Verification
Lecture 24

Bernd Finkbeiner
Peter Faymonville
Michael Gerke

Olm UNIVERSITAT
m]llwll“" DES

UL SAARLANDES

Combining Decision Procedures

Given
Theories T; over signatures %;
(constants, functions, predicates)
with corresponding decision procedures P; for T;-satisfiability.

Goal
Decide satisfiability of a sentence in theory U; T;.

Example: How do we show that
F:1<x Ax<2naf(x)=f(1) A f(x)#f(2)

is (Te U Tz)-unsatisfiable?

Combining Decision Procedures

>1-theory Ty %5-theory T,
for T, -satisfiability Pz for T,-satisfiability

N,

Efor (T1 U Ty)-satisfiability

Problem:
Decision procedures are domain specific.
How do we combine them?

Nelson-Oppen Combination Method (N-O Method)

21 n 22 = {Z}
Y1-theory T, >5-theory T,
stably infinite stably infinite
for T;-satisfiability for T,-satisfiability
of quantifier-free X,-formulae of quantifier-free ~,-formulae

N,

Efor (Ty U Ty)-satisfiability
of quantifier-free (X1 U Z;)-formulae

Nelson-Oppen: Limitations

Given formula F in theory T; u T>.
1. F must be quantifier-free.
2. Signatures ¥; of the combined theory only share =, i.e,,

21Ny = {:}

3. Theories must be stably infinite.

Note:

» Algorithm can be extended to combine arbitrary number of
theories T; --- combine two, then combine with another, and so
on.

» We restrict F to be conjunctive formula --- otherwise convert to
DNF and check each disjunct.

Stably Infinite Theories

A 2-theory T is stably infinite iff
for every quantifier-free Z-formula F:
if F is T-satisfiable
then there exists some T-interpretation that satisfies F
and that has a domain of infinite cardinality.

Example: X-theory T
X:{a,b,=}
Axiom

Vx.x=a v x=b

For every T-interpretation /, |D;| < 2 (at most two elements).
Hence, T is not stably infinite.

All the other theories mentioned so far are stably infinite.

Example: Theory of partial orders
>-theory T«
o {s =}
where < is a binary predicate.
Axioms
1. Vx.x <x
2. VY. XY AY <X = X=Y

3. VX, ¥, Z XY ANYy<Z - X<2Z

(= reflexivity)
(< antisymmetry)
(< transitivity)

We prove T is stably infinite.

Consider T.-satisfiable quantifier-free X -formula F.
Consider arbitrary satisfying T<-interpretation / : (Dj, «),
where a; maps < to <.
» Let A be any infinite set disjoint from D,
» Construct new interpretation J : (D, a))

> D_/:D/UA
» ay={<~ <}, wherefora,beD,,
a<,b def as<)b ifa,beD,

a=>b otherwise

Jis T<-interpretation satisfying F with infinite domain.
Hence, T is stably infinite.

Example: Consider quantifier-free conjunctive (2¢ U 2z)-formula
F:1<x Aax<2naf(x)f(1) Af(x)#f(2).

The signatures of Tr and Tz only share =. Also, both theories are
stably infinite. Hence, the N-O combination of the decision
procedures for Tr and Ty decides the (T u Tz)-satisfiability of F.

Intuitively, F is (Tg U Tz)-unsatisfiable.

For the first two literals imply x =1 v x = 2 so that
f(x)=f(1) v f(x) =f(2).

Contradict last two literals.

Hence, Fis (Te U Tz)-unsatisfiable.

N-O Overview

Phase 1: Variable Abstraction
» Given conjunction T in theory T; U T5.
» Convert to conjunction I U T5 s.t.
» Tjintheory T;
» I7 U T satisfiable iff T satisfiable.
Phase 2: Check

» If there is some set S of equalities and disequalities between
the shared variables of T'; and I,
shared(T;,T;) = free(Ty) N free(Ty)
s.t. Su I; are T;-satisfiable for all J,
then T is satisfiable.

» Otherwise, unsatisfiable.

Nelson-Oppen Method: Overview

Consider quantifier-free conjunctive (X4 U X;)-formula F.

Two versions:
» nondeterministic --- simple to present, but high complexity
» deterministic --- efficient

Nelson-Oppen (N-O) method proceeds in two steps:

» Phase 1 (variable abstraction)
--- same for both versions

» Phase2
nondeterministic: guess equalities/disequalities and check
deterministic: generate equalities/disequalities by equality
propagation

Phase 1: Variable abstraction

Given quantifier-free conjunctive (£ U 2,)-formula F.
Transform F into two quantifier-free conjunctive formulae

>,-formula F; and >>-formula F;

s.t. Fis (T; u T)-satisfiable iff F; A Fyis (T; U Ty)-satisfiable
F1 and F; are linked via a set of shared variables.

