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REVIEW: Decidability of first-order theories

Theory full QFF

TE Equality no yes

TPA Peano arithmetic no no

TN Presburger arithmetic yes yes

TZ integers yes yes

TR reals yes yes

TQ rationals yes yes

Tcons lists no yes

TA arrays no yes

T=A arrays with extensionality no yes
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REVIEW: Quantifier Elimination (QE)

Algorithm for elimination of all quantifiers of formula F until

quantifier-free formula G that is equivalent to F remains

Note: Could be enough to require that F is equisatisfiable to F′,

that is F is satisfiable iff F′ is satisfiable

A theory T admits quantifier elimination if there is an algorithm that

given Σ-formula F returns a quantifier-free Σ-formula G that is

T-equivalent to F.
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REVIEW: T̂Z admits QE (Cooper’s method)

Algorithm: Given Σ̂Z-formula ∃x. F[x], where F is quantifier-free,
construct quantifier-free Σ̂Z-formula that is equivalent to ∃x. F[x].
1. Put F[x] into Negation Normal Form (NNF).

2. Normalize literals: s < t, k∣t, or ¬(k∣t)
3. Put x in s < t on one side: hx < t or s < hx

4. Replace hx with x′ without a factor

5. Replace F[x′] by⋁ F[j] for finitely many j.
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Decision Procedures for Quantifier-free Fragments
For theory T with signature Σ and axioms Σ-formulae of form∀x1, . . . , xn. F[x1, . . . , xn]

Decide if

F[x1, . . . , xn] or ∃x1, . . . , xn. F[x1, . . . , xn] is T-satisfiable
[ Decide if

F[x1, . . . , xn] or ∀x1, . . . , xn. F[x1, . . . , xn] is T-valid ]
where F is quantifier-free and free(F) = {x1, . . . , xn}
Note: no quantifier alternations

We consider only conjunctive quantifier-free Σ-formulae, i.e.,

conjunctions of Σ-literals (Σ-atoms or negations of Σ-atoms).

For given arbitrary quantifier-free Σ-formula F, convert it into DNF

Σ-formula

F1 ∨ . . . ∨ Fk
where each Fi conjunctive.

F is T-satisfiable iff at least one Fi is T-satisfiable.
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Preliminary Concepts

Vector

variable n-vector n-vector a ∈ Qn transpose

x =

⎡
⎢
⎢
⎢
⎢
⎢⎣
x1
⋮

xn

⎤⎥⎥⎥⎥⎥⎦
a =

⎡
⎢
⎢
⎢
⎢
⎢⎣
a1
⋮

an

⎤⎥⎥⎥⎥⎥⎦
aT = [ a1 ⋯ an ]

Matrix

m × n-matrix

A ∈ Qm×n transpose column

A =

⎡⎢⎢⎢⎢⎢⎣
a11⋯a1n

⋮

am1⋯amn

⎤⎥⎥⎥⎥⎥⎦
AT =

⎡⎢⎢⎢⎢⎢⎣
a11⋯am1

⋮

a1n⋯amn

⎤⎥⎥⎥⎥⎥⎦ row

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1j
⋮

ai1⋯ aij ⋯ain
⋮

amj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Multiplication

vector-vector

aTb = [a1 ⋯ an]
⎡⎢⎢⎢⎢⎢⎣
b1
⋮

bn

⎤⎥⎥⎥⎥⎥⎦
=

n∑
i=1

aibi

matrix-vector

Ax =

⎡⎢⎢⎢⎢⎢⎣
a11 ⋯ a1n

⋮

am1 ⋯ amn

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
x1
⋮

xn

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
∑n

i=1 a1ixi
⋮

∑n
i=1 amixi

⎤⎥⎥⎥⎥⎥⎦
matrix-matrix⎡⎢⎢⎢⎢⎢⎣

aik

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

bkj

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
pij

⎤⎥⎥⎥⎥⎥⎦
A B P

where pij = aibj = [ ai1 ⋯ ain ]
⎡⎢⎢⎢⎢⎢⎣
b1j
⋮

bnj

⎤⎥⎥⎥⎥⎥⎦
=

n∑
k=1

aikbkj
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Special Vectors and Matrices

