
Verification

Lecture 2

Bernd Finkbeiner

Peter Faymonville

Michael Gerke



REVIEW: Transition systems

A transition system TS is a tuple (S,Act,→, I,AP, L)where
▸ S is a set of states

▸ Act is a set of actions

▸ Ð→ ⊆ S × Act × S is a transition relation

▸ I ⊆ S is a set of initial states

▸ AP is a set of atomic propositions

▸ L ∶ S→ 2AP is a labeling function

S and Act are either finite or countably infinite

Notation: s α−−→ s′ instead of (s, α, s′) ∈ Ð→



REVIEW: Modeling sequential circuits

XOR

OR

fyg
NOT

fxg
frg fx;r;yg

x= 0 r = 0

x= 0 r = 1

x= 1 r = 0

x= 1 r = 1

r

x y

Transition system representation of a simple hardware circuit

Input variable x, output variable y, and register r

Output function ¬(x ⊕ r) and register evaluation function x ∨ r



Modeling data-dependent systems

The beverage vending machine revisited:

‘‘Abstract’’ transitions:

start true∶coin−−−−−−−→ select and start true∶refill−−−−−−−→ start

select
nsprite>0∶sget−−−−−−−−−−−→ start and select

nbeer>0∶bget−−−−−−−−−−−→ start

select
nsprite=0∧nbeer=0∶ret_coin−−−−−−−−−−−−−−−−−−−−−−→ start

Action Effect on variables

coin

ret_coin

sget nsprite ∶= nsprite − 1

bget nbeer ∶= nbeer − 1

refill nsprite ∶= max; nbeer ∶= max



Some preliminaries

▸ typed variables with a valuation that assigns values to
variables

▸ e.g., η(x) = 17 and η(y) = −2
▸ the set of Boolean conditions over Var

▸ propositional logic formulas whose propositions are of the

form ‘‘x ∈ D’’
▸ (−3 < x ≤ 5) ∧ (y = green) ∧ (x ≤ 2⋅x′)

▸ effect of the actions is formalized by means of a mapping:

Effect ∶ Act × Eval(Var) → Eval(Var)

▸ e.g., α ≡ x ∶= y+5 and evaluation η(x) = 17 and η(y) = −2
▸ Effect(α, η)(x) = η(y)+5 = 3, and Effect(α, η)(y) = η(y) = −2



Program graphs

A program graph PG over set Var of typed variables is a tuple

(Loc,Act, Effect,Ð→, Loc0, g0) where

▸ Loc is a set of locations with initial locations Loc0 ⊆ Loc

▸ Act is a set of actions

▸ Effect ∶ Act × Eval(Var) → Eval(Var) is the effect function
▸ Ð→ ⊆ Loc × ( Cond(Var)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Boolean conditions over Var

×Act) × Loc, transition relation

▸ g0 ∈ Cond(Var) is the initial condition.

Notation: ℓ
g∶α
−−−→ ℓ

′
denotes (ℓ, g, α, ℓ′) ∈Ð→



Beverage vending machine

▸ Loc = { start, select }with Loc0 = { start }
▸ Act = {bget, sget, coin, ret_coin, refill }
▸ Var = {nsprite, nbeer }with domain {0, 1, . . . ,max }
▸ Effect:

Effect(coin, η) = η
Effect(ret_coin, η) = η
Effect(sget, η) = η[nsprite ∶= nsprite−1]
Effect(bget, η) = η[nbeer ∶= nbeer−1]
Effect(refill, η) = η[nsprite ∶= max, nbeer ∶= max]

▸ g0 = (nsprite = max ∧ nbeer = max)



From program graphs to transition systems

▸ Basic strategy: unfolding
▸ state = location (current control) ℓ + data valuation η
▸ initial state = initial location satisfying the initial condition g0

▸ Propositions and labeling
▸ propositions: ‘‘ℓ’’ and ‘‘x ∈ D’’ for D ⊆ dom(x)
▸ ⟨ℓ, η⟩ is labeled with ‘‘ℓ’’ and all conditions that hold in η

▸ ℓ
g∶α−−−→ ℓ

′ and g holds in η then ⟨ℓ, η⟩ α−−→ ⟨ℓ′, Effect(α, η)⟩



Structured operational semantics

▸ The notation
premise

conclusion
means:

