
Verification

Lecture 4

Bernd Finkbeiner

Peter Faymonville

Michael Gerke



REVIEW: Safety

▸ Safety properties ≈ ‘‘nothing bad should happen’’ [Lamport 1977]

▸ Typical safety property: mutual exclusion property
▸ the bad thing (having > 1 process in the critical section) never

occurs

▸ Another typical safety property is deadlock freedom

⇒ These properties are in fact invariants
▸ An invariant is an LT property

▸ that is given by a conditionΦ for the states
▸ and requires thatΦ holds for all reachable states
▸ e.g., for mutex propertyΦ ≡ ¬crit1 ∨ ¬crit2



REVIEW: Invariants

▸ An LT property Pinv over AP is an invariant if there is a

propositional logic formulaΦ over AP such that:

Pinv = { A0A1A2 . . . ∈ (2AP)ω ∣ ∀j ≥ 0. Aj ⊧ Φ }

▸ Φ is called an invariant condition of Pinv

▸ Note that
TS ⊧ Pinv iff trace(π) ∈ Pinv for all paths π in TS

iff L(s) ⊧ Φ for all states s that belong to a path of TS

iff L(s) ⊧ Φ for all states s ∈ Reach(TS)
▸ Φ has to be fulfilled by all initial states and

▸ satisfaction ofΦ is invariant under all transitions in the

reachable fragment of TS



Checking an invariant

▸ Checking an invariant for the propositional formulaΦ

= check the validity ofΦ in every reachable state

⇒ use a slight modification of standard graph traversal algorithms

(DFS and BFS)
▸ provided the given transition system TS is finite

▸ Perform a forward depth-first search
▸ at least one state s is found with s /⊧ Φ⇒ the invariance ofΦ is

violated

▸ Alternative: backward search
▸ starts with all states whereΦ does not hold
▸ calculates (by a DFS or BFS) the set⋃s∈S,s/⊧Φ Pre∗(s)



REVIEW: Time complexity

▸ Under the assumption that
▸ s′ ∈ Post(s) can be encountered in timeΘ(∣Post(s)∣)
⇒ this holds for a representation of Post(s) by adjacency lists

▸ The time complexity for invariant checking is
O(N ∗ (1 + ∣Φ∣) +M )

▸ where N denotes the number of reachable states, and
▸ M = ∑s∈S ∣Post(s)∣ the number of transitions in the reachable

fragment of TS

▸ The adjacency lists are typically given implicitly
▸ e.g., by a syntactic description of the concurrent processes as

program graphs
▸ Post(s) is obtained by the rules for the transition relation



REVIEW: Safety properties

▸ LT property Psafe over AP is a safety property if

▸ for all σ ∈ (2AP)ω ∖ Psafe there exists a finite prefix σ̂ of σ such

that:

Psafe ∩ {σ ′ ∈ (2AP)ω ∣ σ̂ is a prefix of σ ′}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

all possible extensions of σ̂

= ∅

▸ any such finite word σ̂ is called a bad prefix for Psafe

▸ Minimal bad prefix for Psafe:
▸ is a bad prefix σ̂ for Psafe for which no proper prefix of σ̂ is a bad

prefix for Psafe⇒ minimal bad prefixes are bad prefixes of minimal length



REVIEW: Safety properties and finite traces

For transition system TSwithout terminal states

and safety property Psafe:

TS ⊧ Psafe if and only if Tracesfin(TS) ∩ BadPref(Psafe) = ∅

where BadPref(Psafe) is the set of bad prefixes of Psafe



REVIEW: Closure

▸ For trace σ ∈ (2AP)ω, let pref(σ) be the set of finite prefixes of σ :
pref(σ) = { σ̂ ∈ (2AP)∗ ∣ σ̂ is a finite prefix of σ }