0 - vector (column) of 0s

1 - vector of 1s

Thus 1
T
x =

n∑
i=1

xi

I =

⎡⎢⎢⎢⎢⎢⎣
1 0

⋱

0 1

⎤⎥⎥⎥⎥⎥⎦
identity matrix (n × n)

Thus IA = AI = A

unit vector ei =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

⋮

1

⋮

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
i
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Vector Space - set S of vectors closed under addition and scaling of

vectors. That is,

if v1, . . . , vk ∈ S then λ1v1 +⋯+ λkvk ∈ S

for λ1, . . . , λn ∈ R.

Linear Equation

F ∶ Ax = b

m × n-matrix variable n-vector m-vector

represents the ΣQ-formula

F ∶ (a11x1 +⋯+ a1nxn = b1) ∧ ⋯ ∧ (am1x1 +⋯+ amnxn = bm)
Gaussian Elimination

Find x s.t. Ax = b by elementary row operations

▸ Swap two rows.

▸ Multiply a row by a nonzero scalar.

▸ Add one row to another.
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Example:

Solve ⎡⎢⎢⎢⎢⎢⎣
3 1 2

1 0 1

2 2 1

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
x1
x2
x3

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
6

1

2

⎤⎥⎥⎥⎥⎥⎦
Construct the augmented matrix

⎡⎢⎢⎢⎢⎢⎣
3 1 2 6

1 0 1 1

2 2 1 2

⎤⎥⎥⎥⎥⎥⎦
Apply the row operations as follows:

1. Add −2a1 + 4a2 to a3

⎡⎢⎢⎢⎢⎢⎣
3 1 2 6

1 0 1 1

0 0 1 −6

⎤⎥⎥⎥⎥⎥⎦
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2. Add −a1 + 2a2 to a2

⎡⎢⎢⎢⎢⎢⎣
3 1 2 6

0 −1 1 −3

0 0 1 −6

⎤⎥⎥⎥⎥⎥⎦
This augmented matrix is in triangular form.

Solving

x3 = −6

−x2 − x3 = −3 ⇒ x2 = −3

3x1 + x2 + 2x3 = 6 ⇒ x1 = 7

The solution is x = [7 − 3 − 6]T
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Inverse Matrix

A−1 is the inverse matrix of square matrix A if

AA−1 = A−1A = I

Square matrix A is nonsingular (invertible) if its inverse A−1 exists.

How to compute A−1 of A?

[A ∣ I] [I ∣ A−1]
elementary

row operations

How to compute kth column of A−1?

Solve Ay = ek , i.e.

⎡⎢⎢⎢⎢⎢⎢⎣

0
⋮

A 1
⋮
0

⎤⎥⎥⎥⎥⎥⎥⎦
y = . . .(kth column of A−1)

elementary

row operations
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Linear Inequality

G ∶ Ax ≤ b

represents the ΣQ-formula

G ∶ (a11x1 +⋯+ a1nxn ≤ b1) ∧ ⋯ ∧ (am1x1 +⋯+ amnxn ≤ bm)
The inequality describes a polyhedron inRn.

Form × n-matrix A,m-vector b, variable n-vector x wherem ≥ n:

An n-vector v is a vertex of Ax ≤ b if there is nonsingular

n × n-submatrix A0 and corresponding n-subvector b0 s.t.

A0v = b0
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Optimization Problem

max cTx . . . objective function

subject to

Ax ≤ b . . . constraints

Solution: vertex v∗ satisfying Ax ≤ b and maximize cTx. That is,

Av∗ ≤ b and

cTv∗ is maximal: cTv∗ ≥ cTu for all u satisfying Au ≤ b

▸ If Ax ≤ b is unsatisfiable ⇒ maximum is −∞

▸ It’s possible that the maximum is unbounded⇒ maximum is∞
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Example: Consider optimization problem:

max [ 1 1 −1 −1 ]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
cT

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x

y

z1
z2

⎤⎥⎥⎥⎥⎥⎥⎥⎦´¹¹¹¹¹¸¹¹¹¹¹¹¶
x

subject to⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

1 1 0 0

1 0 −1 0

0 1 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x

y

z1
z2

⎤⎥⎥⎥⎥⎥⎥⎥⎦´¹¹¹¹¹¸¹¹¹¹¹¹¶
x

≤

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

3

2

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦²
b

A is a 7 × 4-matrix, b is a 7-vector, and

x is a variable 4-vector representing the four variables {x, y, z1, z2}.
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Example (cont):