If the premise holds, then the conclusion holds

▸ Such ‘‘if . . ., then . . .’’ propositions

are also called inference rules

▸ If the premise is a tautology, it may be omitted

(as well as the ‘‘solid line’’)

▸ In the latter case, the rule is also called an axiom



Transition systems for program graphs

The transition system TS(PG) of program graph

PG = (Loc,Act, Effect,Ð→, Loc0, g0)
over set Var of variables is the tuple (S,Act,Ð→, I,AP, L)where
▸ S = Loc × Eval(Var)
▸ Ð→⊆ S × Act × S is defined by the rule:

ℓ
g∶α−−−→ ℓ

′ ∧ η ⊧ g

⟨ℓ, η⟩ α−−→ ⟨ℓ′, Effect(α, η)⟩
▸ I = {⟨ℓ, η⟩ ∣ ℓ ∈ Loc0, η ⊧ g0}
▸ AP = Loc ∪ Cond(Var) and
L(⟨ℓ, η⟩) = {ℓ} ∪ {g ∈ Cond(Var) ∣ η ⊧ g}.



start

select

startstart

selectselect

start

startstart

select selectselect

startstart

selectselect

start

select

coin

coin coin

bget

sget

coin
coin

coin

bget

sget

coincoin

sget

bget

sgetbget

bget

sget

bget

sget

coinret_coin

refill

refill refill



Transition systems ≠ finite automata

As opposed to finite automata, in a transition system:

▸ there are no accept states

▸ set of states and actions may be countably infinite

▸ may have infinite branching

▸ actions may be subject to synchronization

▸ nondeterminism has a different role

Transition systems are appropriate for reactive system behaviour



Interleaving

▸ Abstract from decomposition of system in components

▸ Actions of independent components are merged or
‘‘interleaved’’

▸ a single processor is available
▸ on which the actions of the processes are interleaved

▸ No assumptions are made on the order of processes
▸ possible orders for non-terminating independent processes P

and Q:
P Q P Q P Q Q Q P . . .

P P Q P P Q P P Q . . .

P Q P P Q P P P Q . . .

▸ assumption: there is a scheduler with an a priori unknown

strategy



Interleaving

▸ Justification for interleaving:

the effect of concurrently executed,

independent actions α and β
equals

the effect when α and β are successively executed

in arbitrary order

▸ Symbolically this is stated as:

Effect(α ∣∣∣ β, η) = Effect((α ; β) + (β ; α), η)

▸ ∣∣∣ stands for the (binary) interleaving operator
▸ ‘‘;’’ stands for sequential execution,

and ‘‘+’’ for non-deterministic choice



Interleaving

x ∶= x + 1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=α

∣∣∣ y ∶= y − 2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=β

x=0

x=1

α ∣∣∣

y=7

y=5

β = x=1, y=7

x=0, y=7

x=0, y=5

x=1, y=5

α

β α

β



Interleaving of transition systems

Let TSi = (Si ,Acti ,→i , Ii ,APi , Li) i=1, 2, be two transition systems.

Transition system

TS1 ∣∣∣ TS2 = (S1 × S2,Act1 ⊎ Act2,→, I1 × I2,AP1 ⊎ AP2, L)
where L(⟨s1, s2⟩) = L1(s1) ∪ L2(s2) and the transition relation→ is

defined by the rules:

s1
α−−→1 s

′
1⟨s1, s2⟩ α−−→ ⟨s′1, s2⟩ and

s2
α−−→2 s′2⟨s1, s2⟩ α−−→ ⟨s1, s′2⟩



Interleaving of program graphs

For program graphs PG1 (on Var1) and PG2 (on Var2) without shared

variables, i.e., Var1 ∩ Var2 = ∅,
TS(PG1) ∣∣∣ TS(PG2)

faithfully describes the concurrent behavior of PG1 and PG2

what if they have variables in common?



Shared variable communication

x ∶= 2⋅x´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
action α

∣∣∣ x ∶= x + 1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
action β

with initially x = 3

x=3

x=6

α ∣∣∣

x=3

x=4

β = x=6, x=3

x=3, x=3

x=3, x=4

x=6, x=4

α

β α

β

⟨x=6, x=4⟩ is an inconsistent state!

