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REVIEW: Linear temporal logic

BNF grammar for LTL formulas over propositions APwith a ∈ AP:

φ ∶∶= true ∣ a ∣ φ1 ∧ φ2 ∣ ¬φ ∣ ◯φ ∣ φ1Uφ2

auxiliary temporal operators:◇ϕ ≡ trueU ϕ and ◻ϕ ≡ ¬ ◇ ¬ϕ



REVIEW: LTL semantics

The LT-property induced by LTL formula φ over AP is:

Words(φ) = {σ ∈ (2AP)ω ∣ σ ⊧ φ},where ⊧ is the smallest relation satisfying:

σ ⊧ true

σ ⊧ a iff a ∈ A0 (i.e., A0 ⊧ a)
σ ⊧ φ1 ∧ φ2 iff σ ⊧ φ1 and σ ⊧ φ2

σ ⊧ ¬φ iff σ /⊧ φ

σ ⊧ ◯φ iff σ[1..] = A1A2A3 . . . ⊧ φ

σ ⊧ φ1Uφ2 iff ∃j ≥ 0. σ[j..] ⊧ φ2 and σ[i..] ⊧ φ1, 0 ≤ i < j

for σ = A0A1A2 . . . we have σ[i..] = AiAi+1Ai+2 . . . is the suffix of σ from index i on



Semantics of ◻,◇, ◻◇ and◇◻

σ ⊧ ◇φ iff ∃j ≥ 0. σ[j..] ⊧ φ

σ ⊧ ◻φ iff ∀j ≥ 0. σ[j..] ⊧ φ

σ ⊧ ◻◇ φ iff ∀j ≥ 0. ∃i ≥ j. σ[i . . .] ⊧ φ

σ ⊧ ◇◻ φ iff ∃j ≥ 0.∀j ≥ i. σ[j . . .] ⊧ φ



LTL semantics

Let TS = (S,Act,→, I,AP, L) be a transition system without terminal

states, and let φ be an LTL-formula over AP.

▸ For infinite path fragment π of TS:

π ⊧ φ iff trace(π) ⊧ φ

▸ For state s ∈ S:

s ⊧ φ iff (∀π ∈ Paths(s). π ⊧ φ)

▸ TS satisfies φ, denoted TS ⊧ φ, if Traces(TS) ⊆Words(φ)



Equivalence

LTL formulas ϕ,ψ are equivalent, denoted ϕ ≡ ψ, if:

Words(ϕ) =Words(ψ)



Duality and idempotence laws

Duality: ¬ ◻ ϕ ≡ ◇ ¬ϕ
¬ ◇ ϕ ≡ ◻ ¬ϕ
¬◯ϕ ≡ ◯ ¬ϕ

Idempotency: ◻ ◻ ϕ ≡ ◻ϕ

◇ ◇ ϕ ≡ ◇ϕ

ϕU (ϕUψ) ≡ ϕUψ

(ϕUψ)Uψ ≡ ϕUψ



Absorption and distributive laws

Absorption: ◇ ◻ ◇ϕ ≡ ◻ ◇ ϕ

◻ ◇ ◻ϕ ≡ ◇ ◻ ϕ

Distribution: ◯ (ϕUψ) ≡ (◯ϕ)U (◯ψ)
◇(ϕ ∨ ψ) ≡ ◇ϕ ∨ ◇ ψ

◻(ϕ ∧ ψ) ≡ ◻ϕ ∧ ◻ψ

but . . . . . .: ◇(ϕUψ) /≡ (◇ϕ)U (◇ψ)
◇(ϕ ∧ ψ) /≡ ◇ϕ ∧ ◇ψ

◻(ϕ ∨ ψ) /≡ ◻ϕ ∨ ◻ ψ



Distributive laws

◇(a ∧ b) /≡ ◇a ∧ ◇b and ◻ (a ∨ b) /≡ ◻a ∨ ◻ b

{a}

{a}{b}

TS /⊧◇(a ∧ b) and TS ⊧ (◇a) ∧ (◇b)
TS /⊧ (◻a) ∨ (◻b) and TS ⊧ ◻(a ∨ b)



