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REVIEW: Decidability of first-order theories

Theory | full | QFF |
Te Equality no

Tea Peano arithmetic no | no
TN Presburger arithmetic

Tz integers

Tr reals

To rationals

Teons  lists no

Ta arrays no

Tx arrays with extensionality | no




Quantifier Elimination (QE)

Algorithm for elimination of all quantifiers of formula F until
quantifier-free formula G that is equivalent to F remains

Note: Could be enough to require that F is equisatisfiable to F/,
that is F is satisfiable iff F’ is satisfiable

A theory T admits quantifier elimination if there is an algorithm that
given X-formula F returns a quantifier-free X-formula G that is
T-equivalent to F.



Example

» For Zg-formula

F: 3Ix.2x =y,
quantifier-free Tg-equivalent Zg-formula is

G: T

» For Zz-formula

F: 3Ix.2x =y,
there is no quantifier-free Tz-equivalent Zz-formula.

» Let T be T with divisibility predicates |.
For Z5-formula
F: Ix.2x =y,
a quantifier-free T-equivalent X-formula is
G:2ly.



In developing a QE algorithm for theory T, we need only consider
formulae of the form

Ix. F
for quantifier-free F

Example: For Z-formula

Gy: . Vy. 3z. Fi[x,y,Z]
| —
Fa[xy]

Gy: Ix. Vy. Fa[x, y]
Gz: Ix. - Jy. -F[x,y]

|
F3 [X]

Gg: Ix. =F3[x]
N——
Fy4

G53 F4

Gs is quantifier-free and T-equivalent to G;



Quantifier Elimination for Ty,
ZZ: {...,_2,_1,0) 1) 2) --->_3')_2')2" 3" cees B 5 S, <}

Lemma:

Given quantifier-free z-formula F s.t. free(F) = {y}.
F represents the set of integers

S:{neZ : F{y » n}isTy-valid} .
Either SN Z* or Z* \ Sis finite.
where Z* is the set of positive integers

Example: Zz-formula  F: 3x.2x=y
S:even integers

SN Z*: positive even integers --- infinite

Z* \ S: positive odd integers - infinite

Therefore, by the lemma, there is no quantifier-free T;z-formula that
is Tz-equivalent to F.

Thus, Tz does not admit QE.



Augmented theory T,

¥,: 27 with countable number of unary divisibility predicates
k|- forkeZ*

Intended interpretations:
k | x holds iff k divides x without any remainder

Example:
Xx>TAy>1A2|x+y

is satisfiable (choose x = 2,y = 2).
-(2|x) A 4]x

is not satisfiable.

Axioms of T,: axioms of T with additional countable set of axioms

Vx.k|x < Jy.x=ky forkeZ*



T, admits QE (Cooper’'s method)

Algorithm: Given Zz-formula 3x. F[x], where F is quantifier-free,
construct quantifier-free Xz-formula that is equivalent to 3x. F[x].

M

Put F[x] into Negation Normal Form (NNF).
Normalize literals: s < t, k|t, or —(k|t)
Putxins < tononeside:hx <tors < hx
Replace hx with x” without a factor
Replace F[x'] by V F[j] for finitely many j.



Step 1: NNF

Put F[x] into NNF Fy[x], that is,
3x. F1[x] has negations only in literals (only A, v)
and Tz-equivalent to 3x. F[x]

To transform F to equivalent F” in NNF use recursively
the following template equivalences (left-to-right):

-(F1 A F < -F; v =F;
(F 2) 1 ’> e Morgan's Law
—|(F1 \ Fz) <~ —|F1 N —|F2
F-I d F2 <~ —|F‘| \Y F2
Fi < F < (F] - Fz) A (Fz - F])



Step 2: Normalize literals

t, or —(kit)

Normalize literals: s < t, k

Replace (left to right)

s=t o s<t+1 At<s+1
-(s=t) < s<tvit<s
-(s<t) <= t<s+1

The output 3x. F2[x] contains only literals of form
s<t, k|t, or =(k|t),

where s, t are T;-terms and k € Z*.



