
Verification

Lecture 21

Bernd Finkbeiner

Peter Faymonville

Michael Gerke



Propositional Logic (PL)

PL Syntax

Atom truth symbols ⊺(‘‘true’’) and �(‘‘false’’)
propositional variables P,Q, R, P1,Q1, R1,⋯

Literal atom α or its negation ¬α
Formula literal or application of a

logical connective to formulae F, F1, F2
¬F ‘‘not’’ (negation)

F1 ∧ F2 ‘‘and’’ (conjunction)

F1 ∨ F2 ‘‘or’’ (disjunction)

F1 → F2 ‘‘implies’’ (implication)

F1 ↔ F2 ‘‘if and only if’’ (iff)



PL Semantics

Formula F + Interpretation I = Truth value

(true, false)
Interpretation

I ∶ {P ↦ true,Q↦ false,⋯}

Evaluation of F under I:

F ¬F

0 1

1 0

where 0 corresponds to value false

1 true

F1 F2 F1 ∧ F2 F1 ∨ F2 F1 → F2 F1 ↔ F2

0 0 0 0 1 1

0 1 0 1 1 0

1 0 0 1 0 0

1 1 1 1 1 1



Satisfiability and Validity

F is satisfiable iff there exists an interpretation I such that I ⊧ F.

F is valid iff for all interpretations I, I ⊧ F.

F is valid iff ¬F is unsatisfiable

Satisifability and validity are decidable (truth tables, BDDs, DPLL, . . .)

Example F ∶ P ∧ Q → P ∨ ¬Q

P Q P ∧ Q ¬Q P ∨ ¬Q F

0 0 0 1 1 1

0 1 0 0 0 1

1 0 0 1 1 1

1 1 1 0 1 1

Thus F is valid.



First-Order Logic (FOL)

Also called Predicate Logic or Predicate Calculus

FOL Syntax

variables x, y, z,⋯
constants a, b, c,⋯
functions f , g, h,⋯
terms variables, constants or

n-ary function applied to n terms as arguments

a, x, f(a), g(x, b), f(g(x, g(b)))
predicates p, q, r,⋯
atom ⊺, �, or an n-ary predicate applied to n terms

literal atom or its negation

p(f(x), g(x, f(x))), ¬p(f(x), g(x, f(x)))

Note: 0-ary functions: constant

0-ary predicates: P,Q, R, . . .



Quantifiers

existential quantifier ∃x.F[x]
‘‘there exists an x such that F[x]’’

universal quantifier ∀x.F[x]
‘‘for all x, F[x]’’

FOL formula literal, application of logical connectives

(¬, ∨ , ∧ , → , ↔ ) to formulae,

or application of a quantifier to a formula



Example: FOL formula

∀x. p(f(x), x) → (∃y. p(f(g(x, y)), g(x, y))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

G

) ∧ q(x, f(x))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
F

The scope of ∀x is F.
The scope of ∃y is G.
The formula reads:

‘‘for all x,

if p(f(x), x)
then there exists a y such that

p(f(g(x, y)), g(x, y)) and q(x, f(x))’’



FOL Semantics
An interpretation I ∶ (DI , αI) consists of:
▸ Domain DI

non-empty set of values or objects

cardinality ∣DI∣ finite (eg, 52 cards),

countably infinite (eg, integers), or

uncountably infinite (eg, reals)

▸ Assignment αI
▸ each variable x assigned value xI ∈ DI

▸ each n-ary function f assigned

fI ∶ Dn
I → DI

In particular, each constant a (0-ary function) assigned value

aI ∈ DI

▸ each n-ary predicate p assigned

pI ∶ Dn
I → {true, false}

In particular, each propositional variable P (0-ary predicate)

assigned truth value (true, false)



Example:

F ∶ p(f(x, y), z) → p(y, g(z, x))

Interpretation I ∶ (DI , αI)
DI = Z = {⋯,−2,−1, 0, 1, 2,⋯} integers

αI ∶ {f ↦ +, g↦ −, p↦>}
Therefore, we can write

FI ∶ x + y > z → y > z − x

(This is the way we’ll write it in the future!)