⇒ no faithful model of the concurrent execution of α and β

Idea: first interleave, then unfold



Interleaving of program graphs

Let PGi = (Loci ,Acti , Effecti ,Ð→ i , Loc0,i , g0,i) over variables Vari.
Program graph PG1 ∣∣∣PG2 over Var1 ∪ Var2 is defined by:

(Loc1 × Loc2,Act1 ⊎ Act2, Effect,Ð→, Loc0,1 × Loc0,2, g0,1 ∧ g0,2)
whereÐ→ is defined by the inference rules:

ℓ1
g∶α
−−−→1 ℓ

′
1

⟨ℓ1, ℓ2⟩ g∶α
−−−→ ⟨ℓ′1, ℓ2⟩ and

ℓ2
g∶α
−−−→2 ℓ

′
2

⟨ℓ1, ℓ2⟩ g∶α
−−−→ ⟨ℓ1, ℓ′2⟩

and Effect(α, η) = Effecti(α, η) if α ∈ Acti .



Example

x ∶= 2⋅x´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
action α

∣∣∣ x ∶= x + 1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
action β

with initially x = 3

ℓ1

ℓ
′
1

x∶=2 ⋅ x ∣∣∣

ℓ2

ℓ
′
2

x∶=x + 1 = ℓ
′
1 ℓ2

ℓ1 ℓ2

ℓ1 ℓ
′
2

ℓ
′
1 ℓ
′
2

x∶=2 ⋅ x

x∶=x + 1 x∶=2 ⋅ x

x∶=x + 1

note that TS(PG1) ∣∣∣ TS(PG2) ≠ TS(PG1 ∣∣∣PG2)



On atomicity

x ∶= x + 1; y ∶= 2x + 1; z ∶= y div x´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
non-atomic

∣∣∣ x ∶= 0

Possible execution fragment:

⟨x = 11⟩ x∶=x+1
−−−−−−→ ⟨x = 12⟩ y∶=2x+1

−−−−−−−→ ⟨x = 12⟩ x∶=0
−−−−→ ⟨x = 0⟩ z∶=y/x

−−−−−−→† . . .

⟨x ∶= x + 1; y ∶= 2x + 1; z ∶= y div x⟩´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
atomic

∣∣∣ x ∶= 0

Either the left process or the right process is completed first:

⟨x = 11⟩ x∶=x+1
−−−−−−→ ⟨x = 12⟩ y∶=2x+1

−−−−−−−→ ⟨x = 12⟩ z∶=y/x
−−−−−→ ⟨x = 12⟩ x∶=0

−−−−→ ⟨x = 0⟩



Peterson’s mutual exclusion algorithm

P1 loop forever

⋮ (* non-critical actions *)

⟨b1 ∶= true; x ∶= 2⟩; (* request *)

wait until (x = 1 ∨ ¬b2)

do critical section od

b1 ∶= false (* release *)

⋮ (* non-critical actions *)

end loop

bi is true if and only if process Pi is waiting or in critical section

if both processes want to enter their critical section, x decides who gets

access



Banking system

Person Left behaves as follows:

while true {

. . . . . .

nc ∶ ⟨b1 , x = true, 2; ⟩

wt ∶ wait until(x == 1 ∣∣ ¬b2) {

cs ∶ . . .@account . . .}

b1 = false;

. . . . . .

}

Person Right behaves as follows:

while true {

. . . . . .

nc ∶ ⟨b2 , x = true, 1; ⟩

wt ∶ wait until(x == 2 ∣∣ ¬b1) {

cs ∶ . . .@account . . .}

b2 = false;

. . . . . .

}

Can we guarantee that only one person at a time has access to the bank

account?



Is the banking system safe?

x == 1

b1 = 1

b1 = 0

b2 = 0

x = 2

b1 = 1 b2 = 1

x = 1

b2 = 1

x = 1

b1 = 1

x = 2

b2 = 0
b1 = 0

x = 1

b1 = 1

x = 2

b2 = 1

x == 1 x == 2

x == 2

Manually inspect whether two may have access to the account

simultaneously: No



Banking system with non-atomic assignment

Person Left behaves as follows:

while true {

. . . . . .

nc ∶ x = 2;

rq ∶ b1 = true;

wt ∶ wait until(x == 1 ∣∣ ¬b2) {

cs ∶ . . .@account . . .}

b1 = false;

. . . . . .