For term t, let hd(t) be the root symbol, e.g. hd(f(x)) = f.

Generation of F; and F»

Fori,je {1,2} andi # j, repeat the transformations
(1) if function f € ;and hd(t) € &),

FIf(ti,....t,....ty)] = F[f(t1,....w,...,th)] Aw=t
(2) if predicate p € X; and hd(t) € %,
Flp(tr,....t,....tn)] = Flp(ti,....,w,....t))] A w=t
(3) ifhd(s) € Xjand hd(t) € %,
Fls=t] = F[T]aw=sAaw=t
(4) if hd(s) € Xjand hd(t) € 3,
Fls#t] = Flwi#wa] Awj=sAwy=t

where w, wq, and w; are fresh variables.

Phase 2: Guess and Check

v

Phase 1 separated (£1 U Z;)-formula F into two formulae:
>1-formula F; and X,-formula F;

» F1and F; are linked by a set of shared variables:
V = shared(Fy, F,) = free(Fy) nfree(Fy)
» Let E be an equivalence relation over V.

» The arrangement a(V, E) of V induced by E is:
a(V,E): AN\ u=va AN u=zv
u,v e V. ukv u,v € V. =(uEv)
Then,
the original formula F is (T; U T)-satisfiable iff
there exists an equivalence relation E of V s.t.
(1) Fy A a(V,E) is Ty-satisfiable, and
(2) F; A a(V,E) is To-satisfiable.
Otherwise, F is (T; U T,)-unsatisfiable.

Practical Efficiency

Phase 2 was formulated as “guess and check:
First, guess an equivalence relation E,
then check the induced arrangement.

The number of equivalence relations grows super-exponentially
with the # of shared variables. It is given by Bell numbers.
e.g., 12 shared variables = over four million equivalence relations.

Solution: Deterministic Version

Phase 1 as before

Phase 2 asks the decision procedures Py and P, to propagate new
equalities.

Convex Theories

Equality propagation is a decision procedure for convex theories.

Def. A Z-theory T is convex iff
for every quantifier-free conjunction X-formula F
n
and for every disjunction \/(u; = v;)
i=1

n
ifF \/(U,' = V,')
i=1

thenF = u;j=v;, forsomeie{1,...,n}

Convex Theories

» Tk, Tr, T, Tcons are convex
» Tz, Ta are not convex

Example: Tz is not convex
Consider quantifier-free conjunction

F: 1<zAnz<2Aru=1Arv=2

Then
FeEz=uvz=v

but

Fi¥z=u
Fi¥z=v

Example:

The theory of arrays Ty is not convex.
Consider the quantifier-free conjunctive Xa-formula

F:a(i<v)[j]=v.

Then
F=i=jvalj=v,

but
Fi=j
F=alj]=v.

What if T is Not Convex?

Case split when:

n
I'e \/(U,’ = V,')
i=1
but
THu=v foralli=1,...,n
» Foreachi=1,...,n, construct a branch on which

u; = v; is assumed.

» If all branches are contradictory, then unsatisfiable.
Otherwise, satisfiable.

ui =Vvy

Invariant Generation

Invariant Generation

Discover inductive assertions of programs
e General procedure
e Concrete analysis

» interval analysis
invariants of form
c<vorv<c
for program variable v and constant ¢
» Karr's analysis
invariants of form
Co+CiX1++ChXp=0
for program variables x; and constants ¢;

Other invariant generation algorithms in literature:
» linear inequalities
Co+C1X1+ - +ChXp <0

» polynomial equalities and inequalities

Weakest Precondition

For FOL formula F and program statement S, the weakest
precondition wp(F, S) is a FOL formula s.t. if for state s

s E wp(F, S)
and if statement S is executed on state s to produce state s’, then

s EF.

In other words, the weakest precondition moves a formula
backwards over a series of statements:

for F to hold after executing S1;...; Sp,

wp(F, S1;...;Sp) must hold before executing the statements.

For assume and assignment statements
» wp(F, assume ¢) < ¢ — F,and
» wp(F[v], vi=e) < Fle];
and on sequences of statements Sq;...; Sp:

wp(F, S1;...;50) < wp(wp(F, Sp), S1;...:50-1) -

Strongest Postcondition

For FOL formula F and program statement S, the strongest
postcondition sp(F, S) is a FOL formula s.t.
if s is the current state and

s = sp(F, S)
then statement S was executed from a state sp s.t.

so E F.

» On assume statements,
sp(F, assumec) < ¢ A F,

for if program control makes it past the statement, then ¢ must
hold.

