Verification

Lecture 23

Bernd Finkbeiner
Peter Faymonville
Michael Gerke

COlm UNIVERSITAT
"H"llll"“" DES
SAARLANDES

1/60

REVIEW: Decidability of first-order theories

Theory | full | QFF |
Te Equality no

N Peano arithmetic no | no
TN Presburger arithmetic

Tz integers

Tr reals

To rationals

Teons lists no

Ta arrays no

Tx arrays with extensionality | no

REVIEW: Quantifier Elimination (QE)

Algorithm for elimination of all quantifiers of formula F until
quantifier-free formula G that is equivalent to F remains

Note: Could be enough to require that F is equisatisfiable to F/,
that is F is satisfiable iff F" is satisfiable

A theory T admits quantifier elimination if there is an algorithm that
given Z-formula F returns a quantifier-free Z-formula G that is
T-equivalent to F.

/60

REVIEW: T, admits QE (Cooper’s method)

Algorithm: Given Ez-formula 3x. F[x], where F is quantifier-free,
construct quantifier-free X;-formula that is equivalent to 3x. F[x].

vk wn -

Put F[x] into Negation Normal Form (NNF).
Normalize literals: s < t, k|t, or —(k|t)

Putx ins <tononeside: hx < tors < hx
Replace hx with x” without a factor
Replace F[x'] by \/ F[j] for finitely many j.

Decision Procedures for Quantifier-free Fragments

For theory T with signature X and axioms Z-formulae of form

VX1, .. Xn. F[X15. .5 Xn]
Decide if
F[x1,....Xp] or 3x1,..., X0 F[X1,...,xn] is T-satisfiable
Decide if
Flx1,...,Xn] Or VX1,...,Xn. F[X1,...,Xp] is T-valid

where F is quantifier-free and free(F) = {x1,...,Xxn}
Note: no quantifier alternations

We consider only conjunctive quantifier-free Z-formulae, i.e.,
conjunctions of Z-literals (X-atoms or negations of X-atoms).
For given arbitrary quantifier-free Z-formula F, convert it into DNF
>-formula

Fiv...v F
where each F; conjunctive.
F is T-satisfiable iff at least one F; is T-satisfiable.

/60

Preliminary Concepts

Vector
variable n-vector n-vectora e Q" transpose
X1 a
x=| : a=| : a=[a -~ a]
Xn dn
Matrix
m x n-matrix
AeQmn transpose column ~
ayj
di--din an---am :
A= : ATZ : djt--- Qjj --+Ain
am1°+"dmn din**dmn

row

Multiplication

vector-vector

by
a'b= [ai--ap]|
bn
matrix-vector
an din
AX =
am1 Amn
matrix-matrix
ik byj
A B

where p; =aib; = aj

n
X1 Yizq AiXi

n
Xn >i=1 AmiXi

= p/j

S

S

—
Il

1=

dik bkj

S
...
=
I
LR

Special Vectors and Matrices

0 - vector (column) of Os

1-vector of 1s
_T n
Thus 1'x =) x;
i

10
[

o 1]
Thus 1A = Al = A

unit vector e; =

identity matrix (n x n)

/60

Vector Space - set S of vectors closed under addition and scaling of

vectors. That is,
ifvi,...,vgpeS then Avi+--+AVieS
fOI‘A],...,AnER.

Linear Equation

F:Ax=b
m x n-matrix variable n-vector m-vector
represents the Zg-formula

F: (G11X1 + -+ d1nXn =b1) A o A (GnﬂX] +

Gaussian Elimination

Find X s.t. AX = b by elementary row operations
» Swap two rows.
» Multiply a row by a nonzero scalar.
» Add one row to another.

“+ + dmnXn = bm)

/60

Example:

Solve
31 2 X1 6
1 0 1 Xy | =1
2 21 X3 2
Construct the augmented matrix
31 216
1 0 1|1
2 2 1|2

Apply the row operations as follows:
1. Add -2a, + 4a, toas

31 2| 6
1 0 1 1
0 0 1|-6

10/60

2. Add -a; + 2a; to ay

3 1 2| 6
0O -1 1]|-3
0 0 1|-6

This augmented matrix is in triangular form.

Solving
X3 = -6
—X2—X3=—3 = X2 = -3
3X1+X2+2x3 =6 = xX1=7

The solutionisx =[7 =3 —6]"

11/60

Inverse Matrix
A" is the inverse matrix of square matrix A if

AATT =ATTA=]
Square matrix A is nonsingular (invertible) if its inverse A~' exists.

