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Propositional Logic (PL)

PL Syntax

Atom

Literal
Formula

truth symbols 7(“true”) and L(“false”)
propositional variables P, Q,R, P1,Q1, Ry, -+
atom « or its negation -«
literal or application of a
logical connective to formulae F, Fy, F;

-F “not” (negation)

Fi A F,  "and” (conjunction)
Fi v F, “or” (disjunction)
Fi — F>  “implies” (implication)
Fi < F, “ifand onlyif” (iff)



PL Semantics

Formula F + Interpretation /=  Truth value

(true, false)
Interpretation

I: {P~ true,Q ~ false, -}

Evaluation of F under I

F | -F

where 0 corresponds to value false
0 ! 1 true
11 0

FilR|FRAR|FRVE|[FR >FRB|F[ <R

0 0 1 1

—_ = O O

0

1 0 1 1 0
0 0 1 0 0
1 1 1 1 1




Satisfiability and Validity

F is satisfiable iff there exists an interpretation / such that / = F.
F is valid iff for all interpretations /, | = F.

\ F is valid iff =F is unsatisfiable \

Satisifability and validity are decidable (truth tables, BDDs, DPLL, . ..)
Example F:PAQ - PvVv -Q

PQ|PrQ|Q[PvQ|F]
00 0 |1 1 1
01| 0 |o o |1
10 0 | 1 1 1
11 1 | o 1 1

Thus F is valid.



First-Order Logic (FOL)

Also called Predicate Logic or Predicate Calculus

FOL Syntax
variables
constants
functions
terms

predicates
atom
literal

X, Y52,
a,b,c,

f’ g, h,

variables, constants or

n-ary function applied to n terms as arguments
a,x,f(a),g(x,b),f(g(x,g(b)))

p,q,r, -

T, 1, or an n-ary predicate applied to n terms
atom or its negation

p(f(x), g(x.f(x))),  =p(f(x),g(x.f(x)))

Note: O0-ary functions: constant
0-ary predicates: P,Q,R, ...



Quantifiers

existential quantifier  3x.F[x]
“there exists an x such that F[x]"

universal quantifier  Vx.F[x]
“for all x, F[x]"

FOL formula literal, application of logical connectives
(=, v, A, >, <) to formulae,
or application of a quantifier to a formula



Example: FOL formula

vx. p(f(x),x) = (3y. p(f(g(x.¥)),a(x:¥))) A a(x.f(x))
G

The scope of Vx is F.
The scope of Ay is G.
The formula reads:
“for all x,
if p(£(x), )
then there exists a y such that

p(f(9(x.y)),g(x.y)) and q(x, f(x))"



FOL Semantics
An interpretation / : (D), ;) consists of:

» Domain D,
non-empty set of values or objects
cardinality |D)| finite (eg, 52 cards),
countably infinite (eg, integers), or
uncountably infinite (eg, reals)
» Assignment a;

» each variable x assigned value x; € D,
» each n-ary function f assigned

fi: D) - D,

In particular, each constant a (0-ary function) assigned value
a € D/
» each n-ary predicate p assigned

p;: D] — {true, false}

In particular, each propositional variable P (0-ary predicate)
assigned truth value (true, false)



Example:
F: p(f(x,y),z) = p(y.9(z,x))

Interpretation /: (Dy, o))
D=7Z={-,-2,-1,0,1,2,---} integers
a:{f>+,g——pr>}

Therefore, we can write

Fi:x+y>z > y>z-x

(This is the way we'll write it in the future!)
Also
a: {x~> 13,y 42,z 1}
Thus
F:13+42>1 - 42>1-13

Compute the truth value of F under/

1. I B x+y>z since 13+42>1
2. | £ y>z-x since42>1-13
3. 1 & F by1,2,and -

Fis true under/



Semantics: Quantifiers

x variable.

x-variant of interpretation / is an interpretation J : (D, a;) such that
» D/=D,
» oy[y] = ay[y] for all symbols y, except possibly x