The objective function is

(x − z1) + (y − z2) .
The constraints are equivalent to the ΣQ-formula

x ≥ 0 ∧ y ≥ 0 ∧ z1 ≥ 0 ∧ z2 ≥ 0

∧ x + y ≤ 3 ∧ x − z1 ≤ 2 ∧ y − z2 ≤ 2

v = [2 1 0 0]T is a vertex of the constraints. For the nonsingular
submatrix A0 (rows 3, 4, 5, 6 of A), we have

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −1 0

0 0 0 −1

1 1 0 0

1 0 −1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A0

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2

1

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦²
v

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0

0

3

2

⎤⎥⎥⎥⎥⎥⎥⎥⎦²
b0
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Duality Theorem

For A ∈ Zm×n, b ∈ Zm, c ∈ Zn,

max{cTx ∣ Ax ≤ b} =min{yTb ∣ y ≥ 0 ∧ yTA = cT}
if the constraints are satisfiable.

That is,

maximizing the function cTx over Ax ≤ b

(the primal form of the optimization problem)

is equivalent to

minimizing the function yTb over all the nonnegative y

s.t. yTA = cT

(the dual form of the optimization problem)
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Outline of Algorithm

Given ΣQ-formula

F ∶ a11x1 +⋯+ a1nxn ≤ b1 ∧ ⋯ ∧ am1x1 +⋯+ amnxn ≤ bm

or in matrix notation

F ∶ Ax ≤ b

Note: ● equations

ai1x1 + . . . + ainxn = bi

are allowed --- break into two inequalities

ai1x1 + . . . + ainxn ≤ bi ∧ −ai1x1 − . . . − ainxn ≤ −bi .

● Strict inequalities

ai1x1 +⋯+ ainxn < bi .

excluded from our discussion - but can be added.
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Outline of Algorithm (cont)

To determine the satisfiability of F,

Step 0: reformulate the satisfiability of F as an optimization problem

MF ∶ max{cTx′ ∣ A′x′ ≤ b
′}

s.t. F is TQ-satisfiable iff the optimal value ofMF is a particular value

vF (derived from the structure of F)

Step 1, Step 2, . . . (until termination) execute the simplex method
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Outline of Algorithm (cont)

The simplex method traverses the vertices of A′x′ ≤ b
′

searching for

the maximum of the objective function cTx′:

if v1, v2, . . . are the traversed vertices in Step 1, Step 2, . . ., then

cTv1 < cTv2 < ⋯ .

The simplex method terminates at some vertex vi∗ where c
Tvi∗ is

the global optimum

Final step: Compare the discovered optimal value cTvi∗ to the

desired value vF .

▸ if equal, then F is TQ-satisfiable

▸ otherwise, F is TQ-unsatisfiable
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TQ-Satisfiability

For a generic ΣQ-formula

F ∶ ⋀m
i=1 ai1x1 +⋯+ ainxn ≤ bi

the corresponding optimization problem is

max 1

subject to

⋀m
i=1 ai1x1 +⋯ + ainxn ≤ bi

The optimum is −∞ iff the constraints are TQ-unsatisfiable and 1

otherwise.
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TQ-Satisfiability (cont.)

For a generic ΣQ-formula

F ∶ ⋀m
i=1 ai1x1 +⋯+ ainxn ≤ bi

∧⋀l
i=1 ai1x1 +⋯+ ainxn < βi

the corresponding optimization problem is

max xn + 1

subject to

⋀m
i=1 ai1x1 +⋯+ ainxn ≤ bi⋀l

i=1 ai1x1 +⋯+ ainxn + xn+1 ≤ βi

The optimum is positive iff the constraints are TQ-satisfiable.
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The Theory of Equality TE

ΣE ∶ {=, a, b, c, . . . , f , g, h, . . . , p, q, r, . . .}
uninterpreted symbols:

● constants a, b, c, . . .