Also

αI ∶ {x ↦ 13, y ↦ 42, z ↦ 1}
Thus

FI ∶ 13 + 42 > 1 → 42 > 1 − 13

Compute the truth value of F under I

1. I ⊧ x + y > z since 13 + 42 > 1

2. I ⊧ y > z − x since 42 > 1 − 13

3. I ⊧ F by 1, 2, and →

F is true under I



Semantics: Quantifiers

x variable.

x-variant of interpretation I is an interpretation J ∶ (DJ , αJ) such that

▸ DI = DJ

▸ αI[y] = αJ[y] for all symbols y, except possibly x

That is, I and J agree on everything except possibly the value of x

Denote J ∶ I◁ {x ↦ v} the x-variant of I in which αJ[x] = v for some

v ∈ DI. Then

▸ I ⊧ ∀x. F iff for all v ∈ DI, I◁ {x ↦ v} ⊧ F

▸ I ⊧ ∃x. F iff there exists v ∈ DI s.t. I◁ {x ↦ v} ⊧ F



Example

ForQ, the set of rational numbers, consider

F ∶ ∀x. ∃y. 2 × y = x

Compute the value of FI (F under I):

Let
J1 ∶ I◁ {x ↦ v} J2 ∶ J1 ◁ {y ↦ v

2
}

x-variant of I y-variant of J1

for v ∈ Q.

Then

1. J2 ⊧ 2 × y = x since 2 × v
2
= v

2. J1 ⊧ ∃y. 2 × y = x

3. I ⊧ ∀x. ∃y. 2 × y = x since v ∈ Q is arbitrary



Satisfiability and Validity

F is satisfiable iff there exists I s.t. I ⊧ F

F is valid iff for all I, I ⊧ F

F is valid iff ¬F is unsatisfiable

▸ FOL is undecidable (Turing & Church)

There does not exist an algorithm for deciding if a FOL formula

F is valid, i.e. always halt and says ‘‘yes’’ if F is valid or say ‘‘no’’ if

F is invalid.

▸ FOL is semi-decidable

There is a procedure that always halts and says ‘‘yes’’ if F is

valid, but may not halt if F is invalid.



Semantic Argument Method
Proof rules for propositional logic

I ⊧ ¬F

I /⊧ F

I /⊧ ¬F

I ⊧ F

I ⊧ F ∧ G

I ⊧ F

I ⊧ G
←and

I /⊧ F ∧ G

I /⊧ F ∣ I /⊧ G
↖or

I ⊧ F ∨ G

I ⊧ F ∣ I ⊧ G

I /⊧ F ∨ G

I /⊧ F

I /⊧ G

I ⊧ F → G

I /⊧ F ∣ I ⊧ G

I /⊧ F → G

I ⊧ F

I /⊧ G

I ⊧ F ↔ G

I ⊧ F ∧ G ∣ I /⊧ F ∨ G

I /⊧ F ↔ G

I ⊧ F ∧ ¬G ∣ I ⊧ ¬F ∧ G

I ⊧ F

I /⊧ F

I ⊧ �



Semantic Argument Method

Proof rules for quantifiers

I ⊧ ∀x. F

I◁{x ↦ v} ⊧ F

I /⊧ ∃x. F

I◁{x ↦ v} /⊧ F

I ⊧ ∃x.F

I◁{x ↦ v} ⊧ F
for a fresh v ∈ DI

I /⊧ ∀x.F

I◁{x ↦ v} /⊧ F
for a fresh v ∈ DI

J ∶ I◁ {⋯↦ ⋯} ⊧ p(s1 , . . . , sn)
K ∶ I◁ {⋯↦ ⋯} /⊧ p(t1 , . . . , tn)

I ⊧ �

for all i ∈ {1, . . . , n}, αJ[si] = αK[ti]



