Var) is the effect function

» —C Locx (Cond(Var) xAct) x Loc, transition relation
~————

Boolean conditions over Var

go € Cond(Var) is the initial condition.

v

v

v

Notation: £ 2% {' denotes (¢,g, a, {') e —

Beverage vending machine

» Loc = { start, select } with Locg = { start }

» Act = { bget, sget, coin, ret_coin, refill }

» Var = { nsprite, nbeer } with domain {0,1,...,max }
> Effect:

Effect(coin,)
Effect(ret_coin, 1)
Effect(sget, 1)
Effect(bget, 1)
Effect(refill,)

» go = (nsprite = max A nbeer = max)

n
n
n[nsprite := nsprite—1]

n[nbeer := nbeer—1]

n[nsprite := max, nbeer := max |

From program graphs to transition systems

» Basic strategy: unfolding
» state = location (current control) £ + data valuation 7
» initial state = initial location satisfying the initial condition g

» Propositions and labeling

» propositions: “¢" and “x € D" for D € dom(x)
» (£,) is labeled with “¢" and all conditions that hold in %

» 2% 0" and g holds in 5 then (£,) <% (¢, Effect(a, 7))

Structured operational semantics

. premise
» The notation ——————— means:
conclusion

If the premise holds, then the conclusion holds

» Such “if ..., then...” propositions
are also called inference rules

v

If the premise is a tautology, it may be omitted
(as well as the “solid line”)

v

In the latter case, the rule is also called an axiom

Transition systems for program graphs

The transition system TS(PG) of program graph
PG = (Loc, Act, Effect, —, Loco, go)

over set Var of variables is the tuple (S, Act, —, 1, AP, L) where

» S =Loc x Eval(Var)
» —> C S x Act x Sis defined by the rule:

0I5 A nEg
(€, n) 5 (', Effect(a, 17))

» 1={(l,n)|leloco,nEgo}
» AP =Loc u Cond(Var) and
L((¢, 7)) = {€} v {g € Cond(Var) | n & g}.

refill start refill

ret_coin

Transition systems # finite automata

As opposed to finite automata, in a transition system:

>

>

>

>

>

there are no accept states

set of states and actions may be countably infinite
may have infinite branching

actions may be subject to synchronization

nondeterminism has a different role

Transition systems are appropriate for reactive system behaviour

Interleaving

» Abstract from decomposition of system in components

» Actions of independent components are merged or
“interleaved”

» asingle processor is available
» on which the actions of the processes are interleaved
» No assumptions are made on the order of processes
» possible orders for non-terminating independent processes P
and Q:

P QP QP Q QQFP
PP QP P QP P Q
P QP P QP P P Q

» assumption: there is a scheduler with an a priori unknown
strategy

Interleaving

» Justification for interleaving:

the effect of concurrently executed,

independent actions & and 8

equals

the effect when a and 8 are successively executed
in arbitrary order

» Symbolically this is stated as:

Effect(a ||| B, n) = Effect((a; B) + (B; «),n)

» ||| stands for the (binary) interleaving operator
» " stands for sequential execution,

’

and “+" for non-deterministic choice

Interleaving

x=x+1||y=y-2
—_—

ol

Interleaving of transition systems

LetTS; = (S, Actj, =, 1;,AP;, Lj) i=1, 2, be two transition systems.
Transition system
TS, H‘ TS, = (S] x Sy, Acty W Acty, >, 11 x 15, AP, LTJAPz,L)

where L((s1,52)) = L1(s1) U La(s2) and the transition relation — is
defined by the rules:

s1 -5 55 %y 55

and
(s1,52) 5 (s],52) (51,52) =% (51,55)

Interleaving of program graphs

For program graphs PG, (on Vary) and PG, (on Var;) without shared
variables, i.e., Var; nVar; = @,

TS(PGy) ||| TS(PG2)

faithfully describes the concurrent behavior of PG; and PG,

what if they have variables in common?

Shared variable communication

x:=2x ||| x:=x+1 withinitially x =3
—— ————

action « action g

B &

G O

(x=6,x=4) is an inconsistent state!
= no faithful model of the concurrent execution of « and f3

Idea: first interleave, then unfold

Interleaving of program graphs

Let PG; = (Loc;, Act;, Effect;, — j, Locg j, go,;) over variables Var;.
Program graph PG ||| PG, over Var, u Var, is defined by:

(Locy x Locy, Acty w Acty, Effect, —>, Loco,1 % L0Co,2,90,1 A Go,2)
where — is defined by the inference rules:

6250 0 2 ﬂ>2 0

- and -
(61’€2> (61’€2> <€1)€2> <€1)€)
and Effect(a,n) = Effectj(a,n) if a € Act;.