● functions f , g, h, . . .

● predicates p, q, r, . . .

Example:

x = y ∧ f(x) ≠ f(y) TE-unsatisfiable

f(x) = f(y) ∧ x ≠ y TE-satisfiable

f(f(f(a))) = a ∧ f(f(f(f(f(a))))) = a ∧ f(a) ≠ a

TE-unsatisfiable
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Axioms of TE

1. ∀x. x = x (reflexivity)

2. ∀x, y. x = y → y = x (symmetry)

3. ∀x, y, z. x = y ∧ y = z → x = z (transitivity)

define = to be an equivalence relation.

Axiom schema

4. for each positive integer n and n-ary function symbol f ,

∀x1, . . . , xn, y1, . . . , yn. ⋀i xi = yi
→ f(x1, . . . , xn) = f(y1, . . . , yn) (congruence)

For example,

∀x, y. x = y → f(x) = f(y)
Then

x = g(y, z) → f(x) = f(g(y, z))
is TE-valid.
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Axiom schema

5. for each positive integer n and n-ary predicate symbol p,

∀x1, . . . , xn, y1, . . . , yn. ⋀
i

xi = yi →

(p(x1, . . . , xn) ↔ p(y1, . . . , yn)) (equivalence)

Thus,

x = y → (p(x) ↔ p(y))
is TE-valid.
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We discuss TE-formulae without predicates

For example, for ΣE-formula

F ∶ p(x) ∧ q(x, y) ∧ q(y, z) → ¬q(x, z)
introduce fresh constant ●, and fresh functions fp and fq, and

transform F to

G ∶ fp(x) = ● ∧ fq(x, y) = ● ∧ fq(y, z) = ● → fq(x, z) ≠ ● .
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Equivalence and Congruence Relations: Basics

Binary relation R over set S

● is an equivalence relation if

▸ reflexive: ∀s ∈ S. sRs;

▸ symmetric: ∀s1, s2 ∈ S. s1Rs2 → s2Rs1;

▸ transitive: ∀s1, s2, s3 ∈ S. s1Rs2 ∧ s2Rs3 → s1Rs3.

Example:

Define the binary relation ≡2 over the set Z of integers

m ≡2 n iff (mmod 2) = (nmod 2)
That is,m, n ∈ Z are related iff they are both even or both odd.

≡2 is an equivalence relation

● is a congruence relation if in addition

∀s, t.
n

⋀
i=1

siRti → f(s)Rf(t) .
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Classes

For { equivalence

congruence
}relation R over set S,

The { equivalence

congruence
} class of s ∈ S under R is

[s]R def
= {s′ ∈ S ∶ sRs′} .

Example:

The equivalence class of 3 under ≡2 over Z is

[3]≡2 = {n ∈ Z ∶ n is odd} .
Partitions

A partition P of S is a set of subsets of S that is

▸ total (⋃
S′∈P

S′) = S

▸ disjoint ∀S1, S2 ∈ P. S1 ∩ S2 = ∅
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Quotient

The quotient S/R of S by { equivalence

congruence
}relation R is the set of

{ equivalence

congruence
}classes

S/R = {[s]R ∶ s ∈ S} .
It is a partition

Example: The quotient Z/ ≡2 is a partition of Z. The set of

equivalence classes

{{n ∈ Z ∶ n is odd}, {n ∈ Z ∶ n is even}}

Note duality between relations and classes
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Refinements

Two binary relations R1 and R2 over set S.

R1 is refinement of R2, R1 ≺ R2, if

∀s1, s2 ∈ S. s1R1s2 → s1R2s2 .

R1 refines R2.

