Verification

Lecture 25

Bernd Finkbeiner
Peter Faymonville
Michael Gerke

Olm UNIVERSITAT
m]llwll“" DES

UL SAARLANDES

Invariant generation: forward propagation

let ForwardPropagate Fpre £ =
S:={Lo};
#(Lo) = Fpre;
p(L):=1LforlLeL~{Lo};
while S + @ do
letL; = chooseSin
S=5~{L};
Ly € succ(L;) is a successor of L;
if there is a basic path from L; to L
let F = sp(u(L;), Sji...;S«) in
i F u(L)
then u(Ly) :=u(Ly) v F;
S:=Su {Lk};

foreach L € succ(L;) do [

done;
done;

[

Problem: algorithm may not terminate
Solution: Abstraction

A state s is reachable for program P if it appears in some
computation of P.

The problem is that ForwardPropagate computes the exact set of
reachable states.

Inductive annotations usually over-approximate the set of
reachable states: every reachable state s satisfies the annotation,
but other unreachable states can also satisfy the annotation.

Abstract interpretation cleverly over-approximate the reachable
state set to guarantee termination.

Abstract interpretation is constructed in 6 steps.

Step 1: Choose an abstract domain D.

The abstract domain D is a syntactic class of Z-formulae of some
theory T.

» interval abstract domain D, consists of conjunctions of
Y p-literals of the forms

c<v and v<c,

for constant ¢ and program variable v.
Useful representation: intervals [/, u] with interval arithmetic.

» Karr's abstract domain Dk consist of conjunctions of Zq-literals
of the form

Co+C1X1+ - +ChXp=0,

for constants cg, ¢1, . . ., C, and variables xq, .. ., X,.

Step 2: Construct a map from FOL formulae to D.

Define
vp:FOL - D

to map a FOL formula F to element vp(F) of D, with the property
that for any F,
F = vp(F).
Example:
@Lyp:i=0 A Nn>0;
while
@I_1 7
(i<n){
i=i+1;

}

Abstractionof F: i =0 A n>0atLgintheinterval abstract domain:

vp(F): 0<iAni<0AO0<n

Step 3: Define an abstract sp.

Define an abstract strongest postcondition Spp, for assumption and
assignment statements such that

sp(F, S) = spp(F, S) and spp(F, S)eD
for statement Sand F € D.
» statement assume c:
sp(F, assumec) < ¢ A F.
Define abstract conjunction mp, such that
FinF, = Finp F, and Fymp FoeD
for F1,F> € D.Thenif F e D,
spp(F, assume c) < vp(c) mp F.

If the abstract domain D consists of conjunctions of literals, mp
is just A. For example, in the interval domain,

Spp, (F, assume ¢) < vp,(c) A F.

4 assignment statements:

sp(F[v], vi=e[v]) < . v=e[V°] A F[V°],

Avoid quantification whenever possible. For example, in the
interval domain, use the interval evaluation [/, u] of e[v] to
define

sp(F[v], vi=e[v]) < [<VvAVSUAG

where G is the conjunction of literals in F except those
referring to v.

Step 4: Define abstract disjunction.

Disjunction is applied in ForwardPropagate
u(li) =F v u(Le)
Define abstract disjunction up for this purpose, such that
FivFb, = Fiup F, and Fy up F,eD

for Fy,F5 € D.
In the interval domain, use interval hull:

[l,ui] U [h,uz] = [min(h, 1), max(ul,u2)]

Step 5: Define abstract implication checking.

On each iteration of the inner loop of ForwardPropagate, validity of
the implication
F = u(l)

is checked to determine whether u(Ly) has changed. A proper
selection of D ensures that this validity check is decidable.

In the interval domain,
let F assert that x; € [/;, u;] and G assert that x; € [m;, n;], then

F=G iff m; <l;nu; < n;foralli

Step 6: Define widening.