Step 3: Put x on one side

Putxins < tononeside:hx <tors < hx
Collect terms containing x so that literals have the form
hx<t, t<hx, k|hx+t, or =(k|hx+t),

where t is a term and h, k € Z*. The output is the formula 3x. F3[x],
which is Tz-equivalent to 3x. F[x].



Step 4: Eliminate coefficients

Replace hx with x” without a factor

Let
8" =lem{h : his a coefficient of x in F3[x]},

where Icm is the least common multiple. Multiply atoms in F3[x] by
constants so that ¢’ is the coefficient of x everywhere:

hx<t < &x<h't where h'h =4’
t<hx < ht<édx where h'h=¢’
k|hx+t < hk|&x+h't where h'h=¢’
~(k|hx+t) < =(h'k|&x+h't) where h'h=¢’

The result 3x. F5[x], in which all occurrences of x in F§[x] are in
terms &'x.

Replace §’x terms in F; with a fresh variable x’ to form
FY : F3{8'x - x"}



Finally, construct
WX FY X A& X
| ——
F4[X’]

3x’.F4[x'] is equivalent to 3x. F[x] and each literal of F4[x’] has one
of the forms:

(A) X' <a

(B) b<x

@ h|x' +c

(D) =(k|x"+d)
where a, b, ¢, d are terms that do not contain x, and h, k € Z*.



Step 5: Eliminate x’
Replace F[x'] by \/ F[j] for finitely many j.

1. Construct
left infinite projection F_o,[X]
of F4[x"] by
(A) replacing literalsx’ <aby T
(B) replacing literals b < x’ by 1L

idea: very small numbers satisfy (A) literals but not (B) literals
2. Let

k of (D) literals —(k | x" + d)

and B be the set of b terms appearing in (B) literals. Construct

52 {hof(C)IiteraIsh|x’+c }

)

Fs: \(S/F_OOU] v V'V Fa[b+]].
Jj=1

j=10beB

Fs is quantifier-free and T-equivalent to F.



Intuition of Step 5

Property (Periodicity)
ifk|d
thenk|niffk|n+Adforall A € Z
That is, k |- cannot distinguish between k | nand k | n + A4.

By the choice of § (Icm of the h's and k’s) --- no | literal in F5 can
distinguish between nand n + .

)

1)
Fs: \/Foooli] v \/ \/ Falb+]]
Jj=1

j=1beB



Intuition of Step 5
left disjunct V2., F_oo[J] :
Contains only | literals

Asserts: no leastn € Z s.t. F[n].

If there exists n satisfying F_,
then every n — A8, for A € Z*, also satisfies F_,

right disjunct /2., Vg Fa[b + /] :
IfneZisst F[n],
let b* be the largest b in (B) such that b < n is satisfied
then
FH(1<j<8).b"+j<n A F[b* +/]
In other words,

if there is a solution,
then one must already appear in § interval to the right of some b



Improvement: Symmetric Elimination

In Step 5, if there are fewer
(A) literals x’ < a

than
(B) literals b < x'.

Construct the right infinite projection F.[x] from F4[x'] by
replacing

each (A) literal X’ < a by 1
and

each (B) literal b < x’ by T.

Then right elimination.

8 8
Fs : _\/F+oo[—j] v V'V Fala-j].
J=1 j



Improvement: Eliminating Blocks of Quantifiers

3xq. - Ixn. F[X1, ..., Xn ]

where F quantifier-free.
Eliminating x, (left elimination) produces

)
G1 ¢ 3Axq.--3dXnq. \/F_OO[X1,...,Xn_1,j] \Y

j=1
0

\/\/F4[X1,...,Xn_1,b+j:|

j=1beB
which is equivalent to
B
Gz : \/ 3X1 . ”’E|Xn_1. F_OO[X1, e Xn=1 ,j] \%
j=1

)

\/ \/ E|X1. ---3Xn,1. F4[X1, e ,Xn,1,b +j]
j=1beB

Treat j as a free variable and examine only 1 + |B| formulae
> E|X1 . '--HXn_1 . F_OO[X1 s ,Xn_1,j]
» 3xq.--3Ixp-1. Fa[x1, ..., Xn-1,b +j] foreach b e B