}

Person Right behaves as follows:

while true {

. . . . . .

nc ∶ x = 1;

rq ∶ b2 = true;

wt ∶ wait until(x == 2 ∣∣ ¬b1) {

cs ∶ . . .@account . . .}

b2 = false;

. . . . . .

}



On atomicity again

Possible state sequence:

⟨nc1, nc2, x = 1, b1 = false, b2 = false⟩
⟨nc1, rq2, x = 1, b1 = false, b2 = false⟩
⟨rq1, rq2, x = 2, b1 = false, b2 = false⟩
⟨wt1, rq2, x = 2, b1 = true, b2 = false⟩
⟨cs1, rq2, x = 2, b1 = true, b2 = false⟩
⟨cs1, wt2, x = 2, b1 = true, b2 = true⟩
⟨cs1, cs2, x = 2, b1 = true, b2 = true⟩!

violation of the mutual exclusion property



Parallelism and handshaking

▸ Concurrent processes run truly in parallel

▸ To obtain cooperation, some interaction mechanism is needed

▸ If processes are distributed there is no shared memory

⇒ Message passing
▸ synchronous message passing (= handshaking)
▸ asynchronous message passing (= channel communication)



Handshaking

▸ Concurrent processes interact by
synchronous message passing

▸ processes execute synchronized actions together
▸ that is, in interaction both processes need to participate at the

same time
▸ the interacting processes ‘‘shake hands’’

▸ Abstract from information that is exchanged

▸ H is a set of handshake actions
▸ actions outside H are independent and are interleaved
▸ actions in H need to be synchronized



Handshaking
Let TSi = (Si ,Acti ,→i , Ii ,APi , Li), i=1, 2 and H ⊆ Act1 ∩ Act2.

TS1 ∥H TS2 = (S1 × S2,Act1 ∪ Act2,→, I1 × I2,AP1 ⊎ AP2, L)
where L(⟨s1, s2⟩) = L1(s1) ∪ L2(s2) and with→ defined by:

▸ interleaving for α /∈ H:
s1

α
−−→1 s

′
1⟨s1, s2⟩ α

−−→ ⟨s′1, s2⟩
s2

α
−−→2 s

′
2⟨s1, s2⟩ α

−−→ ⟨s1, s′2⟩
▸ handshaking for α ∈ H:

s1
α
−−→1 s

′
1 ∧ s2

α
−−→2 s

′
2⟨s1, s2⟩ α

−−→ ⟨s′1, s′2⟩

note that TS1 ∥H TS2 = TS2 ∥H TS1 but (TS1 ∥H1 TS2) ∥H2 TS3 ≠ TS1 ∥H1 (TS2 ∥H2 TS3)



A booking system

0

1

scanstore

0

1

storeprt_cmd

0

1

prt_cmdprint

BCR ∥ BP ∥ Printer

∥ is a shorthand for ∥H with H = Act1 ∩ Act2



The parallel composition

100 000 001

101

010

110 111 011scan print print scan

store print

prt_cmd scan

print store

scan prt_cmd



Pairwise handshaking

TS1∥ . . . ∥TSn for Hi,j = Acti ∩ Actj with Hi,j ∩ Actk = ∅ for k ∉ { i, j }
State space of TS1∥ . . . ∥TSn is the Cartesian product of those of TSi

▸ for α ∈ Acti ∖ ( ⋃
0<j≤n

i≠j

Hi,j) and 0 < i ≤ n:

si
α
−−→ i s

′
i⟨s1 , . . . , si , . . . , sn⟩ α

−−→ ⟨s1 , . . . , s′i , . . . sn⟩
▸ for α ∈ Hi,j and 0 < i < j ≤ n:

si
α
−−→ i s

′
i ∧ sj

α
−−→ j s

′
j

⟨s1 , . . . , si , . . . , sj , . . . , sn⟩ α
−−→ ⟨s1 , . . . , s′i , . . . , s′j , . . . , sn⟩