Defining an abstraction is not sufficient to guarantee termination in
general. Thus, abstractions that do not guarantee termination are
equipped with a widening operator vp.
A widening operator vp is a binary function

vp:DxD—-D
such that

F1 VF2 = F1 VDF2
for Fy, F5 € D. It obeys the following property. Let Fq, F5, F3,... bean
infinite sequence of elements F; € D such that for each j,

Fi = Fi1.
Define the sequence

Gi=F and Gy =GjvpFin.
For some i* and forall i > i*,

G,' <~ Gi+1 .
That is, the sequence G; converges even if the sequence F; does not
converge. A proper strategy of applying widening guarantees that
the forward propagation procedure terminates.

Interval analysis does not naturally terminate

Example:
@ly:i=0 A nN>0;
while
@L1 1?7
(i<n){
i=i+1;

}

Widening:
Suppose F asserts x € [I1,u1] and G asserts that x € [, u;], then
F vp, Gasserts x € [I,u] where

» | = —0ifl; < |4, otherwise | = I
» U= ooif uy > uy, otherwise u = uy.

let AbstractForwardPropagate P Fpre £ =
S:= {Lo};
#(Lo) = vp(Fpre);
p(L):=1forlLeL~{Lo};
while S+ @do
let L; = chooseSin
S=5S~{L};
foreach Ly € succ(L;) do
let F = spp(u(L)), Sji-..;Sk) in
if F b u(Ly)
then if Widen()
then u(Ly) := u(Ly) vo (u(Lc) up F);
else u(Ly) = u(Ly) up F;
S:=Su{ly};
done;
done;

Y

Deductive Verification of Reactive Systems

Deductive verification of reactive systems

Reactive System Specification
Program P TL formula ¢
!
Fair Transition System (FTS) & I}
!
Verification
Proof Counterexample
Seq(?) C Seq(y) sequence o of @,
i.e., all sequences of @ s.t. o & Seq(y)
are models of ¢

Symbolic Transition Systems

@ A (finite) set of variables VvV
System variables: data variables + control variables

@ Initial condition 6
first-order assertion over V
that characterizes all initial states

@ A (finite) set of transitions T
Foreachte : 1 ¥ +— 2%

T is represented by the transition relation p(r)
(next-state relation)

Enabled/Disabled/Taken Transitions

@ A transitiont
@ is enabled on s if 1(s) # {}
@ is disabled on s if t(s) = {}

@ For an infinite sequence of states
G: Sy, Sq, Sy, -
a transition t

@ is enabled at position k if it is enabled on s,

@ is taken at position k if s, .4 is a t-successor of s,

Fair Transition Systems
CD — (V7 97 T? j? C)

@ J C 7T : setof just (weakly fair) transitions
@ CC 7 : setof compassionate (strongly fair) transitions

@ Justice: for each just transition it is not the case that the
transition is continually enabled but only taken at finitely
many positions.

@ Compassion: for each compassionate transition it is not the
case that the transition is enabled at infinitely many positions
but only taken at finitely many positions.

Example

@ s,=<x=0, y=0>

@ V :{xy: integer} (satisfies the initial condition)
@ 0 :x=0n y=0 @ s,=<x=1, y=0>
. (T, taken)
ﬂ T . {TI' TX' Ty} 0 Sz=<X=O, y=0>
@ J: {Tx} (t, taken)
, @ s,=<x=1, y=0>
@ C: {Ty} (13)(taken)
@ p(t,) : X' = x+1 mod 2 Q ..

9 p(r,) i Xx=1 Ay = y+1

Justice: YES

Compassion: NO (z, is infinitely often enabled but never taken.)

