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Abstraction 



REVIEW: Simulation order 



REVIEW: Simulation order and CTL* 



    

Proof Rules as Abstractions  

INV 

AP = {q} 
TA: S = I ={sq}; sqsq  
Simulation: R=((t,sq) | t |= } 



Predicate Abstraction 

Abstraction is determined by a set of predicates, 
P={1, 2,  …  N} 

 

Abstract state space: subsets of P 
 
Abstraction function f(q) = {i | q |= i} 

 
  

 



Example 

Predicates:  
guards of transitions 

P = {b1, b2, b3 } +  
 control predicates 

with 

b1: y1 = 0 
b2: y2 = 0 
b3: y1  y2 



Example 



Example 

This abstraction allows us 
to prove 

• mutual exclusion 

• bounded overtaking 

using a model checker, 
since it is a finite-state 
program.  

 

 



How To Determine the Basis? 

A good starting set: 
The atomic assertions appearing in the guards of the 
transitions ( enabling conditions can be represented 
exactly, and thus fairness carries over) 
The atomic assertions appearing in the property to be proven 
( the property abstraction is exact) 

 
Analysis of counterexamples may lead to refinement of the 

abstraction by adding more assertions to the basis. 
 



Counter Example Guided Abstraction 
Refinement (CEGAR) 

Check  
Counterexample  Refinement  

Model Check 

counter 
example 

ERROR 
spurious 

 
counter  
example 

CORRECT 



Spurious counter examples 



Checking abstract error paths 

Let E be an assertion indicating an error state. 
 
An abstract counter example x0 x1 …  xk  is concretizable  

if there exists a sequence of concrete states s0 s1 …  sk  
such that 

 
1. For each 0  ≤  i ≤  k, f(si)=xk. 
2. s0 |=  and sk |= E 
3. For each 0  ≤  i < k, (si,si+1) |=  



Checking abstract error paths 

1. For each 0  ≤  i ≤  k, f(si)=xk. 
2. s0 |=  and sk |= E 
3. For each 0  ≤  i < k, (si,si+1) |=  
 
represented as a formula: 
 

(V0)          (Vi)      (Vi,Vi+1)      E(Vk) 
             i=0..k    xi                 i=0..k-1    



Craig Interpolation  

For a given pair of formulas (X) and (Y) 
such that  is unsatisfiable, 

 
a Craig interpolant (XY) is a formula 

over the common variables 
such that  
 
  implies  and 
    is unsatisfiable. 

 
Craig interpolants can be automatically generated for many 

first-order theories. 
 

 



Path cutting 

Split formula 

(V0)          (Vi)      (Vi,Vi+1)      E(Vk) 
           i=0..k    xi                 i=0..k-1    

 

into two parts: 

1= (V0)          (Vi)      (Vi,Vi+1)     
                  i=0..j-1    xi                 i=0..j-2    

2=                      (Vi)      (Vi,Vi+1)      E(Vk) 
                    i=j..k    xi                 i=j-1..k-1    

Use interpolant of 1  and 2 as new predicate. 
 
 



Problem: abstract state space explosion 

Abstract state space grows exponentially with number of 
predicates 



Slicing Abstractions 



Slicing Abstractions (SLAB) 

empty? 

Error path concretizable? 

Refine abstraction 

Error 

OK 

Initial abstraction 

No 

No 

Yes 

Yes 

Find error path 

Compute slice 



SLAB abstractions 

Finite graphs 
Nodes labeled with sets of literals 
Edges labeled with sets of transitions 
Initial node, error node 
 



Initial abstraction 



Local refinement by node splitting 



Slicing: Eliminating Nodes 

Inconsistent nodes 
 
 
Unreachable nodes 

 
 
 
Sequential nodes 

false 

init error 
  

  || 

|| 

1 2 3   

1 3  



Slicing: Eliminating transitions 

Inconsistent transitions 
 
 
 
 

 
Empty Edges 

   

(V)  (V,V‘)   (V‘)      unsatisfiable 

 



   

Example 



Initial Abstraction 

init, 
error 

init, 
error 

init, 
error 

init, 
error 

request, ready,  up,  
 down, moveUp, moveDn 

request, ready,  up, 
 down, moveUp, moveDn 

request, ready,  up, 
 down, moveUp, moveDn 

request, ready,  up, 
 down, moveUp, moveDn 



Slicing 

init, 
error 

init, 
error 

init, 
error 

init, 
error 

request, ready,  up, 
 down, moveUp, moveDn 

request, ready, up, 
 down, moveUp, moveDn 

request, ready,  up, 
 down, moveUp, moveDn 

request, ready,  up, 
 down, moveUp, moveDn 



    