How to compute A~' of A?

[Al] ———— [I|A7]
elementary
row operations

How to compute kth column of A='?
Solve Ay = ¢y, i.e.

0

: y=...
AT (kth column of A1)
elementary
row operations

12/60

Linear Inequality
G: Ax<b
represents the Zg-formula
G: (anx1+-+aipxn<by) A - A (AmiXq +++ + AmnXn < by)

The inequality describes a polyhedron in R".

For m x n-matrix A, m-vector b, variable n-vector x where m > n:

An n-vector v is a vertex of Ax < b if there is nonsingular
n x n-submatrix Ag and corresponding n-subvector by s.t.

AoV = by

13/60

Optimization Problem

T

max c'x ... objective function
subject to
Ax < b ...constraints

Solution: vertex v* satisfying AX < b and maximize ¢'x. That is,
Av* < band
¢'v* is maximal: ¢'v* > ¢'u for all U satisfying At < b
» If AX < bis unsatisfiable = maximum is —co

» It's possible that the maximum is unbounded
= maximum is co

14/60

Example: Consider optimization problem:

X
o y
max [1 1 -1 -1] ;
—
X
subject to
(-1 0 0 0] [0]
0 -1 0 0 . 0
0 0 -1 0 0
0 0 0 -1 Zy < |o
1 1 0 0 21 3
2
1 0 -1 0 2
[0 1 0 1] =* | 2]
——
A b

Ais a7 x 4-matrix, bisa 7-vector, and

X is a variable 4-vector representing the four variables {x, y, z, 2, }.

15/60

Example (cont):
The objective function is

(x-z1)+(y-22).
The constraints are equivalent to the Zg-formula

x>20Ay>0Az120A 220
AX+YLS3AX-Z1L2ANYy—-2252

v =[2100]"is a vertex of the constraints. For the nonsingular
submatrix Ag (rows 3, 4, 5, 6 of A), we have

00 -1 0][2 0
00 o -1f[1] |o
11 0 of|lo]| |3
10 -1 o]lo 2

Ao v bO

16/60

Duality Theorem
ForAe Z™", beZ™ ceZ",

max{C'x |AX<b} =min{y'b|y>0 A y/A=C"}
if the constraints are satisfiable.

That s,
maximizing the function ¢’ over Ax < b
(the primal form of the optimization problem)
is equivalent to
minimizing the function y'b over all the nonnegative y
sty'A=c
(the dual form of the optimization problem)

17/60

Outline of Algorithm
Given Zg-formula

F:anxg+-+amXn<by A -« A dmXq + -+ GmpXn < b

or in matrix notation

Note: e equations

anXj + ...+ aipXp = b;

are allowed --- break into two inequalities
ainX1 + ...+ 0inXn < bj A —ajix1 — ... —QjnXp < =b;.
e Strict inequalities
ain X1+ + AinXp < bj .

excluded from our discussion - but can be added.

18/60

Outline of Algorithm (cont)
To determine the satisfiability of F,

Step 0: reformulate the satisfiability of F as an optimization problem
Mg : max{c'x’ |A'’x' <b'}

s.t. Fis Tg-satisfiable iff the optimal value of M is a particular value
ve (derived from the structure of F)

Step 1, Step 2, ... (until termination) execute the simplex method

19/60

Outline of Algorithm (cont)

— -/ .
The simplex method traverses the vertices of A’X’ < b searching for
the maximum of the objective function ¢'x":
if V1, V, ... are the traversed vertices in Step 1, Step 2, ..., then

TV <CVy < oon .

The simplex method terminates at some vertex v;+ where ETV,-* is
the global optimum

Final step: Compare the discovered optimal value ¢'v;- to the
desired value vr.

» if equal, then F is Tg-satisfiable
» otherwise, F is Tg-unsatisfiable

20/60

Tp-Satisfiability

For a generic Zg-formula
F: A ainxi + -+ QjnXn < b;
the corresponding optimization problem is

max 1
subject to
ALy Ginxq + o+ QinXp < b

The optimum is —oo iff the constraints are Tp-unsatisfiable and 1
otherwise.

21/60

Tp-Satisfiability (cont.)

For a generic Xg-formula

F: Ay ainxi + -+ QinXn < b;
!
A Nz Gin X+ ==+ inXn < B

the corresponding optimization problem is

max x,+ 1
subject to
ALy @inX1 + -+ + QinXn < b
/\L] ai X1 + =+ QinXn + Xp+1 < Pi

The optimum is positive iff the constraints are Tg-satisfiable.