Synchronous parallelism

Let TSi = (Si ,Act,→i , Ii ,APi , Li) and Act × Act→ Act, (α, β)→ α ∗ β

TS1 ⊗ TS2 = (S1 × S2,Act,→, I1 × I2,AP1 ⊎ AP2, L)
with L as defined before and→ is defined by the following rule:

s1
α
−−→ 1 s

′
1 ∧ s2

β
−−→ 2 s

′
2

⟨s1, s2⟩ α∗β
−−−−→ ⟨s′1, s′2⟩

typically used for synchronous hardware circuits, cf. next example



r1

NOT

y
OR

r2

y′x

0

1

00 01

10 11

TS2 ∶TS1 ∶

000 100

010

101 001

111 011

110

TS1 ⊗ TS2:



Channels

▸ Processes communicate via channels (c ∈ Chan)

▸ Channels are first-in, first-out buffers

▸ Channels are types (wrt. their content --- dom(c))
▸ Channels buffer messages (of appropriate type)

▸ Channel capacity = maximum#messages that can be stored
▸ if cap(c) ∈ IN then c is a channel with finite capacity
▸ if cap(c) =∞ then c has an infinite capacity
▸ if cap(c) > 0, there is some ‘‘delay’’ between sending and

receipt
▸ if cap(c) = 0, then communication via c amounts to

handshaking



Channels

▸ Process Pi = program graph PGi + communication actions

c!v transmit the value v along channel c

c?x receive a message via channel c and assign it to variable x

▸ Comm =

{ c!v, c?x ∣ c ∈ Chan, v ∈ dom(c), x ∈ Var. dom(x) ⊇ dom(c) }
▸ Sending and receiving a message

▸ c!v puts the value v at the rear of the buffer c (if c is not full)
▸ c?x retrieves the front element of the buffer and assigns it to x

(if c is not empty)
▸ if cap(c) = 0, channel c has no buffer
▸ if cap(c) = 0, sending and receiving takes place simultaneously

this is called synchronous message passing or handshaking
▸ if cap(c) > 0, sending and receiving can never take place

simultaneously

this is called asynchronous message passing



Channel systems

A program graph over (Var, Chan) is a tuple
PG = (Loc,Act, Effect,→, Loc0, g0)

where

→ ⊆ Loc × (Cond(Var) × Act) × Loc ∪ Loc × Comm × Loc´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
communication actions

A channel system CS over (⋃0<i≤n Vari , Chan):
CS = [PG1 ∣ . . . ∣ PGn]

with program graphs PGi over (Vari , Chan)



Communication actions

▸ Handshaking

▸ if cap(c) = 0, then process Pi can perform ℓi
c!v
−−−→ ℓ

′
i only

▸ . . . if Pj, say, can perform ℓj
c?x
−−−→ ℓ

′
j

▸ the effect corresponds to the (atomic) distributed assignment

x ∶= v.

▸ Asynchronous message passing

▸ if cap(c) > 0, then process Pi can perform ℓi
c!v
−−−→ ℓ

′
i

▸ . . . if and only if less than cap(c)messages are stored in c

▸ Pj may perform ℓj
c?v
−−−→ ℓ

′
j if and only if the buffer of c is not

empty
▸ then the first element v of the buffer is extracted and assigned

to x (atomically)

executable if . . . effect

c!v c is not ‘‘full’’ Enqueue(c, v)
c?x c is not empty ⟨x ∶= Front(c) ; Dequeue(c)⟩;



The alternating bit protocol: sender

snd_msg(0) st_tmr(0) wait(0) chk_ack(0)

snd_msg(1)st_tmr(1)wait(1)chk_ack(1)

c!⟨m, 0⟩

lost

tmr_on

d?x

timeout

x = 1

x = 0 ∶
tmr_off

c!⟨m, 1⟩

lost

tmr_on

timeout

d?x

x = 0

x = 1 ∶
tmr_off



The alternating bit protocol: receiver

wait(0) pr_msg(0) snd_ack(0)

wait(1)pr_msg(1)snd_ack(1)

c?⟨m, y⟩

y = 1

y = 0

d!0

c?⟨m, y⟩

y = 0

y = 1

d!1

off

on

tmr_on

timeout

tmr_off



Channel evaluations

▸ A channel evaluation ξ is
▸ a mapping from channel c ∈ Chan onto a sequence

ξ(c) ∈ dom(c)∗ such that
▸ current length cannot exceed the capacity of c:

len(ξ(c)) ≤ cap(c)
▸ ξ(c) = v1 v2 . . . vk (cap(c) ≥ k) denotes v1 is at front of buffer etc.