» Unlike in the case of wp, there is no simple definition of sp on
assignments:

sp(F[v], vi=e[v]) < 3. v=e[V°] A F[V°].

Example: Compute

sp(i>n, i=i+k)

0

< 3% i=%+kAi®>n

< i—-k>n
since ® =i —k.
Example: Compute

sp(i>n, assume k > 0; i:=i+k)

sp(sp(i > n, assume k > 0), i:==i+k)
sp(k>0 Aixn,i=i+k)

3% i=+k A k20 i°>n

<~
<~
<~
< k>0Ai-k>n

Verification Condition

VCs in terms of wp:

Static Analysis: basic definition

» Program P with locations £ (Lo --- initial location)

» Cutsetof £
each path from one cutpoint (location in the cutset) to the next
cutpoint is basic path (does not cross loops)

» Assertion map
p: L—FOL
(map from L to first-order assertions).
Itis inductive (inductive map) if for each basic path

()

L,- : @ y(l_,)
Si;
Sj;
Li: ©pu(Ly)
for L;, L; € L, the verification condition
{u(Li)}Sii - S{u(Ly)} (VO

is valid.

Invariant Generation

Find inductive assertion maps u s.t. the u(L;) satisfies (VC) for all
basic paths.

Method: Symbolic execution (forward propagation)
> Initial map uo:

M(Lo) = Fpre , and
p(l):=1 for Le L~ {Lo}.

» Maintain set S ¢ £ of locations that still need processing.
Initially, let S = {Lo }. Terminate when S = &.

» Iteration i: We have so far constructed p;. Choose some L; € S to
process and remove it from S.

For each basic path (starting at L;)

()
Lj: @ u(Ly)
Sj;

Sk;
Ly @u(Ly)

compute and set

If

that is, if sp does not represent new states not already represented
in pi(Ly), then pip1(Ly) < pi(Lk) (nothing new is learned)

Otherwise add L, to S.
For all other locations Ly € L, pjy1q (Lg) <= y,-(Lg)

When S = & (say iteration i*), then y;» is an inductive map.

The algorithm

let ForwardPropagate Fpre £ =
S:= {Lo};
H(LO) = Fpre;
p(L):==1forLe L~ {Lo};
while S + @ do
let [j = choose S in
S=S~{L};
Lx € succ(L;) is a successor of L;
if there is a basic path from L; to L
let F = sp(u(Ly), Sj;...;Sk) in
if F = u(li)
then p(Ly) := u(Ly) v F;
S:=Su {Lk};

foreach Ly € succ(L;) do

done;
done;

¢

Problem: algorithm may not terminate
Example: Consider loop with integer variables i and n:
@ly:i=0 A N>0;
while
@L1 7
(i<n){
i=i+1,
¥

There are two basic paths:

(1)
Olg: i=0 A n>0;
@L]i?;

and

(2)
©L1 :?;

assume < n;

i=i+1;

@L] ?,

» Initially,

p(lo) <= i=0Anx0
p(ly) <= 1
» Following path (1) results in setting
p(ly) =u(ly) v (i=0 A n>0)
p(Ly) was 1, so that it becomes

‘/,{(L1) < i:O/\HZO.‘

» On the next iteration, following path (2) yields
p(Ly)=pu(Ly) v sp(u(Lr), assumei<n; i:==i+1).
Currently u(L1) < i=0 A n>0,s0

F:sp(i=0 ANn>0, assumei<n; i=i+1)
< sp(i<nAi=0ANn20,i=i+1)

0

< 3 i=+1AP<nAi®P=0An>0

< i=1An>0

Since the implication

i=1An>0=i=0An>0

F
is invalid,

p(L1)

p(ly) < (i=0An20)v (i=1An>0)

(L) F

at the end of the iteration.

» At the end of the next iteration,

u(ly) <

(i=0An>0)v (i=1 An>0)

u(Ly)
v(i=2An>1)
[—

F

» At the end of the kth iteration,

(i=0An>20)v (i=1Anx1)
Vv (i=k Anxk)

u(ly) <

It is never the case that the implication

i=k A n>k

U
(i=0An>0)v(i=1Aan>1)v--v(i=k=1An>k-1)

is valid, so the main loop of while never finishes.
» However, it is obvious that

0<i<n

is an inductive annotation of the loop.

Solution: Abstraction

A state s is reachable for program P if it appears in some
computation of P.

The problem is that ForwardPropagate computes the exact set of
reachable states.

Inductive annotations usually over-approximate the set of
reachable states: every reachable state s satisfies the annotation,
but other unreachable states can also satisfy the annotation.

Abstract interpretation cleverly over-approximate the reachable
state set to guarantee termination.

Abstract interpretation is constructed in 6 steps.