22/60

The Theory of Equality T¢

k:{=,a,b,¢,....f,g,hp,qr ...}
uninterpreted symbols:
e constants a,b,¢,...
e functions f,g,h,...
e predicates p,q.r,...

Example:
x=y A f(x)#f(y) Te-unsatisfiable
f(x)=f(y) nx=y Te-satisfiable
f(f(f(a))) =a A f(f(f(f(f(a)))))=a A f(a) +a

Te-unsatisfiable

23/60

Axioms of T¢

1. Vx.x=x (reflexivity)
2. YX,y.Xx=y > y=x (symmetry)
3. VX, ,Z.X=yY ANy=Z - X=2Z (transitivity)

define = to be an equivalence relation.
Axiom schema
4. for each positive integer n and n-ary function symbol f,
VXT5 oo 5 X Y15+ -5 Yne NiXi =VYi

= f(X1,....%0) =f(Y1,..-,¥n) (congruence)
For example,
Vx.y.x=y — f(x) =f(y)

Then

x=9g(y.z) - f(x) =f(g(y.2))
is Tg-valid.

24/60

Axiom schema
5. for each positive integer n and n-ary predicate symbol p,

VX155 Xms Yoo e s Yne [\Xi=Yi =
i
(p(X15...5%n) < p(Y1,.--5¥n)) (equivalence)

Thus,
x=y = (p(x) < p(y))

is Tg-valid.

25/60

We discuss Tg-formulae without predicates
For example, for Z¢-formula

F: p(x) A a(xy) A aq(y.z) > -q(x,z)

introduce fresh constant e, and fresh functions f, and f,, and
transform F to

G: fr(x) =0 A fa(x,y) =0 A fa(y,z) =0 — fo(x,2) +».

26/60

Equivalence and Congruence Relations: Basics

Binary relation R over set S
e is an equivalence relation if
» reflexive: Vs € S. sRs;
> symmetric: Vsq1,5 € S. s1Rsy; — SaRsy;
» transitive: Vsq,52,53 € S.51RS> A SoRs3 — sq1Rss.
Example:
Define the binary relation =, over the set Z of integers
m=;n iff (mmod2)=(nmod?2)

Thatis, m, n € Z are related iff they are both even or both odd.

=, is an equivalence relation

e is a congruence relation if in addition

n
VS, A\ sRt; — F(SRF(E) .
i=1

27/60

Classes
equivalence
or

relation R over set S,
congruence

{ equivalence

class of s € Sunder R is
congruence

[s]g " {s' €S : sRs').

Example:
The equivalence class of 3 under =, over Z is

[3]z,={ne€Z : nisodd} .

Partitions
A partition P of S is a set of subsets of S that is

» total (U S’) =S
S’'eP

» disjoint V51,5 €P.S51nS =@

28/60

Quotient

equivalence

The quotient S/R of S by { congruence

}relation Ris the set of

equivalence
congruence

}classes
S/R = {[s]g : s€S}.
Itis a partition

Example: The quotient Z/ =, is a partition of Z. The set of
equivalence classes

{{ne€Z : nisodd}, {neZ : niseven}}

Note duality between relations and classes

29/60

Refinements

Two binary relations Ry and R, over set S.
R, is refinement of Ry, R1 < Ry, if

VS1,52 €Ss. S1R152 g S1R252 .
R refines R,.

Examples:
» ForS={a,b},
R1 : {GR1b} Rz : {asz, szb}
Then Ry <R,
» ForsetS,
Ry induced by the partition P;: {{s} : seS}
R, induced by the partition P, : {S}
Then Ry < Rs.
» ForsetZ
Ry : {xR1y : xmod 2 =ymod2}
Ry : {xRyy : xmod 4 =y mod 4}
Then R2 < R] .

30/60

Closures
Given binary relation R over S.
The equivalence closure RE of R is the equivalence relation s.t.

» Rrefines R, i.e.R < RE;

» for all other equivalence relations R’ s.t. R < R/,

either R = RE or RE < R

That is, RE is the “smallest” equivalence relation that “covers” R.
Example: If S = {a,b,c,d} and R = {aRb, bRc, dRd}, then

e aRb,bRc,dRd € RE since R ¢ Rf;
e aRa, bRb, cRc € RE by reflexivity;

e bRa, cRb ¢ RE by symmetry;

eaRceRf by transitivity;

ecRacRf by symmetry.
Hence,

RE = {aRb, bRa, aRa, bRb, bRc, cRb, cRc, aRc, cRa, dRd'} .

