
Verification

Lecture 27

Bernd Finkbeiner
Peter Faymonville
Michael Gerke

Abstraction

REVIEW: Simulation order

REVIEW: Simulation order and CTL*

Proof Rules as Abstractions

INV

AP = {q}
TA: S = I ={sq}; sqsq
Simulation: R=((t,sq) | t |= }

Predicate Abstraction

Abstraction is determined by a set of predicates,
P={1, 2, … N}

Abstract state space: subsets of P

Abstraction function f(q) = {i | q |= i}

Example

Predicates:
guards of transitions

P = {b1, b2, b3 } +
 control predicates

with

b1: y1 = 0
b2: y2 = 0
b3: y1  y2

Example

Example

This abstraction allows us
to prove

• mutual exclusion

• bounded overtaking

using a model checker,
since it is a finite-state
program.

How To Determine the Basis?

A good starting set:
The atomic assertions appearing in the guards of the
transitions ( enabling conditions can be represented
exactly, and thus fairness carries over)
The atomic assertions appearing in the property to be proven
( the property abstraction is exact)

Analysis of counterexamples may lead to refinement of the

abstraction by adding more assertions to the basis.

Counter Example Guided Abstraction
Refinement (CEGAR)

Check
Counterexample Refinement

Model Check

counter
example

ERROR
spurious

counter
example

CORRECT

Spurious counter examples

Checking abstract error paths

Let E be an assertion indicating an error state.

An abstract counter example x0 x1 … xk is concretizable

if there exists a sequence of concrete states s0 s1 … sk
such that

1. For each 0 ≤ i ≤ k, f(si)=xk.
2. s0 |=  and sk |= E
3. For each 0 ≤ i < k, (si,si+1) |= 

Checking abstract error paths

1. For each 0 ≤ i ≤ k, f(si)=xk.
2. s0 |=  and sk |= E
3. For each 0 ≤ i < k, (si,si+1) |= 

represented as a formula:

(V0)     (Vi)   (Vi,Vi+1)  E(Vk)
 i=0..k xi i=0..k-1

Craig Interpolation

For a given pair of formulas (X) and (Y)
such that  is unsatisfiable,

a Craig interpolant (XY) is a formula

over the common variables
such that

  implies  and
    is unsatisfiable.

Craig interpolants can be automatically generated for many

first-order theories.

Path cutting

Split formula

(V0)     (Vi)   (Vi,Vi+1)  E(Vk)
 i=0..k xi i=0..k-1

into two parts:

1= (V0)     (Vi)   (Vi,Vi+1)
 i=0..j-1 xi i=0..j-2

2=    (Vi)   (Vi,Vi+1)  E(Vk)
 i=j..k xi i=j-1..k-1

Use interpolant of 1 and 2 as new predicate.

Problem: abstract state space explosion

Abstract state space grows exponentially with number of
predicates

Slicing Abstractions

Slicing Abstractions (SLAB)

empty?

Error path concretizable?

Refine abstraction

Error

OK

Initial abstraction

No

No

Yes

Yes

Find error path

Compute slice

SLAB abstractions

Finite graphs
Nodes labeled with sets of literals
Edges labeled with sets of transitions
Initial node, error node

Initial abstraction

Local refinement by node splitting

Slicing: Eliminating Nodes

Inconsistent nodes

Unreachable nodes

Sequential nodes

false

init error

 ||

||

1 2 3  

1 3 

Slicing: Eliminating transitions

Inconsistent transitions

Empty Edges

  