Expansion laws

Expansion: ϕUψ ≡ ψ ∨ (ϕ ∧ ◯(ϕUψ))
◇ϕ ≡ ϕ ∨ ◯◇ ϕ

◻ϕ ≡ ϕ ∧ ◯◻ ϕ



Proof:Words(ϕUψ) ⊆Words(ψ ∨ (ϕ ∧◯(ϕUψ)))

▸ Let A0A1A2 . . . ∈Words(ϕUψ):
▸ A0A1A2 . . . ⊧ ϕUψ.

▸ There exists a k ≥ 0 such that

AiAi+1Ai+2 . . . ⊧ ϕ for all 0 ≤ i < k and AkAk+1Ak+2 . . . ⊧ ψ.
▸ Case 1, k = 0:

▸ Then, A0A1A2 . . . ⊧ ψ and thus A0A1A2 . . . ⊧ ψ ∨ . . ..
▸ Hence, A0A1A2 . . . ∈Words(ψ ∨ (ϕ ∧◯(ϕUψ))).

▸ Case 2, k > 0:
▸ Then, A0A1A2 . . . ⊧ ϕ and A1A2 . . . ⊧ ϕUψ.
▸ Hence, A0A1A2 . . . ⊧ ϕ ∧◯(ϕUψ).
▸ Hence, A0A1A2 . . . ⊧ . . . ∨ (ϕ ∧◯(ϕUψ)).
▸ Hence, A0A1A2 . . . ∈Words(ψ ∨ (ϕ ∧◯(ϕUψ))).



Expansion for until

PU =Words(φUψ) satisfies:

PU = Words(ψ) ∪ {A0A1A2 . . . ∈Words(φ) ∣ A1A2 . . . ∈ PU }

and is the smallest LT-property P such that:

Words(ψ) ∪ {A0A1A2 . . . ∈Words(φ) ∣ A1A2 . . . ∈ P} ⊆ P (∗)



Proof:Words(φUψ) is the smallest LT-prop. satisfying (*)

▸ Let P be any LT-property that satisfies (*). We show that

Words(φUψ) ⊆ P.

▸ Let B0B1B2 . . . ∈Words(φUψ). Then there exists a k ≥ 0 such

that BiBi+1Bi+2 . . . ∈Words(φ) for every 0 ≤ i < k and

BkBk+1Bk+2 . . . ∈Words(ψ).
▸ We derive

BkBk+1Bk+2 . . . ∈ P
because BkBk+1Bk+2 . . . ∈Words(ψ) andWords(ψ) ⊆ P.

⇒ Bk−1BkBk+1Bk+2 . . . ∈ P
because if A0A1A2 . . . ∈Words(φ) and A1A2 . . . ∈ P then A0A1A2 . . . ∈ P.

⇒ Bk−2Bk−1BkBk+1Bk+2 . . . ∈ P, analogously
⇒ . . .

⇒ B0B1B2 . . . ∈ P.



Weak until

▸ The weak-until (or: unless) operator: φWψ
def= (φUψ) ∨ ◻φ

▸ as opposed to until, φWψ does not require a ψ-state to be

reached

▸ Until U and weak until W are dual:

¬(φUψ) ≡ (φ ∧ ¬ψ)W (¬φ ∧ ¬ψ)
¬(φWψ) ≡ (φ ∧ ¬ψ)U (¬φ ∧ ¬ψ)

▸ Until and weak until are equally expressive:
▸ ◻ψ ≡ ψWfalse and φUψ ≡ (φWψ) ∧ ¬ ◻ ¬ψ

▸ Until and weak until satisfy the same expansion law
▸ but until is the smallest, and weak until the largest solution!