Similarly, the congruence closure R of R is the “smallest”

congruence relation that “covers” R.
31/60

Congruence Closure Algorithm
Given Xg-formula
F:s9=t1 A ASpm=tm A Smy1 Ftms1 A =+ A Sp £ty
decide if F is Xg-satisfiable.
Definition: For 2g-formula F,
the subterm set S of F is the set that contains precisely
the subterms of F.

Example: The subterm set of

F: f(a,b)=a A f(f(a,b),b) +a

Se={a, b, f(a,b), f(f(a,b),b)} .

32/60

The Algorithm
Given Xg-formula F
Fisi=ti Ao ASm=tm A Smy1 Ftme1 A - A Sp# 1ty

with subterm set S¢, F is Tg-satisfiable iff there exists a congruence
relation ~ over S¢ such that

» foreachie {1,...,m},s;~ t;;
» foreachie {m+1,...,n},s; 4 t.

Such congruence relation ~ defines Tg-interpretation / : (Dy, ;) of F.
D consists of |[Sg/ ~ | elements, one for each congruence class of S¢
under ~.

Instead of writing | £ F for this Tg-interpretation, we abbreviate
~E F

The goal of the algorithm is to construct the congruence relation of
Sr, or to prove that no congruence relation exists.

33/60

F: S']zt‘]/\/\Sm:tm /\5m+'|¢tm+’|/\“‘/\$n¢tn

generate congruence closure search for contradiction

The algorithm performs the following steps:
1. Construct the congruence closure ~ of

{S‘] = t],...,Sm = tm}
over the subterm set Sr. Then
~E S = A ASp =ty

2. Ifforanyie {m+1,...,n},s; ~ t; return unsatisfiable.
3. Otherwise, ~E F, so return satisfiable.

How do we actually construct the congruence closure in Step 1?

34/60

Initially, begin with the finest congruence relation ~¢ given by the

partition
{{s} : seSF}.
That is, let each term of S¢ be its own congruence class.

Then, foreachie {1,...,m}, impose s; = t; by merging the
congruence classes

[Si]"‘i—1 and [ti]NH

to form a new congruence relation ~;. To accomplish this merging,
» form the union of [s;]., , and [t;]., ,
» propagate any new congruences that arise within this union.

The new relation ~; is a congruence relation in which s; ~ t;.

35/60

Directed Acyclic Graph (DAG)

For 2g-formula F, graph-based data structure for representing the
subterms of Sr (and congruence relation between them).

f(f(a,b),b)
G f(a,b)
G .0

Efficient way for computing the congruence closure algorithm.

36/60

Te-Satisfiability (Summary of idea)

f(a,b) =a A f(f(a,b),b) #a

Initial DAG f(a,b)=a = f(a,b)~a,b~b =
merge f(a,b) a f(f(a,b),b) ~f(a,b)
merge f(f(a,b),b)
f(a,b)
_ _explicit equation by congruence

findf(f(a,b),b) =a=finda

f((a,b),b) = a } = Unsatisfiable

37/60

DAG representation

type node = {
id

fn
args
mutable find

mutable ccpar

id

node’s unique identification number
string

constant or function name

id list

list of function arguments

id

the representative of the congruence class
id set

if the node is the representative for its
congruence class, then its ccpar
(congruence closure parents) are all
parents of nodes in its congruence class

38/60

DAG Representation of node 2

type node = {
id :id 2
fn : string ...f
args »oidlist ... [3,4]
mutable find : id 3
mutable ccpar : idset %]

39/60

DAG Representation of node 3

type node = {
id :id
fn : string
args : idlist
mutable find : id
mutable ccpar : idset
}

—ow

...3
. {1,2)

40/60

The Implementation

find function
returns the representative of node’s congruence class

let recfindi=
letn = nodeiin
if n.find = jthenielse find n.find

Example: find2=3
find3 =3
3 is the representative of 2.