Computations

An infinite sequence of states
G: Sy, Sq, Sy, -
Is @ computation of a fair transition system, if it satisfies:

@ Initiality
@ Consecution
@ Justice
@ Compassion

Fairness = Justice + Compassion
Computation = Run + Fairness

Inductive Assertions

For assertion g,

Bl. P EFE @ — ¢
B2. P E {q} T {q}
P E q

e ¢ is inductive if B1 and B2 are (state) valid

e By rule B-INV,

every inductive assertion g is P-invariant

e [he converse is not true

B-INV

local z: integer where z =1

Example

B1:§=1/\ﬂ'={fg}J — at_£; > =0
e q

£1: critical

{>: release x

l {o: request x

£3Z

holds since m = {{g} — at_41 =F

B2: {q}74,{q}
at £y — x =0 A move(£p,€1) Nz > ONZ =z — 1
) q Pre,

— L(ltf_fl — ' = q

TN

!

q
we have move(£g,£1) — at’' 41 =T

BUT
(at_ 1 x2=0)Ax>0Az' =z—-—1 — 2’ =0
Cannot prove: |not state-valid

Rules for Strengthening

For assertions q1, qo,

P E q1 P F g1 — g
P F [g2
For assertions q, ¢
I1. PlE ¢ — q
I2. PE O — ¢
I3. P E {¢} T {¢}
P F q

MON-1I

INV

Example

local z: integer where r =1
" {p: request x]
¢1 : critical

¢>: release x

inductive assertion that implies

q: at_l1 — =20

P

E

L((Irt_ﬁl — = Ol
q

p: (at_€1 - 2=0) AN (at_lyg - z=1)

Example (cont‘d) ocal & integer where 2 =1

fp: request x
£1: critical

Consider {p} 74, {¢}:

> release x

531

gat_fg —x=1) A (at_l1 >z = Ol A

0
move(£p,¢1) Az > 0 A r =x— 1
Py,
— (at' g > 2'=1) AN (at' 41 — 2 =0)

o
move (£, ¢1) implies g € w,lg € ', 41 € 7'

Therefore
(Toz=1)A...Az =z —1Az>0

— (F—=..)AN(T—= 2 =0)
holds.

Example (cont‘d) ocal & integer where 2 =1

fp: request x
£1: critical

Consider {p} 74, {p}:
L((lt_fg —x=1) A (at_l1 >z = Ol A\

> release x

531

@
move(€p,£3) Nx > 0 A T =x— 1
P,
— (at' g — ' =1) A (at’ 41 - 2’ =0)

o
move(€o, €3) implies €» € w, o> & w', b3 € 7’
and by CONFLICT invariants £g,¢1 & 7.

Therefore

AN, = (P2 =1)A0F =2 =0)
holds.

Example: Peterson's Mutex-Algorithm

local y1,y>: boolean where y1 = F,yp =F
. integer

]

fn:

mq -

where s = 1

loop forever do

-fli

noncritical

(y1, s) == (1, 1)
await (-yo) V (s = 2)
critical

y1 - = F

loop forever do

-ml .
mo .
m3 -
ma4 :

|ms .

noncritical

(y2, s8) := (T, 2)
await (-y1)V(s=1)
critical

Yy2 .= F

Goal:

Mutual exclusion for
Peterson's algorithm:

L—I(at_f.q_ A {lt_m.q_l
¥

Bottom-up invariants:
wo: s§=1V s=2
p1: Y1 < al_tl3 5
@2: Y2 < at_m3. 5

Example (cont‘d)

local y1,y>: boolean where y1 = F,yp =F

8 . integer where s=1
fp: loop forever do
[¢4 noncritical
b b0 (y1,s) = (T, 1)
1 ¢3: await (nyo) V(s = 2)
| {5 Y1 =F
mg : loop forever do
'mq: noncritical
m2: (y2,) == (T, 2)
P

m3: await (-y1)V(s=1)

my4 . critical

'ms: yp!=TF

:I({lt_fa, A\ {lt_m.«arl
¥

Problem:
The verification conditions

¢4 : critical \{(100 A1 A w2 A Q/J} £3 {Q/J}

{eo A o1 A w2 A Y} m3z {9]

are not state-valid.

