
Verification

Lecture 24

Bernd Finkbeiner

Peter Faymonville

Michael Gerke



Combining Decision Procedures

Given

Theories Ti over signatures Σi

(constants, functions, predicates)

with corresponding decision procedures Pi for Ti-satisfiability.

Goal

Decide satisfiability of a sentence in theory⋃i Ti.

Example: How do we show that

F ∶ 1 ≤ x ∧ x ≤ 2 ∧ f(x) ≠ f(1) ∧ f(x) ≠ f(2)
is (TE ∪ TZ)-unsatisfiable?



Combining Decision Procedures

Σ1-theory T1 Σ2-theory T2

P1 for T1-satisfiability P2 for T2-satisfiability

?

P for (T1 ∪ T2)-satisfiability
Problem:

Decision procedures are domain specific.

How do we combine them?



Nelson-Oppen Combination Method (N-O Method)

Σ1 ∩ Σ2 = {=}
Σ1-theory T1 Σ2-theory T2
stably infinite stably infinite

P1 for T1-satisfiability P2 for T2-satisfiability

of quantifier-free Σ1-formulae of quantifier-free Σ2-formulae

P for (T1 ∪ T2)-satisfiability
of quantifier-free (Σ1 ∪ Σ2)-formulae



Nelson-Oppen: Limitations

Given formula F in theory T1 ∪ T2.
1. Fmust be quantifier-free.

2. Signatures Σi of the combined theory only share =, i.e.,
Σ1 ∩ Σ2 = {=}

3. Theories must be stably infinite.

Note:

▸ Algorithm can be extended to combine arbitrary number of

theories Ti --- combine two, then combine with another, and so

on.

▸ We restrict F to be conjunctive formula --- otherwise convert to

DNF and check each disjunct.



Stably Infinite Theories

A Σ-theory T is stably infinite iff

for every quantifier-free Σ-formula F:

if F is T-satisfiable

then there exists some T-interpretation that satisfies F

and that has a domain of infinite cardinality.

Example: Σ-theory T

Σ ∶ {a, b, =}
Axiom

∀x. x = a ∨ x = b
For every T-interpretation I, ∣DI∣ ≤ 2 (at most two elements).

Hence, T is not stably infinite.

All the other theories mentioned so far are stably infinite.



Example: Theory of partial orders

Σ-theory T⪯

Σ⪯ ∶ {⪯, =}
where ⪯ is a binary predicate.
Axioms

1. ∀x. x ⪯ x (⪯ reflexivity)
2. ∀x, y. x ⪯ y ∧ y ⪯ x → x = y (⪯ antisymmetry)

3. ∀x, y, z. x ⪯ y ∧ y ⪯ z → x ⪯ z (⪯ transitivity)



We prove T⪯ is stably infinite.

Consider T⪯-satisfiable quantifier-free Σ⪯-formula F.

Consider arbitrary satisfying T⪯-interpretation I ∶ (DI , αI),
where αI maps ⪯ to ≤I.
▸ Let A be any infinite set disjoint from DI

▸ Construct new interpretation J ∶ (DJ , αJ)
▸ DJ = DI ∪ A
▸ αJ = {⪯ ↦ ≤J}, where for a, b ∈ DJ,

a ≤J b def= { a ≤I b if a, b ∈ DI

a = b otherwise

J is T⪯-interpretation satisfying F with infinite domain.

Hence, T⪯ is stably infinite.



Example: Consider quantifier-free conjunctive (ΣE ∪ ΣZ)-formula

F ∶ 1 ≤ x ∧ x ≤ 2 ∧ f(x) ≠ f(1) ∧ f(x) ≠ f(2) .
The signatures of TE and TZ only share =. Also, both theories are

stably infinite. Hence, the N-O combination of the decision

procedures for TE and TZ decides the (TE ∪ TZ)-satisfiability of F.
Intuitively, F is (TE ∪ TZ)-unsatisfiable.
For the first two literals imply x = 1 ∨ x = 2 so that

f(x) = f(1) ∨ f(x) = f(2).
Contradict last two literals.

Hence, F is (TE ∪ TZ)-unsatisfiable.



N-O Overview

Phase 1: Variable Abstraction

▸ Given conjunction Γ in theory T1 ∪ T2.
▸ Convert to conjunction Γ1 ∪ Γ2 s.t.

▸ Γi in theory Ti
▸ Γ1 ∪ Γ2 satisfiable iff Γ satisfiable.