That is, | and J agree on everything except possibly the value of x

Denote J: /< {x — v} the x-variant of / in which «,[x] = v for some
v e D). Then

» | = Vx.F iffforallveD, /< {x—v} E F
» | £ Ix.F iffthereexistsveDjst./<q {x v} £ F



Example
For QQ, the set of rational numbers, consider

F:Vx.dy.2xy=x

Compute the value of F; (F under /):
Let

J12/<]{X'—>V} JzIJ1<]{,V'—>%}
x-variant of / y-variant of J;
forv e Q.
Then
1. J, B 2xy=x since2x 3 =v

2. J1 E dy.2xy=x
3. | E V¥x.dy.2xy=x since v € QQ is arbitrary



Satisfiability and Validity

F is satisfiable iff there exists I s.t./ = F
Fisvalidiffforall/,l & F

F is valid iff —F is unsatisfiable

» FOL is undecidable (Turing & Church)
There does not exist an algorithm for deciding if a FOL formula
Fis valid, i.e. always halt and says “yes” if F is valid or say “no"” if
Fis invalid.

» FOL is semi-decidable
There is a procedure that always halts and says “yes” if F is
valid, but may not halt if F is invalid.



Semantic Argument Method
Proof rules for propositional logic

| = -F I ¢ =F
I F I'eF
I FAG I FAG
TeF TEF | T#G
I':G<—and “or
= FvG I'# FvG
I EF e G In#F
I#G
l=F->G I# F>G
I¢F | 1=G = F
I# G
I FeG I Feg
I'= FAG I'# FvG = FA-G | | E-FAG
I = F
I # F

T
.



Semantic Argument Method

Proof rules for quantifiers

I = Vx.F I # 3Ix.F
I<{x~v}EF I<{x—v} ¥ F
I e 3xF I Vx.F

forafreshv € D, fora freshv € D,

Ia9{x~v} EF I<{x~vVv} ¥ F

JidQ o} = p(s1,...550)

Kl {om ol o plth..nty)
lE L

forallie {1,...,n}, as[si] = ak[t]




First-Order Theories

First-order theory T defined by
» Signature X - set of constant, function, and predicate symbols
» Set of axioms At - set of closed (no free variables) ~-formulae

>-formula constructed of constants, functions, and predicate
symbols from X, and variables, logical connectives, and quantifiers

The symbols of X are just symbols without prior meaning --- the
axioms of T provide their meaning

A X-formula F is valid in theory T (T-valid, also T = F),
if every interpretation / that satisfies the axioms of T,
i.e.] £ Aforevery A € Ar (T-interpretation)
also satisfies F,
iel = F



A X-formula F is satisfiable in T (T-satisfiable), if there is a
T-interpretation (i.e. satisfies all the axioms of T) that satisfies F

Two formulae F; and F; are equivalent in T (T-equivalent), if
TEF < F,
i.e.if for every T-interpretation |,/ = Fiffl £ F;

A fragment of theory T is a syntactically-restricted subset of
formulae of the theory.

Example: quantifier-free segment of theory T is the set of
quantifier-free formulae in T.

Atheory T is decidable if T = F (T-validity) is decidable for every
>-formula F,

i.e., there is an algorithm that always terminate with “yes”,

if F is T-valid, and “no”, if F is T-invalid.
A fragment of T is decidable if T £ F is decidable for every
Y-formula F in the fragment.



Theory of Equality T

Signature

=_:{=sab,¢c,--f,g,h,-,p,q,r,--}

consists of

» =,abinary predicate, interpreted by axioms.
» all constant, function, and predicate symbols.

Axioms of T¢

1.
2
3.
4. for each positive integer n and n-ary function symbol f,

VX. X =X (reflexivity)
VXY Xx=y - y=X (symmetry)
VX, Y,Z.X=Y ANy=Z - X=Z (transitivity)

VX1, Xms Yoo Yn NiXxi=Yi = f(x,...%0) =f(Y1,...,¥n)
(congruence)

. for each positive integer n and n-ary predicate symbol p,

VX1 e X YooY AiXxi=Yi = (P(X1, ..., %n) < pY1s--25Yn))
(equivalence)

Congruence and Equivalence are axiom schemata. For example,
Congruence for binary function f, forn = 2:

VX1,X2,Y1,¥2. X1 = Y1 A X2 =Y2 = F(x1,%2) = H(y1,2)



Tt is undecidable.

