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Invariant generation: forward propagation

let ForwardPropagate Fpre L =
S ∶= {L0};
µ(L0) ∶= Fpre;
µ(L) ∶= " for L ∈ L ∖ {L0};
while S ≠ ∅ do

let Lj = choose S in
S ∶= S ∖ {Lj};
foreach Lk ∈ succ(Lj) do [Lk ∈ succ(Lj) is a successor of Ljif there is a basic path from Lj to Lk

]
let F = sp(µ(Lj), Sj; . . . ; Sk) in
if F /⇒ µ(Lk)
then µ(Lk) ∶= µ(Lk) ∨ F;

S ∶= S ∪ {Lk};
done;

done;

µ



Problem: algorithmmay not terminate
Solution: Abstraction

A state s is reachable for program P if it appears in some
computation of P.

The problem is that ForwardPropagate computes the exact set of
reachable states.

Inductive annotations usually over-approximate the set of
reachable states: every reachable state s satisfies the annotation,
but other unreachable states can also satisfy the annotation.

Abstract interpretation cleverly over-approximate the reachable
state set to guarantee termination.

Abstract interpretation is constructed in 6 steps.



Step 1: Choose an abstract domain D.

The abstract domain D is a syntactic class of Σ-formulae of some
theory T .

▸ interval abstract domain DI consists of conjunctions of
ΣQ-literals of the forms

c ≤ v and v ≤ c ,
for constant c and program variable v.
Useful representation: intervals [l, u]with interval arithmetic.

▸ Karr’s abstract domain DK consist of conjunctions of ΣQ-literals
of the form

c0 + c1x1 +⋯ + cnxn = 0 ,
for constants c0, c1, . . . , cn and variables x1, . . . , xn.



Step 2: Construct a map from FOL formulae to D.

Define
νD ∶ FOL→ D

to map a FOL formula F to element νD(F) of D, with the property
that for any F,

F ⇒ νD(F) .

Example:
@L0 ∶ i = 0 ∧ n ≥ 0;
while

@L1 ∶ ?
(i < n) {
i := i + 1;
}

Abstraction of F ∶ i = 0 ∧ n ≥ 0 at L0 in the interval abstract domain:

νDI
(F) ∶ 0 ≤ i ∧ i ≤ 0 ∧ 0 ≤ n



Step 3: Define an abstract sp.

Define an abstract strongest postcondition spD for assumption and
assignment statements such that

sp(F, S) ⇒ spD(F, S) and spD(F, S) ∈ D
for statement S and F ∈ D.
▸ statement assume c:

sp(F, assume c) ⇔ c ∧ F .

Define abstract conjunction ⊓D, such that

F1 ∧ F2 ⇒ F1 ⊓D F2 and F1 ⊓D F2 ∈ D
for F1, F2 ∈ D. Then if F ∈ D,

spD(F, assume c) ⇔ νD(c) ⊓D F .

If the abstract domain D consists of conjunctions of literals, ⊓D
is just ∧. For example, in the interval domain,

spDI
(F, assume c) ⇔ νDI

(c) ∧ F .



▸ assignment statements:

sp(F[v], v := e[v]) ⇔ ∃v0. v = e[v0] ∧ F[v0],

Avoid quantification whenever possible. For example, in the
interval domain, use the interval evaluation [l, u] of e[v] to
define

sp(F[v], v := e[v]) ⇔ l ≤ v ∧ v ≤ u ∧ G
where G is the conjunction of literals in F except those
referring to v.



Step 4: Define abstract disjunction.

Disjunction is applied in ForwardPropagate

µ(Lk) := F ∨ µ(Lk)

Define abstract disjunction ⊔D for this purpose, such that

F1 ∨ F2 ⇒ F1 ⊔D F2 and F1 ⊔D F2 ∈ D
for F1, F2 ∈ D.
In the interval domain, use interval hull:

[l1, u1] ⊔ [l2, u2] = [min(l1, l2),max(u1, u2)]



Step 5: Define abstract implication checking.

On each iteration of the inner loop of ForwardPropagate, validity of
the implication

F ⇒ µ(Lk)

is checked to determine whether µ(Lk) has changed. A proper
selection of D ensures that this validity check is decidable.

In the interval domain,
let F assert that xi ∈ [li , ui] and G assert that xi ∈ [mi , ni], then

F⇒ G iff mi ≤ li ∧ ui ≤ ni for all i



Step 6: Define widening.