Examples:

▸ For S = {a, b},
R1 ∶ {aR1b} R2 ∶ {aR2b, bR2b}

Then R1 ≺ R2
▸ For set S,

R1 induced by the partition P1 ∶ {{s} ∶ s ∈ S}
R2 induced by the partition P2 ∶ {S}

Then R1 ≺ R2.

▸ For set Z

R1 ∶ {xR1y ∶ xmod 2 = ymod 2}
R2 ∶ {xR2y ∶ xmod 4 = ymod 4}

Then R2 ≺ R1.
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Closures

Given binary relation R over S.

The equivalence closure RE of R is the equivalence relation s.t.

▸ R refines RE , i.e. R ≺ RE ;

▸ for all other equivalence relations R′ s.t. R ≺ R′,

either R′ = RE or RE ≺ R′

That is, RE is the ‘‘smallest’’ equivalence relation that ‘‘covers’’ R.

Example: If S = {a, b, c, d} and R = {aRb, bRc, dRd}, then
● aRb, bRc, dRd ∈ RE since R ⊆ RE ;

● aRa, bRb, cRc ∈ RE by reflexivity;

● bRa, cRb ∈ RE by symmetry;

● aRc ∈ RE by transitivity;

● cRa ∈ RE by symmetry.
Hence,

RE = {aRb, bRa, aRa, bRb, bRc, cRb, cRc, aRc, cRa, dRd} .
Similarly, the congruence closure RC of R is the ‘‘smallest’’

congruence relation that ‘‘covers’’ R.
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Congruence Closure Algorithm

Given ΣE-formula

F ∶ s1 = t1 ∧ ⋯ ∧ sm = tm ∧ sm+1 ≠ tm+1 ∧ ⋯ ∧ sn ≠ tn

decide if F is ΣE-satisfiable.

Definition: For ΣE-formula F,

the subterm set SF of F is the set that contains precisely

the subterms of F.

Example: The subterm set of

F ∶ f(a, b) = a ∧ f(f(a, b), b) ≠ a

is

SF = {a, b, f(a, b), f(f(a, b), b)} .
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The Algorithm

Given ΣE-formula F

F ∶ s1 = t1 ∧ ⋯ ∧ sm = tm ∧ sm+1 ≠ tm+1 ∧ ⋯ ∧ sn ≠ tn

with subterm set SF , F is TE-satisfiable iff there exists a congruence

relation ∼ over SF such that

▸ for each i ∈ {1, . . . ,m}, si ∼ ti;
▸ for each i ∈ {m + 1, . . . , n}, si /∼ ti.

Such congruence relation ∼ defines TE-interpretation I ∶ (DI , αI) of F.
DI consists of ∣SF/ ∼ ∣ elements, one for each congruence class of SF
under ∼.
Instead of writing I ⊧ F for this TE-interpretation, we abbreviate∼ ⊧ F

The goal of the algorithm is to construct the congruence relation of

SF , or to prove that no congruence relation exists.
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F ∶ s1 = t1 ∧ ⋯ ∧ sm = tm´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
generate congruence closure

∧ sm+1 ≠ tm+1 ∧ ⋯ ∧ sn ≠ tn´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
search for contradiction

The algorithm performs the following steps:

1. Construct the congruence closure ∼ of
{s1 = t1, . . . , sm = tm}

over the subterm set SF . Then

∼ ⊧ s1 = t1 ∧ ⋯ ∧ sm = tm .

2. If for any i ∈ {m + 1, . . . , n}, si ∼ ti, return unsatisfiable.

3. Otherwise, ∼⊧ F, so return satisfiable.

How do we actually construct the congruence closure in Step 1?
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Initially, begin with the finest congruence relation ∼0 given by the

partition {{s} ∶ s ∈ SF} .
That is, let each term of SF be its own congruence class.

Then, for each i ∈ {1, . . . ,m}, impose si = ti by merging the

congruence classes

[si]∼i−1 and [ti]∼i−1
to form a new congruence relation ∼i. To accomplish this merging,

▸ form the union of [si]∼i−1 and [ti]∼i−1
▸ propagate any new congruences that arise within this union.