▸ ξ[c ∶= v1 . . . vk] denotes the channel evaluation
ξ[c ∶= v1 . . . vk](c′) = { ξ(c′) if c ≠ c′

v1 . . . vk if c = c′.

▸ Initial channel evaluation ξ0 equals ξ0(c) = ε for any c



Transition system semantics of a channel system

Let CS = [PG1 ∣ . . . ∣ PGn] be a channel system over (Chan, Var)with
PGi = (Loci ,Acti , Effecti ,↝i , Loc0,i , g0,i) , for 0 < i ≤ n

TS(CS) is the transition system (S,Act,→, I,AP, L)where:
▸ S = (Loc1 × ⋅ ⋅ ⋅ × Locn) × Eval(Var) × Eval(Chan)
▸ Act = (⊎0<i≤n Acti) ⊎ { τ }
▸ → is defined by the inference rules on the next slides

▸ I = { ⟨ℓ1 , . . . , ℓn , η, ξ0⟩ ∣ ∀i. (ℓi ∈ Loc0,i & η ⊧ g0,i) & ∀c. ξ0(c) = ε }
▸ AP = ⊎0<i≤n Loci ⊎ Cond(Var)
▸ L(⟨ℓ1 , . . . , ℓn , η, ξ⟩) = { ℓ1 , . . . , ℓn } ∪ {g ∈ Cond(Var) ∣ η ⊧ g}



Inference rules (I)

▸ Interleaving for α ∈ Acti:

ℓi
g∶α
−−−→ ℓ

′
i ∧ η ⊧ g

⟨ℓ1, . . . , ℓi , . . . , ℓn, η, ξ⟩ α
−−→ ⟨ℓ1, . . . , ℓ′i , . . . , ℓn, η′, ξ⟩

where η′ = Effect(α, η)
▸ Synchronous message passing over c ∈ Chan, cap(c) = 0:

ℓi
c?x
−−−→ ℓ

′
i ∧ ℓj

c!v
−−−→ ℓ

′
j ∧ i ≠ j

⟨ℓ1, . . . , ℓi , . . . , ℓj , . . . , ℓn, η, ξ⟩ τ
−−→ ⟨ℓ1, . . . , ℓ′i , . . . , ℓ′j , . . . , ℓn, η′, ξ⟩

where η′ = η[x ∶= v].



Inference rules (II)

▸ Asynchronous message passing for c ∈ Chan, cap(c) > 0:
▸ receive a value along channel c and assign it to variable x:

ℓi
c?x
−−−→ ℓ

′
i ∧ len(ξ(c)) = k > 0 ∧ ξ(c) = v1 . . . vk

⟨ℓ1 , . . . , ℓi , . . . , ℓn , η, ξ⟩ τ
−−→ ⟨ℓ1 , . . . , ℓ′i , . . . , ℓn , η′ , ξ′⟩

where η′ = η[x ∶= v1] and ξ′ = ξ[c ∶= v2 . . . vk].
▸ transmit value v ∈ dom(c) over channel c:

ℓi
c!v
−−−→ ℓ

′
i ∧ len(ξ(c)) = k < cap(c) ∧ ξ(c) = v1 . . . vk

⟨ℓ1 , . . . , ℓi , . . . , ℓn , η, ξ⟩ τ
−−→ ⟨ℓ1 , . . . , ℓ′i , . . . , ℓn , η, ξ′⟩

where ξ′ = ξ[c ∶= v1 v2 . . . vk v].