Defining an abstraction is not sufficient to guarantee termination in
general. Thus, abstractions that do not guarantee termination are
equipped with a widening operator▽D.
A widening operator▽D is a binary function
▽D ∶ D × D→ D

such that
F1 ∨ F2 ⇒ F1▽D F2

for F1, F2 ∈ D. It obeys the following property. Let F1, F2, F3, . . . be an
infinite sequence of elements Fi ∈ D such that for each i,

Fi ⇒ Fi+1 .

Define the sequence
G1 = F1 and Gi+1 = Gi ▽D Fi+1 .

For some i∗ and for all i ≥ i∗,
Gi ⇔ Gi+1 .

That is, the sequence Gi converges even if the sequence Fi does not
converge. A proper strategy of applying widening guarantees that
the forward propagation procedure terminates.



Interval analysis does not naturally terminate

Example:
@L0 ∶ i = 0 ∧ n ≥ 0;
while

@L1 ∶ ?
(i < n) {
i := i + 1;
}

Widening:
Suppose F asserts x ∈ [l1, u1] and G asserts that x ∈ [l2, u2], then
F▽DI

G asserts x ∈ [l, u]where
▸ l = −∞ if l2 < l1, otherwise l = l1
▸ u =∞ if u2 > u1, otherwise u = u1.



let AbstractForwardPropagate P Fpre L =
S ∶= {L0};
µ(L0) ∶= νD(Fpre);
µ(L) ∶= ) for L ∈ L ∖ {L0};
while S ≠ ∅ do

let Lj = choose S in
S ∶= S ∖ {Lj};
foreach Lk ∈ succ(Lj) do
let F = spD(µ(Lj), Sj; . . . ; Sk) in
if F /⇒ µ(Lk)
then ifWiden()

then µ(Lk) ∶= µ(Lk)▽D (µ(Lk) ⊔D F);
else µ(Lk) ∶= µ(Lk) ⊔D F;

S ∶= S ∪ {Lk};
done;

done;

µ



Deductive Verification of Reactive Systems



Deductive verification of reactive systems 



Symbolic Transition Systems 

A (finite) set of variables  
System variables: data variables + control variables 
 
Initial condition  
first-order assertion over  V   
that characterizes all initial states 

 
A (finite) set of transitions  

For each      :    : 

 is represented by the transition relation () 

(next-state relation) 



Enabled/Disabled/Taken Transitions 

A transition 
 

is enabled on s  if (s)  {} 
 

is disabled on s if (s) = {} 
 

For an infinite sequence of states 
 
     : s0, s1, s2,  … 

 
a transition 


is enabled at position k if it is enabled on sk  
 
is taken at position k if sk+1 is a -successor of sk  



Fair Transition Systems 

 
 
 

               set of just (weakly fair) transitions 
               set of compassionate (strongly fair) transitions 

 
Justice: for each just transition it is not the case that the 
transition is continually enabled but only taken at finitely 
many positions. 
Compassion: for each compassionate transition it is not the 
case that the transition is enabled at infinitely many positions 
but only taken at finitely many positions. 



Example 

s0=<x=0, y=0>  
(satisfies the initial condition) 
s1=<x=1, y=0> 
(x taken) 
s2=<x=0, y=0> 
(x taken) 
s3=<x=1, y=0> 
(x taken) 
… 

 

     : {x,y: integer} 
     : x=0  y=0 
     : {I, x, y} 
     : {x} 
     : {y} 
(x) : x’‛ = x+1 mod 2 
(y) : x=1  y‘ = y+1 
   
 
Justice: YES 

Compassion: NO  (y is infinitely often enabled but never taken.) 



Computations 

An infinite sequence of states 
 

: s0, s1, s2,  … 
 
is a computation of a fair transition system, if it satisfies: 
 

Initiality 
Consecution 
Justice  
Compassion 

 
Fairness = Justice + Compassion 
Computation = Run + Fairness  



Inductive Assertions 



Example  



Rules for Strengthening  



Example 



Example  (cont‘d) 



Example  (cont‘d) 



Example: Peterson's Mutex-Algorithm 

Goal: 

Mutual exclusion for 
Peterson‘s  algorithm: 



Example  (cont‘d) 

Problem:  
The verification conditions 

are not state-valid. 



Example  (cont‘d) 



Example  (cont‘d) 



Precedence Properties 

Each interval may 
be empty, may 

extend to infinity. 



Simple Precedence 



General Waiting-For 



Strengthening & Weakening 



Example 



Proof Attempt 



Weakening & Strengthening 
                               
 
 
 
 
 
 
 
 
 



Example  (cont‘d) 



Verification Diagrams  



Idea 



P-Valid Verification Diagrams 



Wait Diagrams 



Proofs with Wait Diagrams 



Example 



Example  (cont‘d) 



Invariance Diagrams 



Example 