(V)  (V,V‘)  (V‘) unsatisfiable



Example

Initial Abstraction

init,
error

init,
error

init,
error

init,
error

request, ready, up,
 down, moveUp, moveDn

request, ready, up,
 down, moveUp, moveDn

request, ready, up,
 down, moveUp, moveDn

request, ready, up,
 down, moveUp, moveDn

Slicing

init,
error

init,
error

init,
error

init,
error

request, ready, up,
 down, moveUp, moveDn

request, ready, up,
 down, moveUp, moveDn

request, ready, up,
 down, moveUp, moveDn

request, ready, up,
 down, moveUp, moveDn

Slicing

init,
error

init,
error

init,
error request, ready, up,

 down, moveUp, moveDn
request, ready, up,

 down, moveUp, moveDn

request, ready, up,
 down, moveUp, moveDn

request, ready, up,
 down, moveUp, moveDn

Slicing

init,
error

init,
error

init,
error request, ready, up,

 down, moveUp, moveDn
request, ready, up,

 down, moveUp, moveDn

request, ready, up,
 down, moveUp, moveDn

Slicing

init,
error

init,
error

init,
error request request, ready, up,

 down, moveUp, moveDn

request, ready, up,
 down, moveUp, moveDn

Slicing

init,
error

init,
error

init,
error request moveUp

request, ready, up,
 down, moveUp, moveDn

Error Path Analysis

1. Error Path concretizable?

2. If yes: System incorrect

3. If no: Node split
 Find minimal error path
 Determine node to split
 Determine splitting predicate

moveUp request

Error Path Analysis

init,
error

init,
error

init,
error

request, up,
 down, moveUp, moveDn

n0 n1 n2

Error path concretizable?

(n0;request;n1;moveUp;n2) =

n0(V0)  request(V0,V1)  n1(V1)  moveUp(V1,V2)  n2(V2)

is unsatisfiable  n0;request;n1;moveUp;n2 is not concretizable.

moveUp request

Error Path Analysis

init,
error

init,
error

init,
error

request, up,
 down, moveUp, moveDn

n0 n1 n2

Error path minimal?

(n0;request;n1) is satisfiable. (n1;moveUp;n2) is satisfiable.

 n0;request;n1;moveUp;n2 is minimal.
 Split node n1.

n0;request;n1 n1;moveUp;n2

request, up,
down, moveUp,
moveDn

moveUp request

Node Split

init,
error

init,
error

init,
error

request, up,
 down, moveUp, moveDn

n0 n1 n2

moveUp request init,error, 

init,
error

init,
error

request, up, down, moveUp, moveDn

n0

n1‘‘

n2 init,error, 
n1‘

request, up, down, moveUp, moveDn

moveUp request

Interpolation

(n0;request;n1) = n0(V0)  request(V0,V1)  n1(V1) satisfiable
(moveUp;n2) = moveUp(V1,V2)  n1(V2) satisfiable
(n0;request;n1;moveUp;n2) = (n0;request;n1)  (moveUp;n2)