Example

x:=2x ||| x:=x+1 withinitially x =3
— —_—

action « action g

e

x=2-x ||| xi=x+1 =

“ A

note that TS(PG,) ||| TS(PG,) # TS(PG ||| PG)

On atomicity

x=x+1y=2x+1;z:=ydivx ||| x:=0

non-atomic

Possible execution fragment:

(XZ”) x:=x+1 <X=12) y:=2x+1 <X=12) x:=0 <X=0) z=y/x $o

(x:==x+1y:=2x+1;z:=ydivx) ||| x:=0

atomic

Either the left process or the right process is completed first:

(x = 11) 2250 (x = 12) L2240, (= 12) Z25 (4 = 12) 220, (x = 0)

Peterson’s mutual exclusion algorithm

P, loop forever
(* non-critical actions *)
(bq :=true; x := 2); (* request *)
waituntil (x =1 v -b,)
do critical section od
b, := false (* release *)
(* non-critical actions *)

end loop

b; is true if and only if process P; is waiting or in critical section
if both processes want to enter their critical section, x decides who gets
access

Banking system

Person Left behaves as follows:

while true {
nc: (b1,x = true, 2;)
waituntil(x == 1|| - b2) {
cs: ...@account...}
by = false;

Person Right behaves as follows:

nc:

cs:

while true {
(b2, x =true, 1;)
waituntil(x == 2|| - b1) {
...@account. ..}
b, = false;

Can we guarantee that only one person at a time has access to the bank

account?

Is the banking system safe?

x==1 X==2

Manually inspect whether two may have access to the account
simultaneously: No

Banking system with non-atomic assignment

Person Left behaves as follows: Person Right behaves as follows:
while true { while true {
nc: X =2; nc: x=1;
rq: by = true; q: b, = true;
waituntil(x == 1| - b,) { : waituntil(x == 2|| = b;) {
cs: ...@account...} cs: ...@account. ..}
b, = false; b, = false;
} }

On atomicity again

Possible state sequence:

(ncy, ncy, x=1, by =Afalse, = false

(ncy, rqa, x=1, by="Afalse, bz = false

)
)
(rq1, rqa, x=2, by=false, b, ="false)
(wti, rqz, x=2, by=true, b, ="false)

)

(cs1, rga, x=2, by=true, b,="false

(cs1, , X=2, by=true, b, =true)

(cs1, ¢s2, x=2, by=true, by =true)!

violation of the mutual exclusion property

Parallelism and handshaking

» Concurrent processes run truly in parallel
» To obtain cooperation, some interaction mechanism is needed
» If processes are distributed there is no shared memory

= Message passing

» synchronous message passing (= handshaking)
» asynchronous message passing (= channel communication)

Handshaking

» Concurrent processes interact by
synchronous message passing
» processes execute synchronized actions together
» thatis, in interaction both processes need to participate at the
same time
» the interacting processes “shake hands”

» Abstract from information that is exchanged

» His a set of handshake actions

» actions outside H are independent and are interleaved
» actions in H need to be synchronized

Handshaking
Let TS; = (Si,ACt,', -, li, APj, L,'), i=1,2and H ¢ Act; n Act,.

TS, ”H TS5, = (51 x Sy, Act; U Acty, —, 11 x |5, AP LﬂAPz,L)
where L({s1,52)) = L1(s1) U La(s2) and with — defined by:
» interleaving for a ¢ H:

s1 518 s3 558

(s1,52) -5 (s7,52) (51,52) =% (s51,55)

» handshaking for « € H:

s1 5181 A 55558

(s1,52) <5 (57,53)

note that TS, HH 75, =TS, HH TSy but (TS1 ”Hw TSz) ||/-/2 TS3 +# TS, ||/-/1 (TSz HHz TS3)

A booking system

store scan prt_cmd store print prt_cmd

BCR | BP | Printer

| is a shorthand for || with H = Act; n Act,

The parallel composition

Pairwise handshaking

TS| ... | TSy for H;j = Act; 0 Acty with H;j n Acty = @ fork ¢ {i,j }

State space of TSq| ... | TS, is the Cartesian product of those of TS;
» fora e Acti~ (U Hij)and 0 <i<n:

0<j<n
i#f

« ’
Si —iS;

<S1,...,S,’,...,Sn) LN (S],...,S,-,...Sn)
> foroceH,~andO<i<'Sn:
)

si—2>isp A S5

(515 s Sivee s S Sn) == (515222550 ..