First-Order Theories

First-order theory T defined by

▸ Signature Σ - set of constant, function, and predicate symbols

▸ Set of axioms AT - set of closed (no free variables) Σ-formulae

Σ-formula constructed of constants, functions, and predicate

symbols from Σ, and variables, logical connectives, and quantifiers

The symbols of Σ are just symbols without prior meaning --- the

axioms of T provide their meaning

A Σ-formula F is valid in theory T (T-valid, also T ⊧ F),

if every interpretation I that satisfies the axioms of T ,

i.e. I ⊧ A for every A ∈ AT (T-interpretation)

also satisfies F,

i.e. I ⊧ F



A Σ-formula F is satisfiable in T (T-satisfiable), if there is a

T-interpretation (i.e. satisfies all the axioms of T) that satisfies F

Two formulae F1 and F2 are equivalent in T (T-equivalent), if

T ⊧ F1 ↔ F2,

i.e. if for every T-interpretation I, I ⊧ F1 iff I ⊧ F2

A fragment of theory T is a syntactically-restricted subset of

formulae of the theory.

Example: quantifier-free segment of theory T is the set of

quantifier-free formulae in T .

A theory T is decidable if T ⊧ F (T-validity) is decidable for every

Σ-formula F,

i.e., there is an algorithm that always terminate with ‘‘yes’’,

if F is T-valid, and ‘‘no’’, if F is T-invalid.

A fragment of T is decidable if T ⊧ F is decidable for every

Σ-formula F in the fragment.



Theory of Equality TE
Signature

Σ= ∶ {=, a, b, c,⋯, f , g, h,⋯, p, q, r,⋯}
consists of

▸ =, a binary predicate, interpreted by axioms.
▸ all constant, function, and predicate symbols.

Axioms of TE

1. ∀x. x = x (reflexivity)

2. ∀x, y. x = y → y = x (symmetry)

3. ∀x, y, z. x = y ∧ y = z → x = z (transitivity)

4. for each positive integer n and n-ary function symbol f ,

∀x1, . . . , xn, y1, . . . , yn. ⋀i xi = yi → f(x1, . . . , xn) = f(y1, . . . , yn)
(congruence)

5. for each positive integer n and n-ary predicate symbol p,

∀x1, . . . , xn, y1, . . . , yn. ⋀i xi = yi → (p(x1, . . . , xn)↔ p(y1, . . . , yn))
(equivalence)

Congruence and Equivalence are axiom schemata. For example,

Congruence for binary function f2 for n = 2:

∀x1, x2, y1, y2. x1 = y1 ∧ x2 = y2 → f2(x1, x2) = f2(y1, y2)



TE is undecidable.

The quantifier-free fragment of TE is decidable.

Very efficient algorithm.



Natural Numbers and Integers

Natural numbers N = {0, 1, 2,⋯}
Integers Z = {⋯,−2,−1, 0, 1, 2,⋯}

Three variations:

▸ Peano arithmetic TPA: natural numbers with addition and

multiplication

▸ Presburger arithmetic TN: natural numbers with addition

▸ Theory of integers TZ: integers with +,−, >



1. Peano Arithmetic TPA (first-order arithmetic)

ΣPA ∶ {0, 1, +, ⋅, =}

The axioms:

1. ∀x. ¬(x + 1 = 0) (zero)

2. ∀x, y. x + 1 = y + 1 → x = y (successor)

3. F[0] ∧ (∀x. F[x] → F[x + 1]) → ∀x. F[x] (induction)

4. ∀x. x + 0 = x (plus zero)

5. ∀x, y. x + (y + 1) = (x + y) + 1 (plus successor)

6. ∀x. x ⋅ 0 = 0 (times zero)

7. ∀x, y. x ⋅ (y + 1) = x ⋅ y + x (times successor)

Line 3 is an axiom schema.