The quantifier-free fragment of T¢ is decidable.
Very efficient algorithm.




Natural Numbers and Integers

Natural numbers N={0,1,2,--}
Integers Z={-+--2,-1,0,1,2,---}

Three variations:
» Peano arithmetic Tpa: natural numbers with addition and
multiplication
» Presburger arithmetic Ty: natural numbers with addition

» Theory of integers Ty: integers with +, —, >



1. Peano Arithmetic Tp4 (first-order arithmetic)

zPA: {0> 1) +, :}

The axioms:

1. VX.=(x+1=0)

2. VY. x+1=y+1 - x=y

3. F[O] A (Yx.F[x] — F[x+1]) - Vx.F[x]
4. Vx.x+0=x

5. 90y x+(y+1)=(x+y)+1

6. Vx.x-0=0

7. 9%,y.x-(y+1)=x-y+x
Line 3 is an axiom schema.

Example: 3x + 5 = 2y can be written using Zpa as

X+X+x+1T+1T+1+1+1=y+y

(plus successor
(times zero
(times successor



We have > and > since
3x+5>2y writeas 3z.z+#0 A 3x+5=2y+z
3x+5>2y writeas Jz.3x+5=2y+z

Example:

» Pythagorean Theorem is Tpa-valid
Iy, zx#0AYy+0AZz+0 A XX+Yy=2Z

» Fermat’s Last Theorem is Tpa-invalid (Andrew Wiles, 1994)
dn.n>2 - IxyY,zx+0Ay#0AzZz£0AX"+y" =2"

Remark (Godel's first incompleteness theorem)

Peano arithmetic Tpy does not capture true arithmetic:

There exist closed Xps-formulae representing valid propositions of
number theory that are not Tpa-valid.

The reason: Tpa actually admits nonstandard interpretations

Satisfiability and validity in Tpy is undecidable.
Restricted theory -- no multiplication




2. Presburger Arithmetic Ty

In: {0, 1, +, =} no multiplication!
Axioms Ty
1. Vx. =(x+1=0) (zero)
2. V%, y.x+1=y+1 - x=y (successor)
3. F[0] A (Vx.F[x] — F[x+1]) - Vx.F[x] (induction)
4, Vx.x+0=x (plus zero)
5. ¥,y x+(y+1)=(x+y)+1 (plus successor)

3is an axiom schema.

Tn-satisfiability and Ty-validity are decidable
(Presburger, 1929)




3. Theory of Integers Tz

57 {0 =2,-1,0,1,2, ...,=3,-2,2,3, ..., + - =, >}
where
»...,—-2,-1,0, 1, 2, ... are constants
> ...,—3,-2,2., 3., ...areunary functions
(intended 2 - x is 2x)
-, =, >

Tz and Ty have the same expressiveness

e Every T;-formula can be reduced to Zn-formula.

Example: Consider the Tz-formula
Fo: Vw,x.3dy,z.x+2y-z-13>-3w+5

Introduce two variables, v, and v, (range over the nonnegative
integers) for each variable v (range over the integers) of F



V' Wp, Wns Xps Xn. 3Yps Yns Zps Zn.

Fqi:
1 (Xp=Xn) +2(Yp—Yn) —(2p—2n) = 13> -3(Wp—Wp) +5

Eliminate — by moving to the other side of >

£ VWp, Wns Xps Xn. 3Yps Yns> Zps Zn-
2 .
Xp+2Yp+2Zn+3Wp > Xn +2Yn+2p + 13+ 3wy +5

Eliminate >

YWy, Wn, Xp, Xn. 3Yp, Yn»> Zp, Zn. 3U.
-(u=0) A
Xp+Yp+Yp+2Zn+Wp+Wp+ Wy

=Xp+Yn+Yn+t2Zp+Wp+Wy+Wy+u
+1+1T+1T+1+1T+1+1+1+1
+T+1T+1T+1T+1+1+1+1+1.