The new relation ∼i is a congruence relation in which si ∼ ti.
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Directed Acyclic Graph (DAG)

For ΣE-formula F, graph-based data structure for representing the

subterms of SF (and congruence relation between them).

1 ∶ f

2 ∶ f

3 ∶ a 4 ∶ b

f(f(a, b), b)
f(a, b)
a b

Efficient way for computing the congruence closure algorithm.
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TE-Satisfiability (Summary of idea)

f(a, b) = a ∧ f(f(a, b), b) ≠ a

1 ∶ f

2 ∶ f

3 ∶ a 4 ∶ b

1 ∶ f

2 ∶ f

3 ∶ a 4 ∶ b

1 ∶ f

2 ∶ f

3 ∶ a 4 ∶ b

Initial DAG f(a, b) = a ⇒
merge f(a, b) a

explicit equation

f(a, b) ∼ a, b ∼ b ⇒
f(f(a, b), b) ∼ f(a, b)

merge f(f(a, b), b)
f(a, b)

by congruence

find f(f(a, b), b) = a = find a

f(f(a, b), b) ≠ a
} ⇒ Unsatisfiable
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DAG representation

type node = {
id : id

node’s unique identification number

fn : string

constant or function name

args : id list

list of function arguments

mutable find : id

the representative of the congruence class

mutable ccpar : id set

if the node is the representative for its

congruence class, then its ccpar

(congruence closure parents) are all

parents of nodes in its congruence class}
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DAG Representation of node 2

type node = {
id : id

fn : string

args : idlist

mutable find : id

mutable ccpar : idset}

. . . 2

. . . f

. . . [3, 4]

. . . 3

. . . ∅

1 ∶ f

2 ∶ f

3 ∶ a 4 ∶ b
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DAG Representation of node 3

type node = {
id : id

fn : string

args : idlist

mutable find : id

mutable ccpar : idset}

. . . 3

. . . a

. . . []

. . . 3

. . . {1, 2}

1 ∶ f

2 ∶ f

3 ∶ a 4 ∶ b
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The Implementation

find function

returns the representative of node’s congruence class

let rec find i =

let n = node i in

if n.find = i then i else find n.find

1 ∶ f

2 ∶ f

3 ∶ a 4 ∶ b

Example: find 2 = 3

find 3 = 3

3 is the representative of 2.
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union function

let union i1 i2 =

let n1 = node (find i1) in
let n2 = node (find i2) in
n1.find ← n2.find;

n2.ccpar ← n1.ccpar ∪ n2.ccpar;

n1.ccpar ← ∅

n2 is the representative of the union class
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Example

1 ∶ f

2 ∶ f

3 ∶ a 4 ∶ b

union 1 2 n1 = 1 n2 = 3

1.find← 3

3.ccpar← {1, 2}
1.ccpar← ∅
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ccpar function

Returns parents of all nodes in i’s congruence class

let ccpar i =(node (find i)).ccpar

congruent predicate

Test whether i1 and i2 are congruent

let congruent i1 i2 =

let n1 = node i1 in

let n2 = node i2 in

n1.fn = n2.fn

∧ ∣n1.args∣ = ∣n2.args∣
∧ ∀i ∈ {1, . . . , ∣n1.args∣}. find n1.args[i] = find n2.args[i]
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Example:

1 ∶ f

2 ∶ f

3 ∶ a 4 ∶ b

Are 1 and 2 congruent?

fn fields --- both f

# of arguments --- same

left arguments f(a, b) and a --- both congruent to 3

right arguments b and b --- both 4 (congruent)

Therefore 1 and 2 are congruent.
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merge function

let recmerge i1 i2 =

if find i1 ≠ find i2 then begin

let Pi1 = ccpar i1 in

let Pi2 = ccpar i2 in

union i1 i2;

foreach t1, t2 ∈ Pi1 × Pi2 do

if find t1 ≠ find t2 ∧ congruent t1 t2
thenmerge t1 t2

done

end

Pi1 and Pi2 store the current values of ccpar i1 and ccpar i2.
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Decision Procedure: TE-satisfiability