Expansion for weak until

PW =Words(φWψ) satisfies:

PW = Words(ψ) ∪ {A0A1A2 . . . ∈Words(φ) ∣ A1A2 . . . ∈ PW }

and is the greatest LT-property P such that:

Words(ψ) ∪ {A0A1A2 . . . ∈Words(φ) ∣ A1A2 . . . ∈ P} ⊇ P (∗∗)



Proof:Words(φWψ) is the greatest LT-prop. satisfying (**)

▸ Let P be any LT-property that satisfies (**). We show that

P ⊆Words(φWψ).
▸ Let B0B1B2 . . . /∈Words(φWψ). Then there exists a k ≥ 0 such

that BiBi+1Bi+2 . . . ⊧ φ ∧ ¬ψ for every 0 ≤ i < k and

BkBk+1Bk+2 . . . ⊧ ¬φ ∧ ¬ψ.
▸ We derive

BkBk+1Bk+2 . . . /∈ P
because BkBk+1Bk+2 . . . /∈Words(ψ) and
BkBk+1Bk+2 . . . /∈Words(φ) and

⇒ Bk−1BkBk+1Bk+2 . . . /∈ P
because BkBk+1Bk+2 . . . /∈ P and Bk−1BkBk+1Bk+2 . . . /∈Words(ψ)

⇒ Bk−2Bk−1BkBk+1Bk+2 . . . /∈ P, analogously
⇒ . . .

⇒ B0B1B2 . . . /∈ P.



(Weak-until) positive normal form

▸ Canonical form for LTL-formulas
▸ negations only occur adjacent to atomic propositions
▸ disjunctive and conjunctive normal form is a special case of PNF
▸ for each LTL-operator, a dual operator is needed
▸ e.g., ¬(φUψ) ≡ ((φ ∧ ¬ψ)U (¬φ ∧ ¬ψ)) ∨ ◻(φ ∧ ¬ψ)
▸ that is: ¬(φUψ) ≡ (φ ∧ ¬ψ)W (¬φ ∧ ¬ψ)

▸ For a ∈ AP, the set of LTL formulas in PNF is given by:

φ ∶∶= true ∣ false ∣a ∣¬a ∣ φ1∧φ2 ∣ φ1 ∨ φ2 ∣◯φ ∣ φ1Uφ2 ∣ φ1Wφ2

▸ ◻ and◇ are also permitted: ◻φ ≡ φWfalse and◇φ = trueUφ



(Weak until) PNF is always possible

For each LTL-formula there exists an equivalent LTL-formula in PNF

Transformations:

¬true ↝ false

¬¬φ ↝ φ
¬(φ ∧ ψ) ↝ ¬φ ∨ ¬ψ
¬(φ ∨ ψ) ↝ ¬φ ∧ ¬ψ
¬◯φ ↝ ◯¬φ
¬(φUψ) ↝ (φ ∧ ¬ψ)W (¬φ ∧ ¬ψ)
¬◇ φ ↝ ◻¬φ
¬ ◻ φ ↝ ◇¬φ

but an exponential growth in size is possible



Example

Consider the LTL-formula ¬ ◻ ((aUb) ∨ ◯ c)
This formula is not in PNF, but can be transformed into PNF as

follows:

¬ ◻ ((aUb) ∨ ◯ c)
≡ ◇¬((aUb) ∨ ◯ c)
≡ ◇(¬(aUb) ∧ ¬◯ c)
≡ ◇((a ∧ ¬b)W (¬a ∧ ¬b) ∧ ◯¬c)

can the exponential growth in size be avoided?