▸ if σ = A0 A1 . . . then pref(σ) = {ε,A0 ,A0A1 ,A0A1A2 , . . . } is
infinite

▸ For property P this is lifted as follows: pref(P) = ⋃σ∈P pref(σ)
▸ The closure of LT property P:

closure(P) = {σ ∈ (2AP)ω ∣ pref(σ) ⊆ pref(P)}

▸ the set of infinite traces whose finite prefixes are also prefixes of

P, or
▸ infinite traces in the closure of P do not have a prefix that is not

a prefix of P



Safety properties and closures

LT property P over AP is a safety property

if and only if closure(P) = P



Proof

closure(P) = P ⇒ P is a safety property

We show that for all σ ∈ (2AP)ω ∖ P there exists a finite prefix σ̂ of σ

such that P ∩ {σ ′ ∈ (2AP)ω ∣ σ̂ is a prefix of σ ′} = ∅.
▸ take an element σ ∈ (2AP)ω ∖ P

▸ since σ /∈ P = closure(P),
there exists a finite prefix σ̂ of σ with σ̂ /∈ pref(P)

▸ by the definition of pref(P),
there is no σ ′ ∈ P such that σ̂ ∈ pref(σ ′).

▸ hence, σ̂ is a bad prefix for P.



Proof (cont’d)

P is a safety property ⇒ closure(P) = P

It suffices to show that closure(P) ⊆ P, because P ⊆ closure(P) holds
for all properties.

Proof by contradiction.

▸ assume there is some σ ∈ closure(P) ∖ P.

▸ since P is a safety property and σ /∈ P,
σ has a finite prefix σ̂ ∈ BadPref(σ).

▸ As σ ∈ closure(P), we have σ̂ ∈ pref(σ) ⊆ pref(P).
▸ Hence, there exists a word σ ′ ∈ P such that σ̂ is a prefix of σ ′.

▸ This contradicts that P is a safety property.



Finite trace equivalence and safety properties

For TS and TS′ be transition systems (over AP) without terminal states:

Tracesfin(TS) ⊆ Tracesfin(TS′)
if and only if

for any safety property Psafe ∶ TS′ ⊧ Psafe ⇒ TS ⊧ Psafe

Tracesfin(TS) = Tracesfin(TS′)
if and only if

TS and TS′ satisfy the same safety properties



REVIEW: Finite vs. infinite traces

For TSwithout terminal states and finite TS′

trace inclusion and finite-trace inclusion coincide

this does not hold for infinite TS′ (cf. next slide)

but also holds for image-finite TS′



REVIEW: Trace inclusion ≠ finite trace inclusion

{b}

{b}

{b}

{b}

Traces(TS) /⊆ Traces(TS′) and Tracesfin(TS) ⊆ Tracesfin(TS′)



Proof

Traces(TS) ⊆ Traces(TS′) ⇒ Tracesfin(TS) ⊆ Tracesfin(TS′) holds
because Tracesfin(TS) = pref(Traces(TS)).
For image-finite TS:

Tracesfin(TS) ⊆ Tracesfin(TS′) ⇒ Traces(TS) ⊆ Traces(TS′)
▸ Let A0A1 . . . ∈ Traces(TS). We show that there exists a path

s0s1 . . . ∈ Paths(TS′)with trace(s0s1 . . .) = A0A1 . . .

▸ Since Tracesfin(TS) ⊆ Tracesfin(TS′)we know that, for every

m ∈ N, there exists a finite path πm = sm0 s
m
1 . . . smm ∈ Pathsfin(TS′)

such that trace(πm) = A0A1 . . .Am.

▸ Careful: There is no guarantee that πm is a prefix of πm+1!



Proof (cont’d)
We construct s0s1 . . . inductively as follows, maintaining the

following invariant: for everym ∈ N, there are infinitely many

m′ > m such that πm
′ = sm

′

0 . . . sm
′

m′ is an initial finite path fragment in

TS′, trace(πm′) = A0 . . .Am′ , and s0 . . . sm = sm
′

0 . . . sm
′

m .

