Verification

Lecture 7

Bernd Finkbeiner
Peter Faymonville
Michael Gerke

Olm UNIVERSITAT
m]llwll“" DES

UL SAARLANDES

REVIEW: Linear temporal logic

BNF grammar for LTL formulas over propositions AP with a € AP:

(p::=true|a‘<p1 /\(P2|ﬂ<P|O<P“P1U‘P2

auxiliary temporal operators: & ¢ = trueUgandO0¢p = - O - ¢

REVIEW: LTL semantics

The LT-property induced by LTL formula ¢ over AP is:
Words(p) = {0 € (2AP)“’ | o (p},where = is the smallest relation satisfying:

o true

a iff acAp (i.e,AokEa)

=
E
o = ¢1 Ay iff coE@randok @
E -9 iff o#o

E Qg iff o[1.]=A1AA3...=¢

E o1Ugy iff 3j>0.0[j..]=¢2 and o[i.] E ¢q, 0<i<j

for 0 = AjA1A; ... we have g[i..] = AiAinAisz . . . is the suffix of o from index i on

Semantics of O, &, 0 and &GO

LI | N | B

1%
e
ERON)
Coe

iff
iff
iff
iff

3>0.0[j.]F¢
Vji20.0[j..]F¢
Vji>0.3i>j.0[i...]E¢
FH20Vj2iofj...]=9

LTL semantics

Let TS = (S, Act, -, 1, AP, L) be a transition system without terminal
states, and let ¢ be an LTL-formula over AP.

» For infinite path fragment 7 of TS:
TEQ iff trace(m) E ¢
» ForstateseS:
SEQ iff (Vm e Paths(s). m = @)

» TS satisfies ¢, denoted TS & ¢, if Traces(TS) < Words(¢)

Equivalence

LTL formulas ¢, y are equivalent, denoted ¢ = vy, if:

Words(¢) = Words(y)

Duality and idempotence laws

Duality: -0¢
O ¢
-O¢

Idempotency: oo¢
SO

¢U(¢Uy)

(¢Uy)Uy

Absorption and distributive laws

Absorption: Coo¢ = 0o
ooo¢ = o0¢
Distribution: O (¢Uy) = (O¢)U(Ow)
Olpvy) = Opv Oy
o(¢ Ay) = 0¢ A Oy
but...... O(pUy) £ (OP)U(OY)

S ry) £ OPAOY
o vy) # 0pv Oy

Distributive laws

Slanb)y#0a A Ob and oO(av b) #oa v ob

(b} /l\ {a}
/

{a}

TS#EO(a A b)and TS = (¢a) A (Ob)
TS (oa) v (ob)and TS=0(a v b)

Expansion laws

Expansion: ¢Uwy
O
0¢

y v (¢ A O(¢Uy))
pvOO¢
pAOD¢

Proof: Words(¢ U y) c Words(y v (¢ A O(dUy)))

v

Let ApA1A; ... € Words(¢ U y):
AoA1Ar .. E (pUI//
» There exists a k > 0 such that
AiAi1Aizr ... e ¢pforallO<i<k and AA 1Ak E V.
» Case1,k=0:

» Then, AgA1Ay ... E 1//and thus AcAAr. . E yVv...
» Hence, ApA1A; ... € Words(y v (¢ A O(dUy))).
» Case2,k>0:
> Then,AoA1A2... = gbandA]Az... = (/)Ul//
» Hence, AgA1As...E ¢ AO(pUvy).
» Hence, ApA1Ay...=...v (6 AO(¢pUwy)).
» Hence, ApA1A; ... € Words(y v (¢ A O(dUy))).

v

Expansion for until

Py = Words(¢ Uvy) satisfies:
Py = Words(y) U {AcAtAs ... € Words(p) | AAy...ePy }
and is the smallest LT-property P such that:

Words(y) U {AoA1A; ... € Words(¢) | A1Ay...eP} c P (*)

Proof: Words(¢ U v) is the smallest LT-prop. satisfying (*)

» Let P be any LT-property that satisfies (*). We show that
Words(p Uy) cP.