41/60

union function

let unioniy i =
let ny = node (find i;) in
let ny; = node (find i) in
nqi.find < ny.find;
ny.ccpar <« nj.ccpar U hp.ccpar;,
nj.ccpar « g

n, is the representative of the union class

42/60

Example

union 12 n=1 ny=3
1.find < 3
3.ccpar < {1,2}
l.ccpar < @

43/60

ccpar function
Returns parents of all nodes in i’s congruence class

let ccpari=
(node (find i)).ccpar

congruent predicate
Test whether iy and i; are congruent

let congruentiy iy =
let n; = nodei; in
let ny; = nodei; in
ny.fn=n,.fn
A |ny.args| = |ny.args|
AYie{1,...,|n .args|}. find ny.args[i] = find ny.args|i]

44/60

Example:

Are 1 and 2 congruent?

fn fields ---both f

of arguments --- same

left arguments f(a, b) and a --- both congruent to 3
rightargumentsbandb --- both 4 (congruent)

Therefore 1 and 2 are congruent.

45/60

merge function

let rec mergeiy iy =
if find iy # find i; then begin
let P;, = ccparij in
let P;, = ccpari; in
union iy iy;
foreacht, t; € Py, x P,'2 do
if find t; # find t; A congruentt; t;
then merge t; t;
done
end

P;, and Pj, store the current values of ccpar i; and ccpar i.

46/60

Decision Procedure: Tg-satisfiability
Given Xg-formula

F:si=t; A ASpn=tm A Sms1 Etmer A - A SpEth,

with subterm set S¢, perform the following steps:
1. Construct the initial DAG for the subterm set Sr.
2. Forie{1,...,m}, merges;t,.

3. Iffind s; = find t; forsomeie {m+1,...,n}, return
unsatisfiable.

4. Otherwise (if find s; # find t; forallie {m+1,...,n}) return
satisfiable.

47/60

Theorem (Sound and Complete)

Quantifier-free conjunctive Xg-formula F is Tg-satisfiable iff the
congruence closure algorithm returns satisfiable.

48/60

Recursive Data Structures

Quantifier-free Theory of Lists Tcons

Zcons : {cons, car, cdr, atom, =}

e constructor cons :cons(a, b) list constructed by
prependingato b

e left projector car :car(cons(a,b)) =a
e right projector cdr: cdr(cons(a, b)) = b
e atom :unary predicate

49/60

Axioms of Teons

» reflexivity, symmetry, transitivity
» congruence axioms:

VX],Xz,y1,y2.X1 =X NY1=Y2 > COﬂS(X],y1) = COHS(Xz,yz)
Vx,y.x=y — car(x) = car(y)
Vx,y.x =y — cdr(x) = cdr(y)

» equivalence axiom:

Vx,y.x=y — (atom(x) < atom(y))

(A1) Vx,y. car(cons(x,y)) = x (left projection
(A2) ¥x,y.cdr(cons(x,y)) =y (right projection
(A3) Vx. -atom(x) — cons(car(x),cdr(x)) =x (construction
(A4) ¥x,y. ~atom(cons(x,y)) (atom

[e -t

50/60

Simplifications

» Consider only quantifier-free conjunctive X.ons-formulae.
Convert non-conjunctive formula to DNF and check each
disjunct.

» —atom(u;) literals are removed:

replace -atom(u;) with u;=cons(u],u?)

by the (construction) axiom.

» Because of similarity to Xg, we sometimes combine Zons U Zg.

51/60

Algorithm: Tcons-Satisfiability (the idea)

F: S1=t A A Spy=1tnp

generate congruence closure
AN Smi1 Ftmi1 A - A Sp#EL,

search for contradiction
A atom(uy) A -+ A atom(uy)

search for contradiction
where s;, tj, and u; are Teons-terms

52/60

Algorithm: T.ons-Satisfiability

1. Construct the initial DAG for S¢
2. for each node n with n.fn = cons

» add car(n) and merge car(n) n.args[1]
» add cdr(n) and merge cdr(n) n.args[2]

by axioms (A1), (A2)
3. for1<i<m, merges;t;

4. form+ 1 <i< n,iffinds; = find t;, return unsatisfiable

5. for1<i< |/ if3v.findv =findu; A v.fn = cons,
return unsatisfiable

6. Otherwise, return satisfiable

53/60

Example:
Given (Zcons U Zg)-formula
car(x) = car(y) A cdr(x) = cdr(y)
A —atom(x) A —atom(y) A f(x) = f(y)
where the function symbol f is in ¢

F:

car(x) =car(y) A (1)
cdr(x) =cdr(y) A (2)
F': x=cons(uy,vq) A (3)
y=cons(uz,va) A (4)
F(x) % F(y) (5)

Recall the projection axioms:
(A1) Vx,y.car(cons(x,y)) =x
(A2) Vx,y.cdr(cons(x,y)) =y

54/60

Example(cont): congruence

2
2
S
=
2
-t
[}
(/]
<
3
2
L

55/60