F3:

which is a Ty-formula equivalent to Fo.



e Every Ty-formula can be reduced to 25 -formula.

Example: To decide the Ty-validity of the Ty-formula
Vx.dy.x=y+1
decide the Tz-validity of the Tz-formula
Vx.x20 - dy.y>20 A x=y+1,

where t; >t expandstot; =t, v t; >t

Ty-satisfiability and Ty-validity is decidable




Rationals and Reals
2={0,1,+ -, - = >}
» Theory of Reals Tr (with multiplication)

x’=2 = x:i\/i

» Theory of Rationals Tg (no multiplication)

2x =7 = X=
L

X+X

NN

Note: Strict inequality OK

Vx,y.3z.x+y>z
rewrite as

Vx,y.3z. ~(x+y=2z) A X+y>2z



1. Theory of Reals Tg

ZR: {O) 1) +, = S Z}
with multiplication.

Example:
Va,b,c.b®> —4ac>0 < Ix.ax>* +bx+c=0

is Tr-valid.

Tr is decidable (Tarski, 1930)
High time complexity




2. Theory of Rationals Tg

2@2 {0, 1, +, —, =, 2}
without multiplication.

Rational coefficients are simple to express in Tg
Example: Rewrite

1 2

—X+z-y>4

2 3y
as the Zg-formula

3x+4y > 24

Tg is decidable
Quantifier-free fragment of T is efficiently decidable




Recursive Data Structures (RDS)
1. RDS theory of LISP-like lists, Tcons

Zcons ¢ {cons, car, cdr, atom, =}

where
cons(a, b) -- list constructed by concatenating a and b
car(x) -- left projector of x: car(cons(a, b)) = a

cdr(x)  --right projector of x: cdr(cons(a, b)) = b
atom(x) --trueiff x is a single-element list

Axioms:
1. The axioms of reflexivity, symmetry, and transitivity of =
2. Congruence axioms

VX1,X2,Y1,Y2. X1 = X2 A Y1 =Y2 — cons(xi,y1) = cons(xz,y>)
Vx,y.x=y — car(x) = car(y)
Vx,y.x=y — cdr(x) = cdr(y)



N o v

Congruence axiom for atom

Vx,y.x=y — (atom(x) < atom(y))

Vx,y. car(cons(x,y)) = x (left projection)
Vx,y.cdr(cons(x,y)) =y (right projection)
Vx. -atom(x) — cons(car(x),cdr(x)) = x (construction)
Vx,y. -atom(cons(x,y)) (atom)

Teons is undecidable

Quantifier-free fragment of Tcns is efficiently decidable




2. Lists + equality

Tc:ons = Tg U Teons

Signature: 2E U Zeons
(this includes uninterpreted constants, functions, and predicates)

Axioms: union of the axioms of Tg and T¢ons

Teons 1S undecidable
Quantifier-free fragment of T, is efficiently decidable




Theory of Arrays

1. Theory of Arrays Ta

Signature
o L) () =)
where
» a[i] binary function --
read array a at index i (“read(a,i)")
» a(i<v) ternary function -
write value v to index i of array a (“write(a,i,e)")

Axioms

1. the axioms of (reflexivity), (symmetry), and (transitivity) of T¢

2. Va,i,j.i=j — ali] = alj] (array congruence)
3. Va,v,i,j.i=j - a(i<dv)[j]=v (read-over-write 1)
4. Va,v,i,j.i#j - a(i< v)[j] = alj] (read-over-write 2)



Note: = is only defined for array elements
F:alil]=e - a(i<e)=a
not Ta-valid, but
F':a[i]=e - Vj.a(i< e)[j] =a[j],

is Ta-valid.

Ta is undecidable
Quantifier-free fragment of T, is decidable




2. Theory of Arrays T, (with extensionality)

Signature and axioms of T, are the same as Tp, with one additional
axiom

Va,b. (Vi.a[i] =b[i]) < a=b (extensionality)

Example:
F:alil=e — a(i<e)=a

is T, -valid.

Ty is undecidable
Quantifier-free fragment of T, is decidable