The release operator

▸ The release operator: φ Rψ
def= ¬(¬φU¬ψ)

▸ ψ always holds, a requirement that is released as soon as φ holds

▸ Until U and release R are dual:

φUψ ≡ ¬(¬φ R¬ψ)
φ Rψ ≡ ¬(¬φU¬ψ)

▸ Until and release are equally expressive:
▸ ◻ψ ≡ false Rψ and φUψ ≡ ¬(¬φ R¬ψ)

▸ Release satisfies the expansion law:

φ Rψ ≡ ψ ∧ (φ ∨ ◯(φ Rψ))



Semantics of release

σ ⊧ φ Rψ
iff (* definition of R *)

¬∃j ≥ 0. (σ[j..] ⊧ ¬ψ ∧ ∀i < j. σ[i..] ⊧ ¬φ)
iff (* semantics of negation *)

¬∃j ≥ 0. (σ[j..] /⊧ ψ ∧ ∀i < j. σ[i..] /⊧ φ)
iff (* duality of ∃ and ∀ *)

∀j ≥ 0. ¬(σ[j..] /⊧ ψ ∧ ∀i < j. σ[i..] /⊧ φ)
iff (* de Morgan’s law *)

∀j ≥ 0. (¬(σ[j..] /⊧ ψ) ∨ ¬∀i < j. σ[i..] /⊧ φ)
iff (* semantics of negation *)

∀j ≥ 0. (σ[j..] ⊧ ψ ∨ ∃i < j. σ[i..] ⊧ φ)
iff

∀j ≥ 0. σ[j..] ⊧ ψ or ∃i ≥ 0. (σ[i..] ⊧ φ ∧ ∀k ≤ i. σ[k..] ⊧ ψ)



Positive normal form (revisited)

For a ∈ AP, LTL formulas in PNF are given by:

φ ∶∶= true ∣ false ∣ a ∣ ¬a ∣ φ1 ∧ φ2 ∣ φ1 ∨ φ2 ∣ ◯φ ∣ φ1 Uφ2 ∣ φ1 R φ2



PNF in linear size

For any LTL-formula φ there exists

an equivalent LTL-formula ψ in PNF with ∣ψ∣ = O(∣φ∣)

Transformations:
¬true ↝ false

¬¬φ ↝ φ
¬(φ ∧ ψ) ↝ ¬φ ∨ ¬ψ
¬(φ ∨ ψ) ↝ ¬φ ∧ ¬ψ
¬◯φ ↝ ◯¬φ
¬(φUψ) ↝ ¬φ R¬ψ
¬◇ φ ↝ ◻¬φ
¬ ◻ φ ↝ ◇¬φ



Fairness in LTL



Process one starves

⟨n1 , n2 , y=1⟩

⟨w1 , n2 , y=1⟩ ⟨n1 ,w2 , y=1⟩

⟨c1 , n2 , y=0⟩ ⟨w1 ,w2 , y=1⟩ ⟨n1 , c2 , y=0⟩

⟨c1 ,w2 , y=0⟩ ⟨w1 , c2 , y=0⟩

req1

req2

enter1

req2

req1

enter2

req2

enter1

enter2

req1

rel

rel

rel

rel



REVIEW: Action-based fairness constraints

For TS = (S,Act,→, I,AP, L)without terminal states, A ⊆ Act,

and infinite execution fragment ρ = s0
α0−−−→ s1

α1−−−→ . . . of TS:

1. ρ is unconditionally A-fair whenever: ∀k ≥ 0. ∃j ≥ k. αj ∈ A
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

infinitely often A is taken

2. ρ is strongly A-fair whenever:

(∀k ≥ 0. ∃j ≥ k. Act(sj) ∩ A ≠ ∅ )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

infinitely often A is enabled

Ô⇒ (∀k ≥ 0. ∃j ≥ k. αj ∈ A )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
infinitely often A is taken

3. ρ is weakly A-fair whenever:

(∃k ≥ 0.∀j ≥ k. Act(sj) ∩ A ≠ ∅ )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A is eventually always enabled

Ô⇒ (∀k ≥ 0. ∃j ≥ k. αj ∈ A )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
infinitely often A is taken



REVIEW: Fairness assumptions

▸ A fairness assumption for Act is a triple

F = (Fucond ,Fstrong,Fweak)

withFucond ,Fstrong,Fweak ∈ 2Act.
▸ Execution ρ isF -fair if:

▸ it is unconditionally A-fair for all A ∈ Fucond , and
▸ it is strongly A-fair for all A ∈ Fstrong, and
▸ it is weakly A-fair for all A ∈ Fweak

▸ F is realizable for TS if for any s ∈ Reach(TS): FairPathsF(s) ≠ ∅

fairness assumption (∅,F ′ ,∅) denotes strong fairness;

(∅,∅,F ′)weak, etc.