Example: 3x + 5 = 2y can be written using ΣPA as

x + x + x + 1 + 1 + 1 + 1 + 1 = y + y



We have > and ≥ since

3x + 5 > 2y write as ∃z. z ≠ 0 ∧ 3x + 5 = 2y + z

3x + 5 ≥ 2y write as ∃z. 3x + 5 = 2y + z

Example:

▸ Pythagorean Theorem is TPA-valid

∃x, y, z. x ≠ 0 ∧ y ≠ 0 ∧ z ≠ 0 ∧ xx + yy = zz

▸ Fermat’s Last Theorem is TPA-invalid (AndrewWiles, 1994)

∃n. n > 2 → ∃x, y, z. x ≠ 0 ∧ y ≠ 0 ∧ z ≠ 0 ∧ xn + yn = zn

Remark (Gödel’s first incompleteness theorem)

Peano arithmetic TPA does not capture true arithmetic:

There exist closed ΣPA-formulae representing valid propositions of

number theory that are not TPA-valid.

The reason: TPA actually admits nonstandard interpretations

Satisfiability and validity in TPA is undecidable.

Restricted theory -- no multiplication



2. Presburger Arithmetic TN

ΣN ∶ {0, 1, +, =} no multiplication!

Axioms TN:

1. ∀x. ¬(x + 1 = 0) (zero)

2. ∀x, y. x + 1 = y + 1 → x = y (successor)

3. F[0] ∧ (∀x. F[x] → F[x + 1]) → ∀x. F[x] (induction)

4. ∀x. x + 0 = x (plus zero)

5. ∀x, y. x + (y + 1) = (x + y) + 1 (plus successor)

3 is an axiom schema.

TN-satisfiability and TN-validity are decidable

(Presburger, 1929)



3. Theory of Integers TZ

ΣZ ∶ {. . . ,−2,−1, 0, 1, 2, . . . ,−3⋅,−2⋅, 2⋅, 3⋅, . . . , +, −, =, >}
where

▸ . . . ,−2,−1, 0, 1, 2, . . . are constants

▸ . . . ,−3⋅,−2⋅, 2⋅, 3⋅, . . . are unary functions

(intended 2 ⋅ x is 2x)

▸ +,−, =, >

TZ and TN have the same expressiveness

● Every TZ-formula can be reduced to ΣN-formula.

Example: Consider the TZ-formula

F0 ∶ ∀w, x. ∃y, z. x + 2y − z − 13 > −3w + 5

Introduce two variables, vp and vn (range over the nonnegative

integers) for each variable v (range over the integers) of F0



F1 ∶
∀wp,wn, xp, xn. ∃yp, yn, zp, zn.

(xp − xn) + 2(yp − yn) − (zp − zn) − 13 > −3(wp −wn) + 5

Eliminate − by moving to the other side of >

F2 ∶
∀wp,wn, xp, xn. ∃yp, yn, zp, zn.

xp + 2yp + zn + 3wp > xn + 2yn + zp + 13 + 3wn + 5

Eliminate >

F3 ∶

∀wp,wn, xp, xn. ∃yp, yn, zp, zn. ∃u.

¬(u = 0) ∧
xp + yp + yp + zn +wp +wp +wp

= xn + yn + yn + zp +wn +wn +wn + u

+1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

+1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 .

which is a TN-formula equivalent to F0.



● Every TN-formula can be reduced to ΣZ-formula.

Example: To decide the TN-validity of the TN-formula

∀x. ∃y. x = y + 1

decide the TZ-validity of the TZ-formula

∀x. x ≥ 0 → ∃y. y ≥ 0 ∧ x = y + 1 ,

where t1 ≥ t2 expands to t1 = t2 ∨ t1 > t2

TZ-satisfiability and TN-validity is decidable



Rationals and Reals

Σ = {0, 1, +, −, ⋅, =, ≥}

▸ Theory of Reals TR (with multiplication)

x2 = 2 ⇒ x = ±
√
2

▸ Theory of Rationals TQ (no multiplication)

2x®
x+x

= 7 ⇒ x =
2

7

Note: Strict inequality OK

∀x, y. ∃z. x + y > z

rewrite as

∀x, y. ∃z. ¬(x + y = z) ∧ x + y ≥ z



1. Theory of Reals TR

ΣR ∶ {0, 1, +, −, ⋅, =, ≥}
with multiplication.

