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REVIEW: Overview of LTL model checking

Negation of property

‘ Model of system ‘ ‘ LTL-formula -¢ ‘

model checker

‘ Generalised Biichi automaton G_, ‘

¢

Transition system TS ‘ Biichi automaton A_, ‘

Product transition system
TS®A,

]

’—< TS® Ay F Prers(a,) ’—‘
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REVIEW: Generalized Blichi automata

A generalized NBA (GNBA) G is a tuple (Q, Z, 8, Qo, F) where:
» Qis afinite set of states with Qg ¢ Q a set of initial states
» X is an alphabet
» §:Qx 2 - 2%is atransition function
» F={F,...,Fc}isa(possibly empty) subset of 22

The size of G, denoted |G|, is the number of states and transitions in G:

91 = 1Ql+ 2 22 18(a.A)|
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REVIEW: Language of a GNBA

v

GNBA g = (Q, >, 8, Qo,j:) and word ¢ = AOA1A2 ...exv
» Arunfor o in G is an infinite sequence go g1 g5 . . . such that:
» go € Qo and g; A gy forall 0 < i

» Runqo gy ... is accepting if for all F € F: g; € F for infinitely
many i

» 0 € X% is accepted by G if there exists an accepting run for ¢

v

The accepted language of G:

L,(G) = {0 €2*| there exists an accepting run for ¢ in G }



REVIEW: From GNBA to NBA

For any GNBA G there exists an NBA A with:
L,(G) = Lo(A) and |A] = O(|G|- | F])

where F denotes the set of acceptance sets in G

» Sketch of transformation GNBA (with k accept sets) into an
equivalent NBA:

» make k copies of the automaton

» initial states of NBA := the initial states in the first copy

» final states of NBA := accept set F; in the first copy

» on visiting in i-th copy a state in F;, move to the (i+1)-st copy



From LTL to GNBA (idea)

GNBA G, over 24P for LTL-formula ¢ with L,(G,) = Words(¢):
» Assume ¢ only contains the operators A, -, O and U
» v, —>, <, 0, W, and so on, are expressed in terms of these basic
operators
» States are elementary sets of sub-formulas in ¢

» for o = AgA1A, ... € Words(¢),
expand A; ¢ AP with sub-formulas of ¢
» ...to obtain the infinite word @ = ByB1B> ... such that

yeB  ifandonlyif o' =AAL AL EY

» o isintended to be arunin GNBA G, for ¢

» Transitions are derived from
the semantics of O and the expansion law for U

» Accept sets guarantee that: ¢ is an accepting run for ¢ iff 0 = ¢



From LTL to GNBA: the states (example)

» Letop=aU(-a A b) and o={a}{ab}{b}...
» Bjisasubsetof {a,b,-anb,¢} U {-a,-b,~(-anb),-¢}
» this set of formulas is also called the closure of ¢
» ExtendAg={a},A1={a,b},A,={b},...asfollows:
» extend Ay with b, —(-a A b), and ¢ as they hold in ¢° = ¢ (and
no others)
» extend A; with —(-a A b) and ¢ as they hold in ¢' (and no
others)
» extend A, with —a, -a A b and ¢ as they hold in ¢ (and no
others)
» ...and so forth
» this is not effective and is performed in the automaton (not on
words)

» Result:
o ={a,-b,-(-anb),¢}{a,b,~(-anb),¢} {-a,b,-anb,¢}...

Bo By B,




Closure

For LTL-formula ¢, the set closure(¢)
consists of all sub-formulas y of ¢ and their negation -y

(where y and ——y are identified)

foro=aU(-a A b), closure(¢) ={a,b,-a,-b,-anb,-(-anb),p,-¢}

can we take B; as any subset of closure(¢)? no! they must be elementary



Elementary sets of formulae

B c closure(¢) is elementary if:

1. Bis logically consistent if for all 91 A @2, v € closure(¢):
» 91 AQ€B < greBand g, B
»yeB = -y¢B
» true € closure(¢) = trueeB