REVIEW: Fair paths and traces

▸ Let fairness assumptionF = (Fucond ,Fstrong,Fweak)
▸ Path s0 −→ s1 −→ s2 . . . isF -fair if

▸ there exists anF -fair execution s0
α1−−−→ s1

α2−−−→ s2 . . .
▸ FairPathsF(s) denotes the set ofF -fair paths that start in s
▸ FairPathsF(TS) = ⋃s∈I FairPathsF(s)

▸ Trace σ isF -fair if there exists anF -fair execution ρ with
trace(ρ) = σ

▸ FairTracesF(s) = trace(FairPathsF(s))
▸ FairTracesF(TS) = trace(FairPathsF(TS))



REVIEW: Fair satisfaction

▸ TS satisfies LT-property P:

TS ⊧ P if and only if Traces(TS) ⊆ P

▸ TS fairly satisfies LT-property P wrt. fairness assumptionF :

TS ⊧F P if and only if FairTracesF(TS) ⊆ P

▸ TS satisfies the LT property P if all its fair observable behaviors

are admissible



LTL fairness constraints

LetΦ and Ψ be propositional logic formulas over AP.

1. An unconditional LTL fairness constraint is of the form:

ufair = ◻◇Ψ

2. A strong LTL fairness condition is of the form:

sfair = ◻◇Φ Ð→ ◻◇Ψ

3. A weak LTL fairness constraint is of the form:

wfair = ◇◻Φ Ð→ ◻◇Ψ

Φ stands for ‘‘something is enabled’’; Ψ for ‘‘something is taken’’



LTL fairness assumption

▸ LTL fairness assumption = conjunction of LTL fairness
constraints

▸ the fairness constraints are of any arbitrary type

▸ Strong fairness assumption: sfair = ⋀0<i≤k (◻◇Φi Ð→ ◻◇Ψi)
▸ compare this to an action-based strong fairness constraint over

Awith ∣A∣ = k

▸ General format: fair = ufair ∧ sfair ∧ wfair

▸ Rules of thumb:
▸ strong (or unconditional) fairness assumptions are useful for

solving contentions
▸ weak fairness suffices for resolving nondeterminism resulting

from interleaving



Fair satisfaction

For state s in transition system TS (over AP) without terminal states, let

FairPathsfair(s) = { π ∈ Paths(s) ∣ π ⊧ fair }
FairTracesfair(s) = { trace(π) ∣ π ∈ FairPathsfair(s) }

For LTL-formula φ, and LTL fairness assumption fair:

s ⊧fair φ if and only if ∀π ∈ FairPathsfair(s). π ⊧φ and

TS ⊧fair φ if and only if ∀s0 ∈ I. s0 ⊧fair φ

⊧fair is the fair satisfaction relation for LTL; ⊧ the standard one for LTL



Randomized arbiter

noncrit1

wait1

crit1

req1

enter1
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noncrit2

wait2

crit2

req2

enter2
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unlock

tail

lock
enter2

rel

head

enter1

TS1 ∥ Arbiter ∥ TS2 /⊧ ◻◇ crit1
But: TS1 ∥ Arbiter ∥ TS2 ⊧fair ◻◇ crit1 ∧ ◻◇ crit2 with

fair = ◻◇ head ∧ ◻◇ tail



Semaphore-based mutual exclusion

⟨n1 , n2 , y=1⟩

⟨w1 , n2 , y=1⟩ ⟨n1 ,w2 , y=1⟩

⟨c1 , n2 , y=0⟩ ⟨w1 ,w2 , y=1⟩ ⟨n1 , c2 , y=0⟩

⟨c1 ,w2 , y=0⟩ ⟨w1 , c2 , y=0⟩
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skip skip

skip skip
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enter2
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State- versus action-based fairness