▸ base case (m = 0): For eachm′ there is an initial path fragment

sm
′

0 . . . sm
′

m′ with trace(πm′) = A0 . . .Am′ . Since there are only

finitely many initial states, there must exist some initial state s0
such that there are infinitely manym′ > 0 with an initial path

fragment πm
′ = sm

′

0 . . . sm
′

m′ such that sm
′

0 = s0 and

trace(πm′) = A0 . . .Am′ .
▸ induction step (m→ m + 1): by induction hypothesis, there

exist infinitely manym′ > m such that πm
′ = sm

′

0 . . . sm
′

m′ is an

initial finite path fragment in TS′, trace(πm′) = A0 . . .Am′ , and

s0 . . . sm = sm
′

0 . . . sm
′

m . Since sm has only finitely many successors,

there must exist some successor sm+1 such that there are

infinitely manym′ > m + 1 such that πm
′ = sm

′

0 . . . sm
′

m′ is an initial

finite path fragment in TS′, trace(πm′) = A0 . . .Am′ , and

s0 . . . sm+1 = sm
′

0 . . . sm
′

m+1.



REVIEW: Liveness properties

LT property Plive over AP is a liveness property whenever

pref(Plive) = (2AP)∗

▸ A liveness property is an LT property
▸ that does not rule out any prefix

▸ Liveness properties are violated in ‘‘infinite time’’
▸ whereas safety properties are violated in finite time
▸ finite traces are of no use to decide whether P holds or not
▸ any finite prefix can be extended such that the resulting infinite

trace satisfies P



Example liveness properties

▸ ‘‘If the tank is empty, the outlet valve will eventually be closed’’

▸ ‘‘If the outlet valve is open and the request signal disappears,

the outlet valve will eventually be closed’’

▸ ‘‘If the tank is full and a request is present,

the outlet valve will eventually be opened’’

▸ ‘‘The program terminates within 31 computational steps’’

⇒ a finite trace may violate this; this is a safety property!

▸ ‘‘The program eventually terminates’’



Liveness properties for mutual exclusion

▸ Eventually:
▸ each process will eventually enter its critical section

▸ Repeated eventually:
▸ each process will enter its critical section infinitely often

▸ Starvation freedom:
▸ each waiting process will eventually enter its critical section

how to formalize these properties?



Liveness properties for mutual exclusion

P = {A0 A1 A2 . . . ∣ Aj ⊆ AP & . . . } and AP = {wait1 , crit1 ,wait2 , crit2}
▸ Eventually:

(∃j ≥ 0. crit1 ∈ Aj) ∧ (∃j ≥ 0. crit2 ∈ Aj)

▸ Repeated eventually:

(∞∃ j ≥ 0. crit1 ∈ Aj) ∧ (∞∃ j ≥ 0. crit2 ∈ Aj)

▸ Starvation freedom:

∀j ≥ 0. (wait1 ∈ Aj ⇒ (∃k > j. crit1 ∈ Ak)) ∧
∀j ≥ 0. (wait2 ∈ Aj ⇒ (∃k > j. crit2 ∈ Ak))



Safety vs. liveness

▸ Are safety and liveness properties disjoint? Almost.

▸ Is every linear-time property a safety or liveness property? No.

▸ But:

for any LT property P an equivalent LT property P′ exists

which is a conjunction of a safety and a liveness property

⇒ safety and liveness provide an essential characterization of LT

properties



Basic properties

If P (over AP) is both a safety and a liveness property then:

P = (2AP)ω

For any LT properties P and P′:

closure(P ∪ P′) = closure(P) ∪ closure(P′)



Proof

closure(P) ∪ closure(P′) ⊆ closure(P ∪ P′)
▸ P ⊆ P ∪ P′ implies that closure(P) ⊆ closure(P ∪ P′)
▸ analogously, P′ ⊆ P ∪ P′, hence closure(P′) ⊆ closure(P ∪ P′).

closure(P ∪ P′) ⊆ closure(P) ∪ closure(P′)
▸ Suppose σ ∈ closure(P ∪ P′) ∖ (closure(P) ∪ closure(P′)).
▸ every finite prefix of σ is in pref(P) or pref(P′) or both.
▸ case 1: there are infinitely many prefixes of σ in pref(P). Then
all finite prefixes of P are in pref(P), hence σ ∈ closure(P).