2. Bislocally consistent if for all ¢1 U ¢, € closure(¢):
» 9B = p1UpyeB
» p1UgpreBand g, ¢B = ¢ €B

3. Bis maximal, i.e., for all y € closure(¢):
»y¢B = -yeB




The GNBA of LTL-formula ¢

For LTL-formula ¢, let G, = (Q, 24P, 8, Qo, F) where
» Qis the set of all elementary sets of formulas B ¢ closure(¢)
» Q = {BeQ|gpeB}
» F = {{BEQ|¢1 Ug, ¢ Bor ¢ GB} | 91U @2 eclosure(fp)}

» The transition relation & : Q x 24P — 22is given by:
» 8(B,Bn AP) is the set of all elementary sets of formulas B’
satisfying:
(i) Forevery Qv eclosure(¢):OweB < yeB and
(ii) Forevery y; Uy, € closure(o):

iUy eB < (y2eB v (y1eB A y1UyeB))



GNBA for LTL-formula O a




GNBA for LTL-formulaaU b
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Main result

[Vardi, Wolper & Sistla 1986]

For any LTL-formula ¢ (over AP) there exists a

GNBA G, over 24P such that:

(@) Words(¢) = L,(G,)

(b) G, can be constructed in time and space O (2/¢/)

(c) #accepting sets of G, is bounded above by O(|¢|)

= every LTL-formula expresses an w-regular property!




Proof

Words(¢) < Lo(Gy)
» Let o = AoA; ... € Words(¢).

» We construct an accepting run BgB; ... of Gyonoas follows:
Bi = {y e closure(¢) | AiAis1 ... E v}
1. BoBy ...isarunof G, on g, because for all positions i:

> Ai = B,‘ N AP

» QyeB;
iffA,'Ai+1Ai+2 . E O v
iffAi+1Ai+2 L FEVY
iff y € By

>y Uy eB;
iffAiAi+1A,'+2 ... B U V2
iffA,'A,'HAHz ...Evyy0r (A,‘A,'H ... EUn and Aii1Aisr. . E v U l//z)
iff y, € Bior (y1 € Biand y1 Uy, € Biyq)



Proof (cont'd)

2. BoBj ...isanaccepting run, i.e, forevery y; ;U vy, € closure(g),
BieFj={BeQ|y1;Uyy;¢Bory;, € B} forinfinitely many i.
» Suppose B; ¢ F; forall i > k for some k
» BigFj=y1,UysjeBiandysy; ¢ B;
» Hence, AiAis1 ... E v U Y2, and A ... 174 V2,
» Thus, AYAker ... E Y1 U Y2, but AiAis ... F% Y2, foralli> k.
» Contradiction.



Proof (cont'd)

L,(Gy) € Words(¢)
» Let AoA; ... € Lo(G,) with accepting run BoB; .. ..

» We show that for all positions i > 0, y € B; iff AiAi1 ... = y.
Proof by structural induction on y:

v € AP:Since §(B,A) = @ if A+ BN AP, A; = Bin AP

> Y= OW’Z By IH, 1//’ € Bisq iffAi+1Ai+2 . W’.
Hence, O v/ € Bjiff AlAis1...E Qv

»y=y1 AYBylIH, ...

»y=-y":BylH,...

Y=y Uy

1. AAiy1...Ey =>yeB;
> Assume AiAis1 ... =y Uy,
» There exists ak > is.t. AkAxs1 ... E y2 and AjAj E y, forall
i<j<k

» = yreBrandy, e Biforalli<j<k
» Hence,y1 Uya € By, yiUyp € Byy, .., yi Uy € B

v



Proof (cont'd)

2. l//EB,':>A,‘A,‘+1 4
» Assume y Uy, € B;
» Case 11y, ¢ Bjforallj > i:
By ind.onj, y; € Bjand y; Uy, € Bjforall j > i
= B¢ {B €eQlyr Uy ¢Bory, e B}. Contradiction.
» Case 2: There is a smallest k > j with y, € By.
Hence, by IH, AkAk+1 - .- E¥2
Byind.onj,i<j <k, y; €Bjand
hence, by IH, AjAi. ... E vy
= AAinAia.. . B U,



NBA are more expressive than LTL

There is no LTL formula ¢ with Words(¢) = P for the LT-property:
P = {AotiAr...c(21))" |aepyforiz 0]}

But there exists an NBA A with £,(A) =P

= there are w-regular properties that cannot be expressed in LTL!




