Verification

Lecture 26

Bernd Finkbeiner
Peter Faymonville
Michael Gerke

SOl UNIVERSITAT
ml"uull“" DES
UL SAARLANDES

Coming up next week...

End-of-term exam will take place
on Feb 9, 2pm-5pm, in HS 002
Open Book

Final problem set will be discussed in
lecture on Tuesday.

REVIEW: Proving Invariance

For assertion gq,

Bl. P I O — ¢

B2. P Ik {q} T {q}

P F g B-INV

eforre7 inP
{o}r{v}: prAe =

“r leads from ¢ to 3 in P"

e fOr 7 in P

{e}T{v}: {p}r{v} foreveryreT
“T leads from ¢ to ¥ in P"

Completeness of Rule INV

For assertions gq, ¢
I1. Pl ¢ — q

2. PEO - ¢

I3. P I {¢} T {¢}

P E [gq INV

For every assertion g such that

q is P-valid

there exists an assertion ¢ such that I1 — I3
are provable from state validities

Note: We actually show completeness relative to first-order reasoning
taking all state-valid assertions as axioms.

Proof Outline

Given FTS P with system variables
Yy = (yla*“&ym)

e Assume []q is P-valid, i.e.,
(7) g holds over every P-accessible state

e Construct (to be shown) accessibility assertion

acc p(7)
such that for any state s,
(*) s is P-accessible state iff s IE accp

e Take ¢ = accp

We have to show :
1. accp satisfies I1 — I3
2. accp can be constructed

Proof

1. acc, satisfies 11 — 13

e Premise I1: acCp — (
\WJ
02

s [F accp (:>*) s is P-accessible state
(:TQ s IF q

Thus

acc —
ipP q

is state-valid

Proof (cont‘d)

e Premise I2: 6 — accp
@

s |E © = s is P-accessible

()
= s IF accp
©

Thus

© — accp
%2

is state-valid

Proof (cont‘d)

e Premise I3: for every 7 €T,
/
pr N\ accp — accy,

where acc’, = accp (7).

Take s’ to be a w-variant of s (s agrees
with s’ on all variables other than) and
for each y; take

s'lyi] = slyj
Then
sk p. = s isar-successor of s

ORI . -
s IF acc, = s is P-accessible

= g’ is P-accessible
(%)

/
= s IF accp

!/
= s IF acc,

Proof (cont‘d)

2. Construction of acc,

Assume assertion language includes
dynamic array a over D

Array a is viewed as function,
a: [1.n] — D
where n is the size of the array

Assumption is not essential.
E.g., use encoding

T
(n1,...,ng) — n=pt---pkF

where p; is the ith prime number

Proof (cont‘d)

Case: single-variable y

Define

accp(y): (In > 0) (Ja € [1..n] — D) .init A last A evolve

where
mit: O(all])
last: aln] = y

evolve: Vi.1<i<mn.\/ pr(ali,ali4+1])
TeT

Proof (cont‘d)

array a represents a prefix
81444480
of a computation where a[i] stands for

the value of y at state s;

Claim:
For any value d € D,

accp(d) =T
iff

d is a possible value of y in a P-accessible state

Proof (cont‘d)

Multivariable ¥ = (y1,...,ym) Case

Use 2-dimensional array a

Example

V: {y} ranges over Z (the integers)
O y=0
p.l Y =y+2

accp: (In>0)(Ja € [1.n] — 7).

(a[l] =0 A a[lnl=y A
Vi.1 §i<n.a[i—|—1]=a[i]—|—2)

simplifies to (dIn > 0)(da € [1..n] — 7Z) .

(a[n]=y/\)
Vi.l<i<mn.a[i] =2 -(i—1)

Discussion

Although the assertion acc, is inductive and
strengthens any P-invariant, it is not very use-
ful in practice.

Induction-based Model Checking

IC3

» incremental construction of

» inductive clauses for

» indubitable correctness

IC3

Goal: decide whether an assertion P is S-invariant for some
transition system S.

Core data structure:

Sequence of formulas Fo = ©, F1, Fo, ..., Fy

that are overapproximations of the sets of states reachable in at
most 1,..., k steps.

Approach: Refine sequence such that
if P is S-invariant, some F; will eventually become inductive.

IC3 Invariants

» O = Fy

» Fi= Fi.forall0<i<k
Fi= Pforall0<i<k
Finp=Fj forall0<i<k

i+1

v

v

Initially, k = 1and Fp = ®, F; = P.
IC3 invariants initially established by checking for counterexamples
of length 0 and 1.

k is increased whenever it is proven that there are no
counterexamples of length k.

Main Algorithm

if (©® % Por® A p = P')return 1;
Fo:=0O;F1:=Pk:=1;
repeat {
while (there are CTls in F) {
refine Fq, ... Fy
if (counterexample found) return 1

}i
k++;
Fk = P;

propagate clauses
if (Fj = Fi,1 forsome 0 <j<k)returnT

Counterexample-to-induction (CTI)

A counterexample to induction (CTI) is a state s that is
» reachablein k steps and
» that has an outgoing transition to a —P state.

To find a CTl, check whether
Fk ANp = P

holds.

Refine Fo, ... Fy (part 1)

» Suppose a CTl s exists

» If Pis an invariant, then —s is inductive relative to (at least) Fy.
We say G is inductive relative to Hiff (1) ® = G and
QHAGAp=G.

If —s is not even inductive relative to Fy then P is not an
invariant (— counterexample).

» Pick the greatest i such that —s is inductive relative to F;.

» Exclude —s from Fj.
In principle, this could be done by setting Fj;1 to Fi.1 A —s.
Better: generalize —s by dropping literals such that the
subclause is still inductive relative to F;

Propagate clauses

For any clause c of F;
» suchthat FiAc= ¢,

» we add cto Fi,q,
i.e., Fiy1=Fy1nc

Refine F, ... F (part 2)

v

Previously: We excluded (the generalization of) —s from Fj, ;.
» This does not necessarily rule out the CTl s, if i < k — 1.

v

In this case: Find predecessor tin Fi,q \ F;
» Recuron t: eliminate tin F