Slicing 

init, 
error 

init, 
error 

init, 
error request, ready,  up, 

 down, moveUp, moveDn 
request, ready, up, 

 down, moveUp, moveDn 

request, ready,  up, 
 down, moveUp, moveDn 

request, ready,  up, 
 down, moveUp, moveDn 



Slicing 

init, 
error 

init, 
error 

init, 
error request, ready,  up, 

 down, moveUp, moveDn 
request, ready, up,  

 down, moveUp, moveDn 

request, ready,  up, 
 down, moveUp, moveDn 



Slicing 

init, 
error 

init, 
error 

init, 
error request request, ready, up,  

 down, moveUp, moveDn 

request, ready,  up, 
 down, moveUp, moveDn 



Slicing 

init, 
error 

init, 
error 

init, 
error request moveUp 

request, ready,  up, 
 down, moveUp, moveDn 



Error Path Analysis 

1. Error Path concretizable? 
 

2. If yes: System incorrect 
 

3. If no: Node split 
 Find minimal error path 
 Determine node to split 
 Determine splitting predicate 



    

moveUp request 

Error Path Analysis 

init, 
error 

init, 
error 

init, 
error 

request, up, 
 down, moveUp, moveDn 

n0 n1 n2 

 
Error path concretizable? 
 
(n0;request;n1;moveUp;n2) =  

n0(V0)  request(V0,V1)  n1(V1)  moveUp(V1,V2)  n2(V2) 
 
is unsatisfiable  n0;request;n1;moveUp;n2 is not concretizable. 
 



    

moveUp request 

Error Path Analysis 

init, 
error 

init, 
error 

init, 
error 

request, up, 
 down, moveUp, moveDn 

n0 n1 n2 

Error path minimal? 
 
(n0;request;n1)  is satisfiable.   (n1;moveUp;n2)  is satisfiable.  

 
 n0;request;n1;moveUp;n2 is minimal. 
 Split node n1. 
 

n0;request;n1 n1;moveUp;n2 



    

request, up, 
down, moveUp,  
moveDn 

moveUp request 

Node Split 

init, 
error 

init, 
error 

init, 
error 

request, up, 
 down, moveUp, moveDn 

n0 n1 n2 

moveUp request init,error,  

init, 
error 

init, 
error 

request, up, down, moveUp, moveDn 

n0 

n1‘‘ 

n2 init,error,  
n1‘ 

    

request, up, down, moveUp, moveDn 

moveUp request 



Interpolation 
 
(n0;request;n1) = n0(V0)  request(V0,V1)  n1(V1)   satisfiable 
(moveUp;n2) = moveUp(V1,V2)  n1(V2) satisfiable 
(n0;request;n1;moveUp;n2) = (n0;request;n1)  (moveUp;n2)  

      unsatisfiable 
 
 There exists a Craig interpolant 1, such that 

(n0;request;n1)   1 
(moveUp;n2)  1 
Variables(1)   V1 

 
1  =   pc1=1 



Splitting 

request, up, 
down, moveUp,  
moveDn 

moveUp request init,error,pc1 

init, 
error 

init, 
error 

request, up, down, moveUp, moveDn 

n0 

n1‘‘ 

n2 init,error, pc=1 
n1‘ 

    

request, up, down, moveUp, moveDn 

moveUp request 



Slicing 

request, up, 
down, moveUp,  
moveDn 

moveUp request init,error,pc1 

init, 
error 

init, 
error 

request, up, down, moveUp, moveDn 

init,error, pc=1     

request, up, down, moveUp, moveDn 

moveUp request 



Error Path Analysis 

up, down init, 
error 

init, 
error 

init, 
error,  
pc=1 

    
moveUp, moveDn 

moveUp request 
init, 
error,  
pc1 

n0 
n1 n2 n3 



Error Path Analysis 

up, down init, 
error 

init, 
error 

init, 
error,  
pc=1 

    
moveUp, moveDn 

moveUp request 
init, 
error,  
pc1 

Split node n2 with pc=2 

n0 
n1 n2 n3 



Splitting 

up, down init, 
error 

init, 
error 

init, 
error,  
pc=1 

    
moveUp, moveDn 

moveUp request 
init, 
error,  
pc=2 

init, 
error,  
pc1, 
pc2  

moveUp,  
moveDn 

up, down 

moveUp 

moveUp, moveDn 



Slicing 

up, down init, 
error 

init, 
error 

init, 
error,  
pc=1 

    
moveUp, moveDn 

moveUp request 
init, 
error,  
pc=2 

init, 
error,  
pc1, 
pc2  

moveUp,  
moveDn 

up, down 

moveUp 

moveUp, moveDn 



Slicing 

up, down init, 
error 

init, 
error 

init, 
error,  
pc=1 

    
moveUp, moveDn 

moveUp request 
init, 
error,  
pc=2 



Slicing 

init, 
error 

init, 
error 

    
moveUp 

moveUp 
init, 
error,  
pc=2 

request  up 



moveUp request  up 

Error Path Analysis 

init, 
error 

init, 
error 

    
moveUp 

init, 
error,  
pc=2 

Split node n1 with reqMax 

n0 n1 n2 



   45 

moveUp request  up 

Slicing 

init, 
error 

init, 
error 

  