Given ΣE-formula

F ∶ s1 = t1 ∧ ⋯ ∧ sm = tm ∧ sm+1 ≠ tm+1 ∧ ⋯ ∧ sn ≠ tn ,

with subterm set SF , perform the following steps:

1. Construct the initial DAG for the subterm set SF .

2. For i ∈ {1, . . . ,m}, merge si ti.

3. If find si = find ti for some i ∈ {m + 1, . . . , n}, return
unsatisfiable.

4. Otherwise (if find si ≠ find ti for all i ∈ {m + 1, . . . , n}) return
satisfiable.
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Theorem (Sound and Complete)

Quantifier-free conjunctive ΣE-formula F is TE-satisfiable iff the

congruence closure algorithm returns satisfiable.
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Recursive Data Structures

Quantifier-free Theory of Lists Tcons

Σcons ∶ {cons, car, cdr, atom, =}
● constructor cons : cons(a, b) list constructed by

prepending a to b

● left projector car : car(cons(a, b)) = a

● right projector cdr : cdr(cons(a, b)) = b

● atom : unary predicate
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Axioms of Tcons

▸ reflexivity, symmetry, transitivity

▸ congruence axioms:

∀x1, x2, y1, y2. x1 = x2 ∧ y1 = y2 → cons(x1, y1) = cons(x2, y2)
∀x, y. x = y → car(x) = car(y)
∀x, y. x = y → cdr(x) = cdr(y)

▸ equivalence axiom:

∀x, y. x = y → (atom(x) ↔ atom(y))
▸

(A1) ∀x, y. car(cons(x, y)) = x (left projection)(A2) ∀x, y. cdr(cons(x, y)) = y (right projection)(A3) ∀x. ¬atom(x)→ cons(car(x), cdr(x)) = x (construction)(A4) ∀x, y. ¬atom(cons(x, y)) (atom)
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Simplifications

▸ Consider only quantifier-free conjunctive Σcons-formulae.

Convert non-conjunctive formula to DNF and check each

disjunct.

▸ ¬atom(ui) literals are removed:

replace ¬atom(ui) with ui = cons(u1i , u2i )
by the (construction) axiom.

▸ Because of similarity to ΣE, we sometimes combine Σcons ∪ ΣE.
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Algorithm: Tcons-Satisfiability (the idea)

F ∶ s1 = t1 ∧ ⋯ ∧ sm = tm´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
generate congruence closure

∧ sm+1 ≠ tm+1 ∧ ⋯ ∧ sn ≠ tn´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
search for contradiction

∧ atom(u1) ∧ ⋯ ∧ atom(ul)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
search for contradiction

where si, ti, and ui are Tcons-terms
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Algorithm: Tcons-Satisfiability

1. Construct the initial DAG for SF

2. for each node nwith n.fn = cons
▸ add car(n) and merge car(n) n.args[1]
▸ add cdr(n) and merge cdr(n) n.args[2]

by axioms (A1), (A2)

3. for 1 ≤ i ≤ m, merge si ti

4. form + 1 ≤ i ≤ n, if find si = find ti, return unsatisfiable

5. for 1 ≤ i ≤ l, if ∃v. find v = find ui ∧ v.fn = cons,

return unsatisfiable

6. Otherwise, return satisfiable

car cdr

cons

x y
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Example:

Given (Σcons ∪ ΣE)-formula

F ∶
car(x) = car(y) ∧ cdr(x) = cdr(y)

∧ ¬atom(x) ∧ ¬atom(y) ∧ f(x) ≠ f(y)
where the function symbol f is in ΣE

F′ ∶

car(x) = car(y) ∧ (1)
cdr(x) = cdr(y) ∧ (2)
x = cons(u1, v1) ∧ (3)
y = cons(u2, v2) ∧ (4)
f(x) ≠ f(y) (5)

Recall the projection axioms:

(A1) ∀x, y. car(cons(x, y)) = x(A2) ∀x, y. cdr(cons(x, y)) = y
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Example(cont): congruence

car f cdr car f cdr

x y

car cdr car cdr

cons cons

u1 v1 u2 v2

4C

4D

F is unsatisfiable
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