Synchronous parallelism

LetTS; = (Sj,Act,—j, l;,AP;, L;) and Act x Act — Act, (a,f) - a*f3

TS TS, = (S] x Sy, Act, =, 11 x |, AP, L+JAP2,L)
with L as defined before and — is defined by the following rule:

S1 i>1Sq N S) i>2$£

(s1,52) B> (5], 55)

typically used for synchronous hardware circuits, cf. next example

TS : TS, :

751 ® TS,:

Channels

» Processes communicate via channels (¢ € Chan)
» Channels are first-in, first-out buffers
» Channels are types (wrt. their content --- dom(c))

v

Channels buffer messages (of appropriate type)
Channel capacity = maximum # messages that can be stored

» if cap(c) € IN then cis a channel with finite capacity

» if cap(c) = oo then ¢ has an infinite capacity

» if cap(c) > 0, there is some “delay” between sending and
receipt

» if cap(c) = 0, then communication via c amounts to
handshaking

v

Channels

» Process P; = program graph PG; + communication actions

clv transmit the value v along channel ¢
c?’x receive a message via channel c and assign it to variable x

» Comm =
{clv, ¢?x | ceChan, v e dom(c), x € Var. dom(x) 2 dom(c) }
» Sending and receiving a message

» clv puts the value v at the rear of the buffer c (if ¢ is not full)

» C?x retrieves the front element of the buffer and assigns it to x
(if cis not empty)

» if cap(c) = 0, channel ¢ has no buffer

» if cap(c) = 0, sending and receiving takes place simultaneously
this is called synchronous message passing or handshaking

» if cap(c) > 0, sending and receiving can never take place
simultaneously
this is called asynchronous message passing

Channel systems

A program graph over (Var, Chan) is a tuple
PG = (Loc, Act, Effect, —, Loco, go)
where

— C Locx (Cond(Var) x Act) x Loc U Loc x Comm x Loc

communication actions
A channel system CS over (Ug<j<n Var;, Chan):
CS = [PG1 |...|PGn]

with program graphs PG; over (Var;, Chan)

Communication actions

» Handshaking

» if cap(c) = 0, then process P; can perform £; <% ¢} only

> ... if P}, say, can perform {; - (;
» the effect corresponds to the (atomic) distributed assignment

X:=V.
» Asynchronous message passing

» if cap(c) > 0, then process P; can perform £; <% /]

» ...ifand only if less than cap(c) messages are stored in ¢
» P; may perform ¢; ﬂ%j{ if and only if the buffer of c is not
empty

» then the first element v of the buffer is extracted and assigned
to x (atomically)

] | executableif... | effect \

clv | cisnot “full” Enqueue(c,v)
c?x | cis notempty (x := Front(c) ; Dequeue(c));

The alternating bit protocol: sender

cl{m,0) dx

snd_msg(0) chk_ack(0)

timeout

x=1: x=0:
tmr_off tmr_off

timeout

chk_ack(1) snd_msg(1)

d?x cl{m,1)

The alternating bit protocol: receiver

dn

y

c?(m,y)

y=0
wait(0) pr_msg(0)

1

y=0

snd_ack(1) v wait(1)

2(my)

snd_ack(0)

dlo

timeout

tmr_off

Channel evaluations

» A channel evaluation & is

» a mapping from channel c € Chan onto a sequence
&(c) e dom(c)* such that
» current length cannot exceed the capacity of c:

len(£(c)) < cap(c)
» &(c) =vi vy ... v (cap(c) > k) denotes v is at front of buffer etc.

» &[c:=vy...vk] denotes the channel evaluation

&) ifc#c
V1. Vg ifc=c.

c=vi...v](cd) = {

» Initial channel evaluation & equals & (c) = ¢ forany ¢

Transition system semantics of a channel system

Let CS=[PG; | ... | PGp] be a channel system over (Chan, Var) with
PG; = (Loc;, Act;, Effectj, ~i,Loco i, go,i), forO<i<n
TS(CS) is the transition system (S, Act, -, I, AP, L) where:
» S = (Locy x -+ x Locy) x Eval(Var) x Eval(Chan)
» Act = (Wocicn Acti) w {7}
» — is defined by the inference rules on the next slides
> = {(61,,_,,6,,,;7,50) | Vi. (¢;eloco; & nEgoi) & Ve &(c) :9}
» AP = Hoi<cn Loc; v Cond(Var)
L({ly,.... 00,1, &) = {lr,....0n} u {geCond(Var) |nEg}

v

Inference rules (1)

» Interleaving for a € Act;:

6GE5S0 A nEg
<€1)~~~)£1‘)--')€n)}1)£>i><£1)'-')€,{)~~~)£n)’7,)f>

where 1’ = Effect(a, 1)
» Synchronous message passing over ¢ € Chan, cap(c) = 0:

? | . .
[NN NS

(51,...,E,-,...,K,-,...,E,,,n,f)#(61,...,E,{,...,E;,...,E,,,;y',é’)

where 1" = 5[x = v].