Example (cont‘d)

pre(Tes,¥): V't move(£3,€4) A (—yo V s7#1) —
pis

—(at' L4 N at'_my4)
J;
pre(7yy, 1) simplifies to:
at_l3 N (myp V s# 1) — —at_my

w3: at_lz N at_myg — yo N s=1

pre(Tma, ¥): Vol oo ..
simplifies to:

pa: at—ly N at—_m3z — yi3 A s=2

Example (cont‘d)
—(at_lq N\ at_my)

AN

Init ¢ €1 4o |€3| €4 € mog m1 mo [m3z|myg ms

not not
state- state-
vaHd valid
WPC | WPC
pre(ff ,¥) pre(Tmsz,)

NN SN

all state-valid (relative to the bottom-up invariants)

Precedence Properties

are of the form

p = gn W (@n-1 -+ (g1 Wqo)-..)

also written

p = gmWdm-1 - a1 W q]

for assertions p, qo,q1, .-, 4qm- Each interval may

be empty, may
extend to infinity.

Models that satisfy these formulas

dm Im—1 q1

interval interval e o o interval
[))))e
p q0
T T
p-position qo-position

Simple Precedence

p = pWr

can be reduced to first-order VCs by
verification rule WAIT-B:

Rule wAIT-B (basic waiting-for)
For assertions p, r,

P I {p}T{p V r}

PE p=pWr

General Waiting-For

p = qWr

\
F

p

Rule walT (general waiting-for)

For assertions p, q, r, @

W1l. p —- ¢Vr
W2, ¢ = ¢
W3. {o}T{eVr}

p = qgWr

Strengthening & Weakening

Y —q “¢ strengthens ¢"
p—>eVr, ie., pA-r— ¢ “p weakens pA -r”

Example

We proved mutual exclusion
local y1,yo: !:)cuolean where y1 = F,yo =F bi: —(at_fy A at_mg)
8 : integer where s=1
{p: loop forever do Using invariants
[/1 noncritical |
o s=1V s=2
b b (y1,s) = (T, 1) 20
o f3: await (—y2) V (s = 2)
. Y11 y1 ¢ at-{3.5
f4 : critical
| {5 yYy1!=F | wo: Yo = al_m3 5
w3: at—f3z AN at—mg — Yy N s=1
mqo : loop forever do
m1 . noncritical 0a: at_fy A at_mz — y; A s=2
b m2: (y2,) == (T, 2)
2 m3: await (-y1)V(s=1) /
‘s : o al— al—m
my . critical Y2 . 3 Av 0.2
p
: ‘= F
s Y2 - — _I.[]t_md_ W {It_f.q_
\._.&,_-’ _?:_.F

Proof Attempt

p = pf\ = -!‘It_f:a A {It_mD__Q

W1, W2 hold.
For W3:

[_¢ [¢ L Vat_¢
{a 3Na mo.2}T{(a 3N mg. o) Vat_L£s}

p p r

we only need to consider the enabled
transitions:

{3 establishes at_{4

mq: leads to mq

m1: leads to mo

mo: ... does not lead to (at_l3 A at_mg o) V at_{y

pPmo N at_€3 N at_mqg o — at’ 03N at’_mg o VvV at_t,
$ > , \ o LV :

!

P p' »
FAILS

(pm, Neither preserves p nor achieves r')

Weakening & Strengthening

Let /

w:at_l3 ANat_mg. 3

We cannot weaken ¢ to include at _m4 because
of premise

W2: - af_
L — a qmq_

We weakened ¢ too much;
so we have to strengthen it back.

Let

o :at_l3z A (at_mg oV (at_m3z A s = 2))

Check:

{3: OK
mg: OK
my: OK
mo. OK

But m3 leads to mg4.

Example (cont‘d)

W1 i‘lt_fgg A at_mg__z —>

P
at_lz AN (at_mg o V) V .-
A o) \-.lr"-l'
©
. - t— v t_ LI] =1 t_
W2: - A (at-mg 2 ! (at_mz A --+)) — —a qm4

W 3: pr N jlt_f3 A (at—_mg o V (at_m3z A 5=2))} —
@

at’ b3 AN (at"_mg o V (at_mz AN " =2)) v at’_t,
. g , . ,
‘P! 'il‘“"
Check:
{3, moy: OK
m3: disabled (with the help of the invariant
at_f3 g5 <> y1, we have y; = T).