 unsatisfiable

 There exists a Craig interpolant 1, such that

(n0;request;n1)  1
(moveUp;n2)  1
Variables(1)  V1

1 = pc1=1

Splitting

request, up,
down, moveUp,
moveDn

moveUp request init,error,pc1

init,
error

init,
error

request, up, down, moveUp, moveDn

n0

n1‘‘

n2 init,error, pc=1
n1‘

request, up, down, moveUp, moveDn

moveUp request

Slicing

request, up,
down, moveUp,
moveDn

moveUp request init,error,pc1

init,
error

init,
error

request, up, down, moveUp, moveDn

init,error, pc=1

request, up, down, moveUp, moveDn

moveUp request

Error Path Analysis

up, down init,
error

init,
error

init,
error,
pc=1

moveUp, moveDn

moveUp request
init,
error,
pc1

n0
n1 n2 n3

Error Path Analysis

up, down init,
error

init,
error

init,
error,
pc=1

moveUp, moveDn

moveUp request
init,
error,
pc1

Split node n2 with pc=2

n0
n1 n2 n3

Splitting

up, down init,
error

init,
error

init,
error,
pc=1

moveUp, moveDn

moveUp request
init,
error,
pc=2

init,
error,
pc1,
pc2

moveUp,
moveDn

up, down

moveUp

moveUp, moveDn

Slicing

up, down init,
error

init,
error

init,
error,
pc=1

moveUp, moveDn

moveUp request
init,
error,
pc=2

init,
error,
pc1,
pc2

moveUp,
moveDn

up, down

moveUp

moveUp, moveDn

Slicing

up, down init,
error

init,
error

init,
error,
pc=1

moveUp, moveDn

moveUp request
init,
error,
pc=2

Slicing

init,
error

init,
error

moveUp

moveUp
init,
error,
pc=2

request  up

moveUp request  up

Error Path Analysis

init,
error

init,
error

moveUp

init,
error,
pc=2

Split node n1 with reqMax

n0 n1 n2

 45

moveUp request  up

Slicing

init,
error

init,
error

moveUp

init, error, pc=2,
 reqMax

n0

n1‘

n2

init, error, pc=2,
 req>Max

moveUp

moveUp
request  up

 46

request  up

Slicing

init,
error

init,
error

moveUp

init, error, pc=2,
 reqMax

n0

n1‘

n2

init, error, pc=2,
 req>Max

moveUp

moveUp

Experiments: State Space

with slicing

without
slicing

Experiments: Runtime

with slicing

without
slicing

Verification diagrams as certificates

Add intermediate nodes for composite transitions (using
strongest postcondition)
Do not remove nodes that are not backward reachable but
still forward-reachable
Add edges to the initial node

request init,
error

init, error, pc=2,

 reqmax
up init,

error,
pc=1,

 reqmax
init, error,
pc1, pc2

down

moveDn

moveUp

ready

ready

ready

Review

Prof. Bernd Finkbeiner, Ph.D. Winter term 2011/2012
Peter Faymonville, M.Sc. Problem Set 13
Michael Gerke, B.Sc.

Verification

Please write the names of all group members on the solutions you hand in.

Problem 1: Invariance Diagrams

Consider the transition system Deque in Figure 1, representing a ring buffer for a double-ended
queue. The buffer consists of five cells (represented by integer variables), which can be either
free (0) or occupied (1). Starting with a single occupied cell x1, we can toggle a cell’s state if
the states of its neighbors differ.

Θ x1 = 1 ∧ x2 = 0 ∧ x3 = 0 ∧ x4 = 0 ∧ x5 = 0
ρ1 x5 + x2 = 1 ∧ x

′

1 = 1− x1 ∧ pres(x2, x3, x4, x5)
ρ2 x1 + x3 = 1 ∧ x

′

2 = 1− x2 ∧ pres(x1, x3, x4, x5)
ρ3 x2 + x4 = 1 ∧ x

′

3 = 1− x3 ∧ pres(x1, x2, x4, x5)
ρ4 x3 + x5 = 1 ∧ x

′

4 = 1− x4 ∧ pres(x1, x2, x3, x5)
ρ5 x4 + x1 = 1 ∧ x

′

5 = 1− x5 ∧ pres(x1, x2, x3, x4)

Figure 1: Deque transition system.

Create an invariance diagram which proves for the Deque system that the state with all
cells occupied is not reachable.

Hints:

• Keep it simple - the verification diagram in the sample solution only has five nodes.

• State any auxiliary invariants needed to prove P-validity.

• You do not need to give proofs for individual verification conditions.

1

True or False?

The following timed automaton satisfies EFon:

off on

y ≤ 9

{x}

x ≥ 2

FALSE

True or False?

Each nonzeno timed automaton is timelock-free. FALSE

True or False?

The state graph and the region graph of a timed automaton are
bisimilar over AP′.

FALSE

True or False?

Clock equivalence is a bisimulation. TRUE

True or False?

If there is a P-inductive program annotation, then P is partially
correct.

TRUE

True or False?

It holds that

wp(F, assume c) = F ∧ c

FALSE

True or False?

f(a) = f(b)→ a = b

is TE-satisfiable.

TRUE

True or False?

TE is decidable.

FALSE

True or False?

a[i] = e → a⟨i◁ e⟩ = a
is TA-valid.

FALSE

True or False?

The quantifier-free fragment of the theory of arrays with
extensionality is decidable.

TRUE

True or False?

The limitations of the Nelson-Oppen method are as follows:
Given formula F in theory T1 ∪ T2.

1. Fmust be quantifier-free.

2. Signatures Σi of the combined theory only share =, i.e.,

Σ1 ∩ Σ2 = {=}
3. Theories T1, T2 must be stably infinite.

4. Theories T1, T2 must be convex.

FALSE

True or False?

The quantifier-free fragment of the theory of arrays with
extensionality is stably infinite.

TRUE

True or False?

The quantifier-free fragment of the theory of arrays with
extensionality is convex.

FALSE

True or False?

A P-valid invariance diagram labeled with assertions φ1, φ2, . . . φn

establishes that

◻(n

⋁
i=1

φi)
is P-valid.

FALSE