Phase 2: Check

▸ If there is some set S of equalities and disequalities between

the shared variables of Γ1 and Γ2

shared(Γ1, Γ2) = free(Γ1) ∩ free(Γ2)
s.t. S ∪ Γi are Ti-satisfiable for all i,
then Γ is satisfiable.

▸ Otherwise, unsatisfiable.



Nelson-Oppen Method: Overview

Consider quantifier-free conjunctive (Σ1 ∪ Σ2)-formula F.

Two versions:

▸ nondeterministic --- simple to present, but high complexity

▸ deterministic --- efficient

Nelson-Oppen (N-O) method proceeds in two steps:

▸ Phase 1 (variable abstraction)

--- same for both versions

▸ Phase 2

nondeterministic: guess equalities/disequalities and check

deterministic: generate equalities/disequalities by equality

propagation



Phase 1: Variable abstraction

Given quantifier-free conjunctive (Σ1 ∪ Σ2)-formula F.

Transform F into two quantifier-free conjunctive formulae

Σ1-formula F1 and Σ2-formula F2

s.t. F is (T1 ∪ T2)-satisfiable iff F1 ∧ F2 is (T1 ∪ T2)-satisfiable
F1 and F2 are linked via a set of shared variables.

For term t, let hd(t) be the root symbol, e.g. hd(f(x)) = f .



Generation of F1 and F2

For i, j ∈ {1, 2} and i ≠ j, repeat the transformations

(1) if function f ∈ Σi and hd(t) ∈ Σj,

F[f(t1, . . . , t, . . . , tn)] ⇒ F[f(t1, . . . ,w, . . . , tn)] ∧ w = t
(2) if predicate p ∈ Σi and hd(t) ∈ Σj,

F[p(t1, . . . , t, . . . , tn)] ⇒ F[p(t1, . . . ,w, . . . , tn)] ∧ w = t
(3) if hd(s) ∈ Σi and hd(t) ∈ Σj,

F[s = t] ⇒ F[⊺] ∧ w = s ∧ w = t
(4) if hd(s) ∈ Σi and hd(t) ∈ Σj,

F[s ≠ t] ⇒ F[w1 ≠ w2] ∧ w1 = s ∧ w2 = t
wherew,w1, andw2 are fresh variables.



Phase 2: Guess and Check

▸ Phase 1 separated (Σ1 ∪ Σ2)-formula F into two formulae:

Σ1-formula F1 and Σ2-formula F2

▸ F1 and F2 are linked by a set of shared variables:

V = shared(F1, F2) = free(F1) ∩ free(F2)
▸ Let E be an equivalence relation over V .

▸ The arrangement α(V , E) of V induced by E is:

α(V , E) ∶ ⋀
u,v ∈ V . uEv

u = v ∧ ⋀
u,v ∈ V . ¬(uEv)

u ≠ v
Then,

the original formula F is (T1 ∪ T2)-satisfiable iff
there exists an equivalence relation E of V s.t.

(1) F1 ∧ α(V , E) is T1-satisfiable, and
(2) F2 ∧ α(V , E) is T2-satisfiable.

Otherwise, F is (T1 ∪ T2)-unsatisfiable.



Practical Efficiency

Phase 2 was formulated as ‘‘guess and check’’:

First, guess an equivalence relation E,

then check the induced arrangement.

The number of equivalence relations grows super-exponentially

with the # of shared variables. It is given by Bell numbers.

e.g., 12 shared variables ⇒ over four million equivalence relations.

Solution: Deterministic Version

Phase 1 as before

Phase 2 asks the decision procedures P1 and P2 to propagate new

equalities.



Convex Theories

Equality propagation is a decision procedure for convex theories.

Def. A Σ-theory T is convex iff

for every quantifier-free conjunction Σ-formula F

and for every disjunction
n⋁
i=1

(ui = vi)
if F ⊧

n⋁
i=1

(ui = vi)
then F ⊧ ui = vi, for some i ∈ {1, . . . , n}



Convex Theories

▸ TE , TR, TQ, Tcons are convex

▸ TZ, TA are not convex

Example: TZ is not convex

Consider quantifier-free conjunction

F ∶ 1 ≤ z ∧ z ≤ 2 ∧ u = 1 ∧ v = 2
Then

F ⊧ z = u ∨ z = v
but

F /⊧ z = u
F /⊧ z = v



Example:

The theory of arrays TA is not convex.

Consider the quantifier-free conjunctive ΣA-formula

F ∶ a⟨i◁ v⟩[j] = v .
Then

F ⇒ i = j ∨ a[j] = v ,
but

F /⇒ i = j
F /⇒ a[j] = v .