▸ case 2: there are infinitely many prefixes of σ in pref(P′). Then
all finite prefixes of P are in pref(P′), hence σ ∈ closure(P′).

▸ case 3: there are only finitely many prefixes of σ in pref(P) and
only finitely many prefixes of σ in pref(P′). Then there are only

finitely many prefixes of σ in pref(P ∪ P′). Contradiction.



A non-safety and non-liveness property

‘‘the machine provides infinitely often beer

after initially providing sprite three times in a row’’

▸ This property consists of two parts:
▸ it requires beer to be provided infinitely often

⇒ as any finite trace fulfills this, it is a liveness property
▸ the first three drinks it provides should all be sprite

⇒ bad prefix = one of first three drinks is beer; this is a safety

property

▸ Property is thus a conjunction of a safety and a liveness

property

does this apply to all such properties?



Decomposition theorem

For any LT property P over AP there exists

a safety property Psafe and a liveness property Plive

(both over AP) such that:

P = Psafe ∩ Plive

Proposal: P = closure(P)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=Psafe

∩ (P ∪ ((2AP)ω ∖ closure(P)))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=Plive



Proof

▸ Psafe = closure(P) is a safety property:
closure(closure(P)) = closure(P).

▸ To show that Plive is a liveness property, we prove that

closure(Plive) ⊇ (2AP)ω, which is equivalent to

pref(Plive) = (2AP)∗.

closure(Plive) = closure(P ∪ ((2AP)ω ∖ closure(P)))
= closure(P) ∪ closure((2AP)ω ∖ closure(P))
⊇ closure(P) ∪ ((2AP)ω ∖ closure(P))
= (2AP)ω



‘‘Sharpest’’ decomposition theorem

Let P be an LT property and P = Psafe ∩ Plive

where Psafe is a safety property and Plive a liveness property.

Then:

1. closure(P) ⊆ Psafe

2. Plive ⊆ P ∪ ((2AP)ω ∖ closure(P))

closure(P) is the strongest safety property and
((2AP)ω ∖ closure(P)) the weakest liveness property



Classification of LT properties

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

liveness properties

neither liveness
nor safety properties

invariants

safety properties

safety and liveness property



Does this program terminate?

Inc ∣∣∣Reset

where

proc Inc = while ⟨ x ≥ 0 do x ∶= x + 1 ⟩ od
proc Reset = x ∶= −1

x is a shared integer variable that initially has value 0



Do we starve?