Verification Diagrams

Verification diagrams allow a graphical
representation of a proof of a temporal

property.
; ™
Example: ’/;t_f3 |
rm —1)
L ¥3: at_m3f\5—lj
m3
e : A
L o i at_my)
m4
o N
1 at_mg 25V (al_-mzAs= 2))
- J
t3

C at_t,)

Idea

%

Property

Diagram

L(P)CL(¥) proved by verification conditions.

L(WP)CL(p) follows from well-formedness of
diagram

P-Valid Verification Diagrams

Directed labeled graph with
Verification conditions

Nodes — labeled by assertions

O — | N

Edges — labeled by names of transitions @ e e e @

! = {p} 7 {o V1 V...Vl
-

Terminal Node (‘““goal”) — no edges depart

from it

Definition: VD is P-valid iff all VCs
associated with nodes in the diagram
are P-state valid

Wait Diagrams

VDs with nodes ¢m,...,pq such that:
e weakly acyclic, i.e.,
if —>
then i >y

e g iS a terminal node

Proofs with Wait Diagrams

A P-valid wAIT diagram establishes that

T
V ¢j = om W om-1 -+ 1 W o
j=0

is P-valid.

If, in addition,

Trl
(N1) p — _\/D @,
j:

(N2) ¢; - ¢q for +=0,1,...,m

are P-state valid, then
p = gn W agn-1 - q1 W qo

is P-valid.

Example

local y1,y>: boolean where y1 =F,yop =F
. integer

S

fo:

mp -

where s =1

loop forever do

noncritical

(y1, s) == (T, 1)
await (-y2) V(s = 2)
critical

y1 -= F

loop forever do

mi -
mo .
m3 :
my -

msg -

noncritical

(y2, s) == (T, 2)
await (-y1)V(s=1)
critical

Yy .= F

""-\.\'
/at_f3

4 . — 1)
L ¥3: at_m3f\5—1)

m3
Ill{f - -H\\ln
L wo i at_mgy)

my

@91 . al—-mg. o5V (at_m3z A s = 23)

o /
{3

C‘PU at_Ly)

Associated VCs
e From o3

{e3} m3 {v3V s} {v3} m3 {¥3}
e From o>

{2} ma {p2V 1} {p2} Mz {p2}
e From 1

{1} L3 {p1Vear {1} €3 {1}

Example (cont‘d)

3

o« al-fz3 = \/ ¢;

e

P 7=0

{_¢
Yo — & - 4

— af_m
Y2 4

g2

are state-valid.

Therefore,

— =al—m
¥1 - 4

— —al_m
¥3 - 4

Cal_fr =
Y at_f3

p
{ﬂatq_am.;;) W at;:‘a.;; W {ﬂatq_lm.q) (2% atq_ﬂf4

Invariance Diagrams

VDs with no terminal nodes (cycles OK)

Claim (invariance diagram):

A P-valid INVARIANCE diagram establishes that

_Vl pj = 0OCV)
j:

j=1
is P-valid.

If, in addition,
TrL

(I) \V ¢; — ¢
7=1

T
(12) @ = \ ¢

j=1
are P-state valid, then

[Jg is P-valid

Example

local y1,y>: boolean where y1 =F,yop =F
integer

S

fo:

mp -

where s =1

loop forever do

noncritical

(y1, s) == (T, 1)
await (-y2) V(s = 2)
critical

y1 -= F

loop forever do

mi -
mo .
m3 :
my -

msg -

noncritical

(y2, s) == (T, 2)
await (-y1)V(s=1)
critical

Yy .= F

e INVARIANCE diagram
valid for program MUX-PET1

£2

T

{ w1 at_€o.2 N -y } [wo: at_f3.5 ANy1

\—//

ls

e Also,

(12) {It_fo A =y A e —
o

at_lo. o N ~yp Voo
P1 2

(I1) at g o N ~y1r — y1 < al_f3 5
$1 q

at_€3 5 Ny — y1 < at_Ll3 g
©2 q

Therefore

O(yr < al_{3 5)