Handling unexpected messages

sender S timer receiver R channel c channel d event

snd_msg(0) off wait(0) ∅ ∅
st_tmr(0) off wait(0) ⟨m, 0⟩ ∅ message with bit 0

transmitted

wait(0) on wait(0) ⟨m, 0⟩ ∅
snd_msg(0) off wait(0) ⟨m, 0⟩ ∅ timeout

st_tmr(0) off wait(0) ⟨m, 0⟩ ⟨m, 0⟩ ∅ retransmission

st_tmr(0) off pr_msg(0) ⟨m, 0⟩ ∅ receiver reads

first message

st_tmr(0) off snd_ack(0) ⟨m, 0⟩ ∅
st_tmr(0) off wait(1) ⟨m, 0⟩ 0 receiver changes

into mode-1

st_tmr(0) off pr_msg(1) ∅ 0 receiver reads

retransmission

st_tmr(0) off wait(1) ∅ 0 and ignores it

⋮ ⋮ ⋮ ⋮ ⋮



nanoPromela

▸ Promela (Process Meta Language):
modeling language for SPIN

▸ most widely used model checker
▸ developed by Gerard Holzmann (Bell Labs, NASA JPL)
▸ ACM Software Award 2002

▸ nanoPromela is the core of Promela
▸ shared variables and channel-based communication
▸ formal semantics of a Promela model is a channel system
▸ processes are defined by means of a guarded command

language

▸ No actions, statements describe effect of actions



nanoPromela

nanoPromela-program P = [P1∣ . . . ∣Pn]with Pi processes
A process is specified by a statement:

stmt ∶∶= skip ∣ x ∶= expr ∣ c?x ∣ c!expr ∣
stmt1 ; stmt2 ∣ atomic{assignments} ∣
if ∶∶ g1 ⇒ stmt1 . . . ∶∶ gn ⇒ stmtn fi ∣
do ∶∶ g1 ⇒ stmt1 . . . ∶∶ gn ⇒ stmtn od

assignments ∶∶= x1 ∶= expr1 ; x2 ∶= expr2 ; . . . ; xm ∶= exprm

x is a variable in Var, expr an expression and c a channel, gi a guard

assume the Promela specification is type-consistent



Conditional statements

if ∶∶ g1 ⇒ stmt1 . . . ∶∶ gn ⇒ stmtn fi

▸ Nondeterministic choice between statements stmti for which

gi holds

▸ Test-and-set semantics: (deviation from Promela)

▸ guard evaluation + selection of enabled command + execution

first atomic step

of selected statement is all performed atomically

▸ The if--fi--command blocks if no guard holds
▸ parallel processes may unblock a process by changing shared

variables
▸ e.g., when y=0, if ∶∶ y > 0 ⇒ x ∶= 42 fiwaits until y exceeds 0

▸ Standard abbreviations:
▸ if g then stmt1 else stmt2 fi ≡ if ∶∶ g⇒ stmt1 ∶∶ ¬g⇒ stmt2 fi
▸ if g then stmt1 fi ≡ if ∶∶ g⇒ stmt1 ∶∶ ¬g⇒ skip fi



Iteration statements

do ∶∶ g1 ⇒ stmt1 . . . ∶∶ gn ⇒ stmtn od

▸ Iterative execution of nondeterministic choice among
gi ⇒ stmti

▸ where guard gi holds in the current state
▸ No blocking if all guards are violated; instead, loop is aborted

▸ do ∶∶ g⇒ stmt od ≡while g do stmt od

▸ No break-statements to abort a loop (deviation from Promela)



Peterson’s algorithm

The nanoPromela-code of process P1 is given by the statement:

do ∶∶ true ⇒ skip;

atomic{b1 ∶= true; x ∶= 2};
if ∶∶ (x = 1) ∨ ¬b2 ⇒ crit1 ∶= true fi

atomic{crit1 ∶= false;b1 ∶= false}
od



Beverage vending machine

The following nanoPromela program describes its behaviour:

do ∶∶ true ⇒

skip;

if ∶∶ nsprite > 0 ⇒ nsprite ∶= nsprite − 1

∶∶ nbeer > 0 ⇒ nbeer ∶= nbeer − 1

∶∶ nsprite = nbeer = 0 ⇒ skip

fi

∶∶ true ⇒ atomic{nbeer ∶= max;nsprite ∶= max}
od