» Let BoB1B; ... € Words(¢ Uvy). Then there exists a k > 0 such
that B;Bi;1Bis2 ... € Words(¢) forevery 0 <i < k and
BiBk+1Bki2 - - . € Words(y).

» We derive

BkBkH Bk+2 ...€P

because ByBy:1Bk+2 - - . € Words(y) and Words(y) c P.
= Bk_1BkBk+1Bk+2 ...€P
because if AgA1A; ... € Words(¢) and A1A; ... € Pthen AgAtA; ... €P.
By_2Bk_1BiBx:1Bks> . . . € P, analogously

byl

BoB1Bz... eP.

Weak until

» The weak-until (or: unless) operator: Wy = (9 Uy) v 0O¢
» as opposed to until, ¢ Wy does not require a y-state to be
reached

» Until U and weak until W are dual:

~(pUy) (¢ A =)W (=9 A -y)
~(pWy) = (¢ A -¥)U(-¢ A -y)
» Until and weak until are equally expressive:
» Oy = yWfalseand pUy = (pWy) A-DO -y
Until and weak until satisfy the same expansion law
» but until is the smallest, and weak until the largest solution!

v

Expansion for weak until

P\ = Words(¢ W) satisfies:
Py = Words(y) U {AcA1A; ... € Words(9) | A1Ay...€ Py }
and is the greatest LT-property P such that:

Words(y) U {AoA1A; ... € Words(¢) | AjAy...eP} 2 P ()

Proof: Words(¢ W v) is the greatest LT-prop. satisfying (**)

» Let P be any LT-property that satisfies (**). We show that
P < Words(o Wv).

» Let BoB1B; ... ¢ Words(¢ W y). Then there exists a k > 0 such
that BiBj11Bj.2... = ¢ A~y forevery0<i<kand
BkBi+1Bks2 - - - E ~p Ay

» We derive

byl

BiBi+1Bisz ... £P

because ByBk;1Bk+z - - . ¢ Words(y) and

BkBk+1Bks2 - - . ¢ Words(¢) and

Bi—1BkBi+1Bis2 ... ¢ P

because BxBy.1Bks2 - .. ¢ Pand Bx_1BxBy+1B+2 - - . ¢ Words(y)
Bk_2Bx_1BkBks1Bi2 - - . ¢ P, analogously

BoB1B, ... ¢ P.

(Weak-until) positive normal form

» Canonical form for LTL-formulas

» negations only occur adjacent to atomic propositions
» disjunctive and conjunctive normal form is a special case of PNF
» for each LTL-operator, a dual operator is needed
> eg,~(pUy) = ((9 A ~y)U(=p A ~y)) v B¢ A ~y)
> thatis:—(eUy) = (¢ A ~y)W (-9 A —y)
» For a € AP, the set of LTL formulas in PNF is given by:

@ = true‘false|a‘ﬁa|<p1/\(pz|§01V<p2|O§0‘<P1U<P2|<P1VV€02

» Oand < are also permitted: g = ¢ Wfalse and ¢ = true U ¢

(Weak until) PNF is always possible

’ For each LTL-formula there exists an equivalent LTL-formula in PNF

Transformations:

—~true ~ false

Il ~ 9

“(pAy) ~ —pv-y

S(pvy) ~ —pn-y

-O¢ ~ O

=(pUy) ~ (¢ A =y)W(=¢p A =y)
BROX ~ O-¢

-O¢ ~ O

but an exponential growth in size is possible

Example

Consider the LTL-formula -~ o ((aUb) v Oc)
This formula is not in PNF, but can be transformed into PNF as
follows:

-~a((aub) v Oc)
&=((aub) v Oc)
o(=(aub) A -Oc)
O((a A =b)W(-a A =b) A O=c)

can the exponential growth in size be avoided?