⟨n1 , n2 , y=1⟩

⟨w1 , n2 , y=1⟩ ⟨n1 ,w2 , y=1⟩

⟨c1 , n2 , y=0⟩ ⟨w1 ,w2 , y=1⟩ ⟨n1 , c2 , y=0⟩

⟨c1 ,w2 , y=0⟩ ⟨w1 , c2 , y=0⟩

req1

req2

enter1

req2

req1

enter2

req2

enter1

enter2

req1

rel

rel

rel

rel



Process two starves

⟨n1 , n2 , y=1⟩

⟨w1 , n2 , y=1⟩ ⟨n1 ,w2 , y=1⟩

⟨c1 , n2 , y=0⟩ ⟨w1 ,w2 , y=1⟩ ⟨n1 , c2 , y=0⟩

⟨c1 ,w2 , y=0⟩ ⟨w1 , c2 , y=0⟩

req1

req2

enter1

req2

req1

enter2

req2

enter1

enter2

req1

rel

rel

rel

rel

process two finitely many times in critical section remains unfair



Process one starves

⟨n1 , n2 , y=1⟩

⟨w1 , n2 , y=1⟩ ⟨n1 ,w2 , y=1⟩

⟨c1 , n2 , y=0⟩ ⟨w1 ,w2 , y=1⟩ ⟨n1 , c2 , y=0⟩

⟨c1 ,w2 , y=0⟩ ⟨w1 , c2 , y=0⟩

req1

req2

enter1

req2

req1

enter2

req2

enter1

enter2

req1

rel

rel

rel

rel



Fairness

▸ Starvation freedom is often considered under process fairness

⇒ there is a fair scheduling of the execution of processes

▸ Fairness is typically needed to prove liveness
▸ not for safety properties!
▸ to prove some form of progress, progress needs to be possible

▸ Fairness is concerned with a fair resolution of nondeterminism
▸ such that it is not biased to consistently ignore a possible option

▸ Problem: liveness properties constrain infinite behaviours
▸ but some traces---that are unfair---refute the liveness property



Fairness constraints

▸ What is wrong with our examples? Nothing!
▸ interleaving: not realistic as in reality no processor is infinitely

faster than another
▸ semaphore-based mutual exclusion: level of abstraction

▸ Rule out ‘‘unrealistic’’ runs by imposing fairness constraints
▸ what to rule out? ⇒ different kinds of fairness constraints

▸ ‘‘A process gets its turn infinitely often’’
▸ always unconditional fairness
▸ if it is enabled infinitely often strong fairness
▸ if it is continuously enabled from some point on weak fairness



Fairness

This program terminates under unconditional fairness:

proc Inc = while ⟨ x ≥ 0 do x ∶= x + 1 ⟩ od
proc Reset = x ∶= −1

x is a shared integer variable that initially has value 0



Fairness constraints

▸ Unconditional fairness

an activity is executed infinitely often
▸ Strong fairness

if an activity is infinitely often enabled (not necessarily always!)

then it has to be executed infinitely often
▸ Weak fairness

if an activity is continuously enabled (no temporary disabling!)

then it has to be executed infinitely often

we will use actions to distinguish fair and unfair behaviours



Fairness definition
For TS = (S,Act,→, I,AP, L)without terminal states, A ⊆ Act,

and infinite execution fragment ρ = s0
α0−−−→ s1

α1−−−→ . . . of TS:

1. ρ is unconditionally A-fair whenever:
true Ô⇒ ∀k ≥ 0. ∃j ≥ k. αj ∈ A´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

infinitely often A is taken

2. ρ is strongly A-fair whenever:

(∀k ≥ 0. ∃j ≥ k. Act(sj) ∩ A ≠ ∅)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
infinitely often A is enabled

Ô⇒ (∀k ≥ 0. ∃j ≥ k. αj ∈ A )´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
infinitely often A is taken

3. ρ is weakly A-fair whenever:

(∃k ≥ 0.∀j ≥ k. Act(sj) ∩ A ≠ ∅)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A is eventually always enabled

Ô⇒ (∀k ≥ 0. ∃j ≥ k. αj ∈ A )´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
infinitely often A is taken

where Act(s) = {α ∈ Act ∣ ∃s′ ∈ S. s α−−→ s′ }



Example (un)fair executions

⟨n1 , n2 , y=1⟩

⟨w1 , n2 , y=1⟩ ⟨n1 ,w2 , y=1⟩

⟨c1 , n2 , y=0⟩ ⟨w1 ,w2 , y=1⟩ ⟨n1 , c2 , y=0⟩

⟨c1 ,w2 , y=0⟩ ⟨w1 , c2 , y=0⟩

req1

req2

enter1

req2

req1

enter2

req2

enter1

enter2

req1

rel

rel

rel

rel



Which fairness notion to use?