What if T is Not Convex?

Case split when:

Γ ⊧
n⋁
i=1

(ui = vi)
but

Γ /⊧ ui = vi for all i = 1, . . . , n
▸ For each i = 1, . . . , n, construct a branch on which

ui = vi is assumed.

▸ If all branches are contradictory, then unsatisfiable.

Otherwise, satisfiable.

⋅

⋮ ⋮ ⋮

u1 = v1
ui = vi un = vn



Invariant Generation



Invariant Generation

Discover inductive assertions of programs

● General procedure

● Concrete analysis

▸ interval analysis

invariants of form

c ≤ v or v ≤ c
for program variable v and constant c

▸ Karr’s analysis

invariants of form

c0 + c1x1 +⋯+ cnxn = 0
for program variables xi and constants ci

Other invariant generation algorithms in literature:

▸ linear inequalities

c0 + c1x1 +⋯ + cnxn ≤ 0
▸ polynomial equalities and inequalities



Weakest Precondition

●s

wp(F, S)

●s′

F

S

For FOL formula F and program statement S, the weakest

precondition wp(F, S) is a FOL formula s.t. if for state s

s ⊧ wp(F, S)
and if statement S is executed on state s to produce state s′, then

s′ ⊧ F .



In other words, the weakest precondition moves a formula

backwards over a series of statements:

for F to hold after executing S1; . . . ; Sn,

wp(F, S1; . . . ; Sn)must hold before executing the statements.

For assume and assignment statements

▸ wp(F, assume c) ⇔ c → F, and

▸ wp(F[v], v := e) ⇔ F[e];
and on sequences of statements S1; . . . ; Sn:

wp(F, S1; . . . ; Sn) ⇔ wp(wp(F, Sn), S1; . . . ; Sn−1) .



Strongest Postcondition

●s0

F

●s

sp(F, S)S

For FOL formula F and program statement S, the strongest

postcondition sp(F, S) is a FOL formula s.t.

if s is the current state and

s ⊧ sp(F, S)
then statement Swas executed from a state s0 s.t.

s0 ⊧ F .



▸ On assume statements,

sp(F, assume c) ⇔ c ∧ F ,

for if program control makes it past the statement, then cmust

hold.

▸ Unlike in the case of wp, there is no simple definition of sp on

assignments:

sp(F[v], v := e[v]) ⇔ ∃v0. v = e[v0] ∧ F[v0] .
▸ On a sequence of statements S1; . . . ; Sn:

sp(F, S1; . . . ; Sn) ⇔ sp(sp(F, S1), S2; . . . ; Sn) .



Example: Compute

sp(i ≥ n, i := i + k)
⇔ ∃i0. i = i0 + k ∧ i0 ≥ n
⇔ i − k ≥ n

since i0 = i − k.
Example: Compute

sp(i ≥ n, assume k ≥ 0; i := i + k)
⇔ sp(sp(i ≥ n, assume k ≥ 0), i := i + k)
⇔ sp(k ≥ 0 ∧ i ≥ n, i := i + k)
⇔ ∃i0. i = i0 + k ∧ k ≥ 0 ∧ i0 ≥ n
⇔ k ≥ 0 ∧ i − k ≥ n



Verification Condition

VCs in terms of wp:

{F}S1; . . . ; Sn{G} ∶ F ⇒ wp(G, S1; . . . ; Sn) .
VCs in terms of sp:

{F}S1; . . . ; Sn{G} ∶ sp(F, S1; . . . ; Sn) ⇒ G .



Static Analysis: basic definition

▸ Program P with locations L (L0 --- initial location)

▸ Cutset of L
each path from one cutpoint (location in the cutset) to the next

cutpoint is basic path (does not cross loops)

▸ Assertion map

µ ∶ L→ FOL

(map from L to first-order assertions).

It is inductive (inductive map) if for each basic path

(⋅)
Li ∶ @ µ(Li)
Si;

⋮

Sj;

Lj ∶ @ µ(Lj)
for Li , Lj ∈ L, the verification condition{µ(Li)}Si; . . . ; Sj{µ(Lj)} (VC)

is valid.



Invariant Generation

Find inductive assertion maps µ s.t. the µ(Li) satisfies (VC) for all
basic paths.

Method: Symbolic execution (forward propagation)

▸ Initial map µ0:

µ(L0) := Fpre , and

µ(L) := � for L ∈ L ∖ {L0}.
▸ Maintain set S ⊆ L of locations that still need processing.

Initially, let S = {L0}. Terminate when S = ∅.
▸ Iteration i: We have so far constructed µi. Choose some Lj ∈ S to
process and remove it from S.