The release operator

d

» The release operator: 9 Ry el ~(=pU-y)
» yalways holds, a requirement that is released as soon as ¢ holds
» Until U and release R are dual:

pUy = =(-¢pR-y)
pRy = —(-pU-y)

v

Until and release are equally expressive:
» Oy = falseRyand pUy = ~(-pR-vy)

» Release satisfies the expansion law:
eRy=y A (¢ v O(¢Ry))

Semantics of release

oF @Ry
(* definition of R *)

-3j>0. (U[j] E-yAVi<joli.]E —|(p)
(* semantics of negation *)

-3 20.(o[j.]# v A Vi<joli.])
(* duality of 3and V *)

¥j20.~(olj.]#y A Vi<joli]#)

(* de Morgan’s law *)

¥j> 0. (=(olj.]#) v ~Vi<j.o[i.] ¢ ¢)

(* semantics of negation *)
ijo.(a[j.]i:w v di<j.oli]IZ(p)

Vji>0.0[j.]Ey or 3i>0.(o[i.] E¢AVk<iolk]lzw)

Positive normal form (revisited)

For a € AP, LTL formulas in PNF are given by:

@ = true|fa|se‘a|ﬂa| (P1/\§02|§01V§02‘ O‘P|‘P1U‘P2|‘P1 R ¢2

PNF in linear size

For any LTL-formula ¢ there exists

an equivalent LTL-formula y in PNF with |y| = O(|¢]|)

Transformations:

—true ~ false
—=¢ ~ P
“(pry) ~ —pv-y
(evy) ~ —pr-y
-O¢ ~ O-¢
-(pUy) ~ -pR-y
BROX) ~ O-¢
-0¢ ~ O

Fairness in LTL

Process one starves

(m,wz,y=1)

REVIEW: Action-based fairness constraints

For TS = (S, Act, —, I, AP, L) without terminal states, A c Act,
and infinite execution fragment p = sy %% s; %> ... of TS:

1. pisunconditionally A-fair whenever: Vk>0.3j> k. a;j €A

infinitely often A is taken
2. pisstrongly A-fair whenever:
(Vk>0.3j >k Act(s)) nA+@) = (Vk>0.3j>k ajcA)

infinitely often A is enabled infinitely often A is taken

3. pis weakly A-fair whenever:

(Fk>0.Vj>k. Act(sj)) NnA+@) = (Vk>0.3j>k.ajcA)

Ais eventually always enabled infinitely often A is taken

REVIEW: Fairness assumptions

» A fairness assumption for Act is a triple

F = (}- uconda]:strong: F weak)

with Fyconds Fitrongs Fweak € A,
» Execution p is F-fair if:
» itis unconditionally A-fair for all A € Fycong, and

» itis strongly A-fair for all A € Firong, and
» itis weakly A-fair for all A € Fieax

» Fisrealizable for TS if for any s € Reach(TS): FairPaths z(s) + @&

fairness assumption (@, F', @) denotes strong fairness;
(2,2, F") weak, etc.

REVIEW: Fair paths and traces

» Let fairness assumption F = (Fycond> Fstrong> Fweak)
» Pathsg— sy —s,...is F-fairif
» there exists an F-fair execution so - 51 %2555 . ..

» FairPaths z(s) denotes the set of F-fair paths that startin s
» FairPaths z(TS) = Us FairPaths(s)
» Trace o is F-fair if there exists an F-fair execution p with
trace(p) = o

» FairTracesz(s) = trace(FairPaths z(s))
» FairTraces z(TS) = trace(FairPaths z(TS))

REVIEW: Fair satisfaction

» TS satisfies LT-property P:

TSP ifandonlyif Traces(TS) c P
» TS fairly satisfies LT-property P wrt. fairness assumption F:

TSex P ifandonlyif FairTracesz(TS) ¢ P

» TS satisfies the LT property P if all its fair observable behaviors
are admissible

LTL fairness constraints

Let ® and ¥ be propositional logic formulas over AP.