▸ Fairness constraints aim to rule out ‘‘unreasonable’’ runs

▸ Too strong? ⇒ relevant computations ruled out

verification yields:
▸ ‘‘false’’: error found
▸ ‘‘true’’: don’t know as some relevant execution may refute it

▸ Too weak? ⇒ too many computations considered

verification yields:
▸ ‘‘true’’: property holds
▸ ‘‘false’’: don’t know, as refutation maybe due to some

unreasonable run



Relation between fairness constraints

unconditional A-fairness Ô⇒ strong A-fairness Ô⇒ weak A-fairness



Fairness assumptions

▸ Fairness constraints impose a requirement on any α ∈ A
▸ In practice: different constraints on different action sets

needed

▸ This is realised by fairness assumptions



Fairness assumptions

▸ A fairness assumption for Act is a triple

F = (Fucond ,Fstrong,Fweak)
withFucond ,Fstrong,Fweak ⊆ 2Act.

▸ Execution ρ isF -fair if:
▸ it is unconditionally A-fair for all A ∈ Fucond , and
▸ it is strongly A-fair for all A ∈ Fstrong, and
▸ it is weakly A-fair for all A ∈ Fweak

fairness assumption (∅,F ′ ,∅) denotes strong fairness; (∅,∅,F ′)weak,
etc.



Fairness for mutual exclusion

⟨n1 , n2 , y=1⟩

⟨w1 , n2 , y=1⟩ ⟨n1 ,w2 , y=1⟩

⟨c1 , n2 , y=0⟩ ⟨w1 ,w2 , y=1⟩ ⟨n1 , c2 , y=0⟩

⟨c1 ,w2 , y=0⟩ ⟨w1 , c2 , y=0⟩

req1

req2

enter1

req2

req1

enter2

req2

enter1

enter2

req1

rel

rel

rel

rel

F = (∅, {{ enter1 , enter2 }}´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Fstrong

,∅)



Fairness for mutual exclusion

⟨n1 , n2 , y=1⟩

⟨w1 , n2 , y=1⟩ ⟨n1 ,w2 , y=1⟩

⟨c1 , n2 , y=0⟩ ⟨w1 ,w2 , y=1⟩ ⟨n1 , c2 , y=0⟩

⟨c1 ,w2 , y=0⟩ ⟨w1 , c2 , y=0⟩

req1

req2

enter1

req2

req1

enter2

req2

enter1

enter2

req1

rel

rel

rel

rel

F = (∅, {{ enter1 }, { enter2 }}´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Fstrong

,∅)



Fairness for mutual exclusion

⟨n1 , n2 , y=1⟩

⟨w1 , n2 , y=1⟩ ⟨n1 ,w2 , y=1⟩

⟨c1 , n2 , y=0⟩ ⟨w1 ,w2 , y=1⟩ ⟨n1 , c2 , y=0⟩

⟨c1 ,w2 , y=0⟩ ⟨w1 , c2 , y=0⟩

req1

req2

enter1

req2

req1

enter2

req2

enter1

enter2

req1

rel

rel

rel

rel

F ′ = (∅, {{ enter1 }, { enter2 }}´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Fstrong

, {{ req1 }, { req2 }}´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Fweak

)

in anyF ′-fair execution each process infinitely often requests access



Fair paths and traces

▸ Path s0 −→ s1 −→ s2 . . . isF -fair if
▸ there exists anF -fair execution s0

α1−−−→ s1
α2−−−→ s2 . . .

▸ FairPathsF(s) denotes the set ofF -fair paths that start in s
▸ FairPathsF(TS) = ⋃s∈I FairPathsF(s)

▸ Trace σ isF -fair if there exists anF -fair execution ρ with
trace(ρ) = σ

▸ FairTracesF(s) = trace(FairPathsF(s))
▸ FairTracesF(TS) = trace(FairPathsF(TS))

these notions are only defined for infinite paths and traces; why?