  
moveUp 

init, error, pc=2, 
 reqMax 

n0 

n1‘ 

n2 

init, error, pc=2, 
 req>Max 

moveUp 

moveUp 
request  up 



   46 

request  up 

Slicing 

init, 
error 

init, 
error 

  

  
moveUp 

init, error, pc=2, 
 reqMax 

n0 

n1‘ 

n2 

init, error, pc=2, 
 req>Max 

moveUp 

moveUp 



Experiments: State Space 

     

 

with slicing 

without 
slicing 



Experiments: Runtime 

     

 

with slicing 

without 
slicing 



Verification diagrams as certificates 

Add intermediate nodes for composite transitions (using 
strongest postcondition) 
Do not remove nodes that are not backward reachable but 
still forward-reachable 
Add edges to the initial node 
 

request init, 
error 

 

  

  
init, error, pc=2, 

 reqmax 
up init, 

error, 
pc=1, 

 reqmax 
init, error,  
pc1, pc2  

down 

moveDn 

moveUp 

ready 

ready 

ready 



Review



Prof. Bernd Finkbeiner, Ph.D. Winter term 2011/2012
Peter Faymonville, M.Sc. Problem Set 13
Michael Gerke, B.Sc.

Verification

Please write the names of all group members on the solutions you hand in.

Problem 1: Invariance Diagrams

Consider the transition system Deque in Figure 1, representing a ring buffer for a double-ended
queue. The buffer consists of five cells (represented by integer variables), which can be either
free (0) or occupied (1). Starting with a single occupied cell x1, we can toggle a cell’s state if
the states of its neighbors differ.

Θ x1 = 1 ∧ x2 = 0 ∧ x3 = 0 ∧ x4 = 0 ∧ x5 = 0
ρ1 x5 + x2 = 1 ∧ x

′

1 = 1− x1 ∧ pres(x2, x3, x4, x5)
ρ2 x1 + x3 = 1 ∧ x

′

2 = 1− x2 ∧ pres(x1, x3, x4, x5)
ρ3 x2 + x4 = 1 ∧ x

′

3 = 1− x3 ∧ pres(x1, x2, x4, x5)
ρ4 x3 + x5 = 1 ∧ x

′

4 = 1− x4 ∧ pres(x1, x2, x3, x5)
ρ5 x4 + x1 = 1 ∧ x

′

5 = 1− x5 ∧ pres(x1, x2, x3, x4)

Figure 1: Deque transition system.

Create an invariance diagram which proves for the Deque system that the state with all
cells occupied is not reachable.

Hints:

• Keep it simple - the verification diagram in the sample solution only has five nodes.

• State any auxiliary invariants needed to prove P-validity.

• You do not need to give proofs for individual verification conditions.

1



True or False?

The following timed automaton satisfies EFon:

off on

y ≤ 9

{x}

x ≥ 2

FALSE



True or False?

Each nonzeno timed automaton is timelock-free. FALSE



True or False?

The state graph and the region graph of a timed automaton are
bisimilar over AP′.

FALSE



True or False?

Clock equivalence is a bisimulation. TRUE



True or False?

If there is a P-inductive program annotation, then P is partially
correct.

TRUE



True or False?

It holds that

wp(F, assume c) = F ∧ c

FALSE



True or False?

f(a) = f(b)→ a = b

is TE-satisfiable.

TRUE



True or False?

TE is decidable.

FALSE



True or False?

a[i] = e → a⟨i◁ e⟩ = a
is TA-valid.

FALSE



True or False?

The quantifier-free fragment of the theory of arrays with
extensionality is decidable.

TRUE



True or False?

The limitations of the Nelson-Oppen method are as follows:
Given formula F in theory T1 ∪ T2.

1. Fmust be quantifier-free.

2. Signatures Σi of the combined theory only share =, i.e.,

Σ1 ∩ Σ2 = {=}
3. Theories T1, T2 must be stably infinite.

4. Theories T1, T2 must be convex.

FALSE



True or False?

The quantifier-free fragment of the theory of arrays with
extensionality is stably infinite.

TRUE



True or False?

The quantifier-free fragment of the theory of arrays with
extensionality is convex.

FALSE



True or False?

A P-valid invariance diagram labeled with assertions φ1, φ2, . . . φn

establishes that

◻( n

⋁
i=1

φi )
is P-valid.

FALSE