▸ From action-based to (state-based) LTL fairness assumptions:
▸ premise: deduce from state label the possible enabled actions
▸ conclusion: deduce from state label the just executed actions

▸ General scheme:
▸ copy each non-initial state s and keep track of action used to

enter s
▸ copy ⟨s, α⟩means s has been entered via action α

⇒ Any action-based fairness assumption can be transformed
into an equivalent LTL fairness assumption

▸ the reverse, however, does not hold



Turning action-based into state-based fairness

For TS = (S,Act,→, I,AP, L) let TS′ = (S′ ,Act∪{begin},→ ′ , I′ ,AP′ , L′)with:
▸ S′ = I × {begin} ∪ S × Act and I′ = I × {begin}
▸ → ′ is the smallest relation satisfying:

s α−−→ s′

⟨s, β⟩ α−−→′ ⟨s′ , α⟩ and
s0

α−−→ s s0 ∈ I
⟨s0 , begin⟩ α−−→′ ⟨s, α⟩

▸ AP′ = AP ∪ { enabled(α), taken(α) ∣ α ∈ Act}
▸ labeling function:

▸ L′(⟨s0 , begin⟩) = L(s0) ∪ {enabled(β) ∣ β ∈ Act(s0) }
▸ L′(⟨s, α⟩) = L(s) ∪ { taken(α) } ∪ { enabled(β) ∣ β ∈ Act(s) }

it follows: TracesAP(TS) = TracesAP(TS′)



State- versus action-based fairness

▸ Strong A-fairness is described by the LTL fairness assumption:

sfairA = ◻◇ ⋁
α∈A

enabled(α) → ◻◇ ⋁
α∈A

taken(α)

▸ The fair traces of TS and its action-based variant TS′ are equal:

{traceAP(π) ∣ π ∈ Paths(TS), π isF -fair}
= {traceAP(π′) ∣ π′ ∈ Paths(TS′), π′ ⊧ fair}

▸ For every LT-property P (over AP): TS ⊧F P iff TS′ ⊧fair P



Reducing ⊧fair to ⊧

For:

▸ transition system TSwithout terminal states

▸ LTL formula φ, and

▸ LTL fairness assumption fair

it holds:

TS ⊧fair φ if and only if TS ⊧ (fair → φ)

verifying an LTL-formula under a fairness assumption can be done

using standard verification algorithms for LTL



LTL Model Checking



LTL model-checking problem

The following decision problem:

Given finite transition system TS and LTL-formula φ:

yields ‘‘yes’’ if TS ⊧ φ, and ‘‘no’’ (plus a counterexample) if TS /⊧ φ



A first attempt

TS ⊧ φ if and only if Traces(TS) ⊆Words(φ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Lω(Aφ)

if and only if Traces(TS) ∩ Lω(Aφ) = ∅

but complementation of NBA is exponential

ifA has n states,A has cO(n log n) states in worst case

use the fact that Lω(Aφ) = Lω(A¬φ)!



Observation

TS ⊧ φ if and only if Traces(TS) ⊆Words(φ)

if and only if Traces(TS) ∩ ((2AP)ω ∖Words(φ)) = ∅

if and only if Traces(TS) ∩ Words(¬φ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Lω(A¬φ)

= ∅

if and only if TS⊗A¬φ ⊧ ◇◻ ¬F

LTL model checking is thus reduced to persistence checking!



Overview of LTL model checking

model checker

‘No’ (counter-example)

Model of system

Transition system TS

Negation of property

Product transition system

TS⊗A¬φ

TS⊗A¬φ ⊧ Ppers(A¬φ)

LTL-formula ¬φ

Büchi automatonA¬φ

Generalised Büchi automaton G¬φ

System

‘Yes’