Fair satisfaction

▸ TS satisfies LT-property P:

TS ⊧ P if and only if Traces(TS) ⊆ P

▸ TS satisfies the LT property P if all its observable behaviors are

admissible

▸ TS fairly satisfies LT-property P wrt. fairness assumptionF :

TS ⊧F P if and only if FairTracesF(TS) ⊆ P

▸ if all paths in TS areF -fair, then TS ⊧F P if and only if TS ⊧ P
▸ if some path in TS is notF -fair, then possibly TS ⊧F P but TS /⊧ P



Fairness for mutual exclusion

⟨n1 , n2 , y=1⟩

⟨w1 , n2 , y=1⟩ ⟨n1 ,w2 , y=1⟩

⟨c1 , n2 , y=0⟩ ⟨w1 ,w2 , y=1⟩ ⟨n1 , c2 , y=0⟩

⟨c1 ,w2 , y=0⟩ ⟨w1 , c2 , y=0⟩

req1

req2

enter1

req2

req1

enter2

req2

enter1

enter2

req1

rel

rel

rel

rel

TS /⊧ ‘‘every process enters its critical section infinitely often’’

and TS /⊧F ‘‘every . . . often’’

but TS ⊧F ′ ‘‘every . . . often’’



Fair concurrency with synchronization

TSi = (Si ,Acti ,→i , Ii ,APi , Li), for 1 ≤ i ≤ n, has no terminal states

TS = TS1 ∥ TS2 ∥ . . . ∥ TSn

TSi and TSj (i≠j) synchronize on their common actions:

Syni,j = Acti ∩ Actj

Syni,j ∩ Actk = ∅ for any k ≠ i, j

For simplicity, it is assumed that TS has no terminal states

how to establish a fair communication mechanism?



Asynchronous concurrent systems

concurrency = interleaving (i.e., nondeterminism) + fairness



Some fairness assumptions

▸ Strong fairness constraint: {Act1,Act2, . . . ,Actn}
▸ TSi executes an action (not necessarily a sync!) infinitely often

provided TS is infinitely often in a (global) state with a transition

of TSi enabled

▸ Strong fairness constraint: {{ α } ∣ α ∈ Syni,j , 0 < i < j ≤ n}
▸ every individual synchronization is forced to happen infinitely

often

▸ Strong fairness constraint: { Syni,j ∣ 0 < i < j ≤ n}
▸ every pair of processes is forced to synchronize infinitely often

▸ Strong fairness constraint: {⋃0<i<j≤n Syni,j }
▸ a synchronization (possibly the same) takes place infinitely

often



Realizable fairness

For TSwith set of actions Act and fairness assumptionF for Act:

F is realizable for TS if for any s ∈ Reach(TS): FairPathsF(s) ≠ ∅

every initial finite execution fragment of TS can be completed to a fair execution



The suffix property

s′0
β1−−−→ s′1

β2−−−→ . . .
βn−−−→ s′n´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

arbitrary starting fragment

= s0
α1−−−→ s1

α2−−−→ s2
α3−−−→ . . .´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

fair continuation



Realizable fairness and safety

For TS and safety property Psafe (both over AP)

andF a realizable fairness assumption for TS:

TS ⊧ Psafe if and only if TS ⊧F Psafe



Summary LT properties

▸ LT properties are finite sets of infinite words over 2AP (= traces)

▸ An invariant requires a conditionΦ to hold in any reachable

state

▸ Each trace refuting a safety property has a finite prefix causing
this

▸ invariants are safety properties with bad prefixΦ∗(¬Φ)
▸ a safety property is regular iff its set of bad prefixes is a regular

language

⇒ safety properties constrain finite behaviors

▸ A liveness property does not rule out finite behaviour

⇒ liveness properties constrain infinite behaviors

▸ Any LT property is equivalent to a conjunction of a safety and a

liveness property



Summary of fairness

▸ Fairness constraints rule out unrealistic traces
▸ i.e., constraints on the actions that occur along infinite

executions
▸ important for the verification of liveness properties

▸ Unconditional, strong, and weak fairness constraints
▸ unconditional ⇒ strong fair ⇒ weak fair

▸ Fairness assumptions allow distinct constraints on distinct

action sets

▸ (Realizable) fairness assumptions are irrelevant for safety

properties