Proof

» Proof by contradiction:

Assume there is an LTL formula ¢ with Words(¢) = P.
» Letw; = {a}"'@{a}* and

Wy = {a}n+2®{a}w

where n is the number of O -operators in ¢.

We show that wy € Words(¢) iff w, € Words(¢).

This contradicts Words(¢) = P.

Structural induction on ¢:

» ¢ € AP: ¢ only depends on first position

» ¢ =Quy:bylH, {a}"@{a}® ¢ Words(y) iff
{a}"'z{a}* € Words(v).
Hence, wy € Words(g) iff w, € Words(¢).



Proof (cont'd)

> 9=y Uy
1. wy € Words(¢) = w; € Words(¢):

» Case 1:wy & y. Then, by IH, w; = ya.

» Case 2:w; # y,. Let k be the smallest index such that
wilk...]Eyand VO <i<kwi[i...] Eyi.
=wylk+1,...]ryand V1 <i<kw,[i...] = ys.
Additionally, by IH, wy = y1 = w; E y;.

2. w; € Words(¢) = wy € Words(o)

» Case 1:w; &= ys. Then, by IH, wy = ys.

» Case 2: w; # ya. Let k be the smallest index such that
walk...]Eyand VO <i< kwy[i...] = ys.
=wlk-1,...]Eypand VI <i<k-Tw[i...] Ey1.



Complexity for LTL to NBA

For any LTL-formula ¢ (over AP) there exists an NBA A,
with Words(¢) = L,(A,) and

which can be constructed in time and space in 29(#))

Justification complexity: next slide




Time and space complexity

v

States GNBA G, are elementary sets of formulae in closure(¢)
» sets B can be represented by bit vectors with single bit per
subformula y of ¢
» The number of states in G, is bounded by 2lsubf(e)]

» where subf(¢) denotes the set of all subformulae of ¢
> [subf(@)| < 2-¢l; so, the number of states in G, is bounded by
20(9))

v

The number of accepting sets of G, is bounded by O(|¢|)

The number of states in NBA A, is thus bounded by
200D . O(|g|) = 20(s+leglel) — 20(I9D) ged

v



Lower bound

There exists a family of LTL formulas ¢, with |p,| = O(poly(n))

such that every NBA A, for ¢, has at least 2" states




Proof

Let AP be non-empty, that is, |2AP| >2and:
Ly = (A1 AAr Ao |ACAP A oe ()7}, forn>0

Itfollows £, = Words(¢,) whereg, = A A (O'a <« O""a)
acAP 0<i<n
¢n is an LTL formula of polynomial length: |¢,| € (9(|AP| ~n)

However, any NBA A with £, (A) = L, has at least 2" states



Proof (cont'd)

Claim:any NBA Afor A\ A (O'a <« O""a) has at least 2" states
aeAP 0<i<n

» Words oftheform Ay ... A A1... A, @D D...areaccepted by A

» Athus has for every word A; ... A, of length n, a state
q(A1 ...An), which can be reached from an initial state by
consuming A ... An.

» From q(A...Ap), itis possible to visit an accept state infinitely
often by accepting the suffix A, ... A, 33 @ ...

» IfAr... Ay # A...A] then
Ar. ARA L ALGDD. . ¢ Ly = Lo(A)

» Therefore, the states g(A; ... Ap) are all pairwise different

» Given |24| possible sequences A; ... A,
NBA A has > (|24P|)" > 2" states



Complexity for LTL model checking

The time and space complexity of LTL model checking is in O (|T5|-2/¢!)




On-the-fly LTL model checking

» Idea: find a counter-example during the generation of
Reach(TS) and A_,

» exploit the fact that Reach(TS) and A_, can be generated in
parallel
= Generate Reach(TS® A_,) “on demand”

» consider a new vertex only if no accepting cycle has been found
yet

» only consider the successors of a state in Aw that match
current state in TS

= Possible to find an accepting cycle without generating A,
entirely

» This on-the-fly scheme is adopted for example in the model
checker SPIN



The LTL model-checking problem is co-NP-hard

The Hamiltonian path problem is polynomially reducible to

the complement of the LTL model-checking problem

In fact, the LTL model-checking problem is PSPACE-complete
[Sistla & Clarke 1985]