Example:

∀a, b, c. b2 − 4ac ≥ 0 ↔ ∃x. ax2 + bx + c = 0

is TR-valid.

TR is decidable (Tarski, 1930)

High time complexity



2. Theory of Rationals TQ

ΣQ ∶ {0, 1, +, −, =, ≥}
without multiplication.

Rational coefficients are simple to express in TQ

Example: Rewrite
1

2
x +

2

3
y ≥ 4

as the ΣQ-formula

3x + 4y ≥ 24

TQ is decidable

Quantifier-free fragment of TQ is efficiently decidable



Recursive Data Structures (RDS)

1. RDS theory of LISP-like lists, Tcons

Σcons ∶ {cons, car, cdr, atom, =}

where

cons(a, b) -- list constructed by concatenating a and b

car(x) -- left projector of x: car(cons(a, b)) = a

cdr(x) -- right projector of x: cdr(cons(a, b)) = b

atom(x) -- true iff x is a single-element list

Axioms:

1. The axioms of reflexivity, symmetry, and transitivity of =

2. Congruence axioms

∀x1, x2, y1, y2. x1 = x2 ∧ y1 = y2 → cons(x1, y1) = cons(x2, y2)
∀x, y. x = y → car(x) = car(y)
∀x, y. x = y → cdr(x) = cdr(y)



3. Congruence axiom for atom

∀x, y. x = y → (atom(x) ↔ atom(y))

4. ∀x, y. car(cons(x, y)) = x (left projection)

5. ∀x, y. cdr(cons(x, y)) = y (right projection)

6. ∀x. ¬atom(x) → cons(car(x), cdr(x)) = x (construction)

7. ∀x, y. ¬atom(cons(x, y)) (atom)

Tcons is undecidable

Quantifier-free fragment of Tcons is efficiently decidable



2. Lists + equality

T=cons = TE ∪ Tcons

Signature: ΣE ∪ Σcons

(this includes uninterpreted constants, functions, and predicates)

Axioms: union of the axioms of TE and Tcons

T=cons is undecidable

Quantifier-free fragment of T=cons is efficiently decidable



Theory of Arrays

1. Theory of Arrays TA

Signature

ΣA ∶ {⋅[⋅], ⋅⟨⋅ ◁ ⋅⟩, =}
where

▸ a[i] binary function --

read array a at index i (‘‘read(a,i)’’)

▸ a⟨i◁ v⟩ ternary function --

write value v to index i of array a (‘‘write(a,i,e)’’)

Axioms

1. the axioms of (reflexivity), (symmetry), and (transitivity) of TE

2. ∀a, i, j. i = j → a[i] = a[j] (array congruence)

3. ∀a, v, i, j. i = j → a⟨i◁ v⟩[j] = v (read-over-write 1)

4. ∀a, v, i, j. i ≠ j → a⟨i◁ v⟩[j] = a[j] (read-over-write 2)



Note: = is only defined for array elements

F ∶ a[i] = e → a⟨i◁ e⟩ = a

not TA-valid, but

F′ ∶ a[i] = e → ∀j. a⟨i◁ e⟩[j] = a[j] ,

is TA-valid.

TA is undecidable

Quantifier-free fragment of TA is decidable



2. Theory of Arrays T=A (with extensionality)

Signature and axioms of T=A are the same as TA, with one additional

axiom

∀a, b. (∀i. a[i] = b[i]) ↔ a = b (extensionality)

Example:

F ∶ a[i] = e → a⟨i◁ e⟩ = a

is T=A -valid.

T=A is undecidable

Quantifier-free fragment of T=A is decidable