For each basic path (starting at Lj)

(⋅)
Lj ∶ @ µ(Lj)
Sj;

⋮

Sk;

Lk ∶ @ µ(Lk)
compute and set

µ(Lk) ⇔ µ(Lk) ∨ sp(µ(Lj), Sj; . . . ; Sk)
If

sp(µ(Lj), Sj; . . . ; Sk) ⇒ µi(Lk)
that is, if sp does not represent new states not already represented

in µi(Lk), then µi+1(Lk) ⇔ µi(Lk) (nothing new is learned)

Otherwise add Lk to S.

For all other locations Lℓ ∈ L, µi+1(Lℓ) ⇔ µi(Lℓ)
When S = ∅ (say iteration i∗), then µi∗ is an inductive map.



The algorithm

let ForwardPropagate Fpre L =
S ∶= {L0};
µ(L0) ∶= Fpre;
µ(L) ∶= � for L ∈ L ∖ {L0};
while S ≠ ∅ do

let Lj = choose S in

S ∶= S ∖ {Lj};
foreach Lk ∈ succ(Lj) do [Lk ∈ succ(Lj) is a successor of Ljif there is a basic path from Lj to Lk

]
let F = sp(µ(Lj), Sj; . . . ; Sk) in
if F /⇒ µ(Lk)
then µ(Lk) ∶= µ(Lk) ∨ F;

S ∶= S ∪ {Lk};
done;

done;

µ



Problem: algorithmmay not terminate

Example: Consider loop with integer variables i and n:

@L0 ∶ i = 0 ∧ n ≥ 0;
while

@L1 ∶ ?(i < n) {
i := i + 1;}

There are two basic paths:

(1)

@L0 ∶ i = 0 ∧ n ≥ 0;
@L1 ∶ ?;

and

(2)

@L1 ∶ ?;

assume i < n;
i := i + 1;

@L1 ∶ ?;



▸ Initially,

µ(L0) ⇔ i = 0 ∧ n ≥ 0
µ(L1) ⇔ �

▸ Following path (1) results in setting

µ(L1) := µ(L1) ∨ (i = 0 ∧ n ≥ 0)
µ(L1)was �, so that it becomes

µ(L1) ⇔ i = 0 ∧ n ≥ 0 .
▸ On the next iteration, following path (2) yields

µ(L1) := µ(L1) ∨ sp(µ(L1), assume i < n; i := i + 1) .
Currently µ(L1) ⇔ i = 0 ∧ n ≥ 0, so

F ∶ sp(i = 0 ∧ n ≥ 0, assume i < n; i := i + 1)
⇔ sp(i < n ∧ i = 0 ∧ n ≥ 0, i := i + 1)
⇔ ∃i0. i = i0 + 1 ∧ i0 < n ∧ i0 = 0 ∧ n ≥ 0
⇔ i = 1 ∧ n > 0



Since the implication

i = 1 ∧ n > 0´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
F

⇒ i = 0 ∧ n ≥ 0´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
µ(L1)

is invalid,

µ(L1) ⇔ (i = 0 ∧ n ≥ 0)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
µ(L1)

∨ (i = 1 ∧ n > 0)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
F

at the end of the iteration.

▸ At the end of the next iteration,

µ(L1) ⇔
(i = 0 ∧ n ≥ 0) ∨ (i = 1 ∧ n > 0)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

µ(L1)

∨ (i = 2 ∧ n > 1)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
F



▸ At the end of the kth iteration,

µ(L1) ⇔ (i = 0 ∧ n ≥ 0) ∨ (i = 1 ∧ n ≥ 1)
∨ ⋯ ∨ (i = k ∧ n ≥ k)

It is never the case that the implication

i = k ∧ n ≥ k
⇓(i = 0 ∧ n ≥ 0) ∨ (i = 1 ∧ n ≥ 1) ∨⋯∨ (i = k − 1 ∧ n ≥ k − 1)

is valid, so the main loop of while never finishes.

▸ However, it is obvious that

0 ≤ i ≤ n
is an inductive annotation of the loop.



Solution: Abstraction

A state s is reachable for program P if it appears in some

computation of P.

The problem is that ForwardPropagate computes the exact set of

reachable states.

Inductive annotations usually over-approximate the set of

reachable states: every reachable state s satisfies the annotation,

but other unreachable states can also satisfy the annotation.

Abstract interpretation cleverly over-approximate the reachable

state set to guarantee termination.

Abstract interpretation is constructed in 6 steps.