1. An unconditional LTL fairness constraint is of the form:

ufair = 0o VY

2. Astrong LTL fairness condition is of the form:

sfair =0OC® — oo VY

3. A weak LTL fairness constraint is of the form:

wfair = o0® — oo VY

@ stands for “something is enabled”; ¥ for “something is taken”

LTL fairness assumption

v

LTL fairness assumption = conjunction of LTL fairness
constraints

» the fairness constraints are of any arbitrary type
» Strong fairness assumption: sfair = Aok (0O @ — 0O ;)
» compare this to an action-based strong fairness constraint over
Awith |A| = k
General format: fair = ufair A sfair A wfair
Rules of thumb:

» strong (or unconditional) fairness assumptions are useful for
solving contentions

» weak fairness suffices for resolving nondeterminism resulting
from interleaving

v

v

Fair satisfaction

For state s in transition system TS (over AP) without terminal states, let

FairPathsz;,(s) { m € Paths(s) | m=fair }

FairTraces;y(s) = {trace(r) | m € FairPathse;(s) }
For LTL-formula ¢, and LTL fairness assumption fair:

SkEfir ¢ ifandonlyif Ve FairPathsg,;, (s). n=¢ and

TS Eqir ¢ ifandonlyif Vsg €150 Eqir @

Erqir 1S the fair satisfaction relation for LTL; & the standard one for LTL

Randomized arbiter

noncrity unlock noncrity

rel

entery enter,

TSy || Arbiter || TS; # O < crity
But: TSy || Arbiter || TSy Efir O < crity A O < crit; with
fair = 0 & head A0 O tail

Semaphore-based mutual exclusion

State- versus action-based fairness

» From action-based to (state-based) LTL fairness assumptions:
» premise: deduce from state label the possible enabled actions
» conclusion: deduce from state label the just executed actions
» General scheme:
» copy each non-initial state s and keep track of action used to

enters
» copy (s, «) means s has been entered via action «

= Any action-based fairness assumption can be transformed
into an equivalent LTL fairness assumption

» the reverse, however, does not hold

Turning action-based into state-based fairness

ForTS = (S, Act,—,1,AP,L) let TS" = (S',Actu{begin},—',I',AP’,L") with:
» S = Ix{begin} u SxActandl' =Ix { begin }

» —'is the smallest relation satisfying:

s5 So-2>5 sp €l
—_— and - y
(s,B) = (s', a) (s0, begin) = (s, a)

» AP" = APU {enabled(«), taken(a) | a € Act }
» labeling function:

» L' ({so,begin)) = L(so) U {enabled(ﬁ) | B eAct(so)}
> L'({s,a)) = L(s) u {taken(a) } U { enabled(B) | B € Act(s) }

it follows: Tracesop(TS) = Tracesp(TS')

State- versus action-based fairness

» Strong A-fairness is described by the LTL fairness assumption:

sfairy, = 0 \/ enabled(a) — o< \/ taken(a)

acA aeA
» The fair traces of TS and its action-based variant TS" are equal:

{traceAp(n) | 7w € Paths(TS), is f—fair}
= {tracepp(n’) | o’ € Paths(TS'), n’ = fair}

» For every LT-property P (over AP): TS = P iff TS &4 P

Reducing & to E

For:
» transition system TS without terminal states
» LTL formula ¢, and
» LTL fairness assumption fair

it holds:

TS Eair ¢ if and only if TS & (fair - ¢) ‘

verifying an LTL-formula under a fairness assumption can be done
using standard verification algorithms for LTL

LTL Model Checking

LTL model-checking problem

The following decision problem:

Given finite transition system TS and LTL-formula ¢:

yields “yes" if TS = ¢, and “no” (plus a counterexample) if TS i ¢

A first attempt

TSE=¢ ifandonlyif Traces(TS) c Words(g)
| —
La(Ag)

ifand only if ~ Traces(TS) n Lo(A,) = @

but complementation of NBA is exponential
if A has n states, A has c°("'°9") states in worst case

use the fact that £,(A,) = L,(A_,)!

Observation

TS&= ¢ ifandonlyif
if and only if

if and only if

if and only if

Traces(TS) < Words(¢)
Traces(TS) n ((2%P)“ \ Words(¢)) = @

Traces(TS) n Words(-¢) = @
|
Lo(A-p)

TS®A, EOO-F

LTL model checking is thus reduced to persistence checking!

Overview of LTL model checking

Negation of property

‘ Model of system ‘ ‘ LTL-formula -¢ ‘

model checker

‘ Generalised Biichi automaton G_,

¢

Transition system TS ‘ Biichi automaton A_,

Product transition system ‘
-

TSe A,
]

TS® Ay F Prers(a,) ’—‘
U
A

[‘No’ (counter-example) j