Inference rules (I1)

» Asynchronous message passing for ¢ € Chan, cap(c) > 0:
» receive a value along channel c and assign it to variable x:

6500 A len(8(c))=k>0 A E(C) = vi...v
Oyl o, &Y S Uy Uy E)

where 1" = y[x:=vi]and & = {[c:=va ... v].
» transmit value v € dom(c) over channel c:

6500 A len(E(c)) =k<cap(c) A &(c) = vq...v

(81,...,Ki,...,€n,17,€)—T>(&,...,E;,...,E,,,n,f')

where & = {[c:=vivy... v v].

Handling unexpected messages

[senderS | timer [receiverR [channelc [channeld | event

snd_msg(0) | off wait(0) %] %]

st_tmr(0) off wait(0) (m,0) %] message with bit 0
transmitted

wait(0) on wait(0) (m, 0) %)

snd_msg(0) | off wait(0) (m,0) %] timeout

st_tmr(0) off wait(0) (m,0) (m,0) | @ retransmission

st_tmr(0) off pr_msg(0) | (m,0) @ receiver reads
first message

st_tmr(0) off snd_ack(0) | (m,0) %)

st_tmr(0) off wait(1) (m,0) 0 receiver changes
into mode-1

st_tmr(0) off pr_msg(1) | @ 0 receiver reads
retransmission

st_tmr(0) off wait(1) %] 0 and ignores it

nanoPromela

» Promela (Process Meta Language):
modeling language for SPIN
» most widely used model checker
» developed by Gerard Holzmann (Bell Labs, NASA JPL)
» ACM Software Award 2002

» nanoPromela is the core of Promela

» shared variables and channel-based communication

» formal semantics of a Promela model is a channel system

» processes are defined by means of a guarded command
language

» No actions, statements describe effect of actions

nanoPromela

nanoPromela-program P = [P]...|P,] with P; processes
A process is specified by a statement:

stmt

skip ‘ X = expr | c?x | clexpr |

stmt; ; stmt, | atomic{assignments} |

if :gy=>stmt; ... :g,=stmt, fi
do :g;=stmt; ... :g,=stmt, od
assignments = Xj = eXpry; X2 := €Xpry; ... ; Xm := €XPry,

x is a variable in Var, expr an expression and c a channel, g; a guard

assume the Promela specification is type-consistent

Conditional statements

if =gy = stmty ... : g, = stmt, fi

» Nondeterministic choice between statements stmt; for which
g; holds
» Test-and-set semantics: (deviation from Promela)
» guard evaluation + selection of enabled command + execution
first atomic step
of selected statement is all performed atomically
» The if--fi--command blocks if no guard holds
» parallel processes may unblock a process by changing shared
variables
» e.g, wheny=0,if =y >0 = x:=42 fiwaits until y exceeds 0
Standard abbreviations:
» if g then stmt; else stmt; fi = if :: g = stmt; :: =g = stmt, fi
» if gthen stmt; fi = if :: g = stmt; :: -g = skipfi

v

Iteration statements

do :g; = stmt; ... : g, = stmt, od

v

Iterative execution of nondeterministic choice among
gi = stmt;

» where guard g; holds in the current state
No blocking if all guards are violated; instead, loop is aborted

v

» do : g = stmt od = while g do stmt od
» No break-statements to abortaloop (deviation from Promela)

Peterson’s algorithm

The nanoPromela-code of process P; is given by the statement:

do : true = skip;
atomic{b :=true;x := 2};
if = (x=1)v-by = crity :=true fi
atomic{crit; := false; by := false}

od

Beverage vending machine

The following nanoPromela program describes its behaviour:

do : true =
skip;
if = nsprite>0 = nsprite := nsprite — 1
nbeer >0 = nbeer:= nbeer — 1
nsprite = nbeer =0 = skip
fi

true = atomic{nbeer := max; nsprite := max}

od

