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REVIEW: Generalized Büchi automata

A generalized NBA (GNBA) G is a tuple (Q, Σ, δ,Q0 ,F)where:
▸ Q is a finite set of states with Q0 ⊆ Q a set of initial states

▸ Σ is an alphabet

▸ δ ∶ Q × Σ → 2Q is a transition function

▸ F = { F1, . . . , Fk } is a (possibly empty) subset of 2Q

The size of G, denoted ∣G∣, is the number of states and transitions in G:

∣G∣ = ∣Q∣ + ∑
q∈Q

∑
A∈Σ

∣ δ(q,A) ∣



REVIEW: Language of a GNBA

▸ GNBA G = (Q, Σ, δ,Q0,F) and word σ = A0A1A2 . . . ∈ Σ
ω

▸ A run for σ in G is an infinite sequence q0 q1 q2 . . . such that:

▸ q0 ∈ Q0 and qi
Ai−−−→qi+1 for all 0 ≤ i

▸ Run q0 q1 . . . is accepting if for all F ∈ F : qi ∈ F for infinitely

many i

▸ σ ∈ Σω is accepted by G if there exists an accepting run for σ

▸ The accepted language of G:

Lω(G) = {σ ∈ Σω ∣ there exists an accepting run for σ in G }



REVIEW: From GNBA to NBA

For any GNBA G there exists an NBAAwith:

Lω(G) = Lω(A) and ∣A∣ = O(∣G∣ ⋅ ∣F∣)
whereF denotes the set of acceptance sets in G

▸ Sketch of transformation GNBA (with k accept sets) into an
equivalent NBA:

▸ make k copies of the automaton
▸ initial states of NBA := the initial states in the first copy
▸ final states of NBA := accept set F1 in the first copy
▸ on visiting in i-th copy a state in Fi, move to the (i+1)-st copy



From LTL to GNBA (idea)

GNBA Gφ over 2
AP for LTL-formula φ with Lω(Gφ) =Words(φ):

▸ Assume φ only contains the operators ∧, ¬,◯ and U
▸ ∨,→,◇, ◻, W , and so on, are expressed in terms of these basic

operators

▸ States are elementary sets of sub-formulas in φ
▸ for σ = A0A1A2 . . . ∈Words(φ),
expand Ai ⊆ APwith sub-formulas of φ

▸ . . . to obtain the infinite word σ = B0B1B2 . . . such that

ψ ∈ Bi if and only if σ i
= AiAi+1Ai+2 . . . ⊧ ψ

▸ σ is intended to be a run in GNBA Gφ for σ

▸ Transitions are derived from

the semantics of◯ and the expansion law for U

▸ Accept sets guarantee that: σ is an accepting run for σ iff σ ⊧ φ



From LTL to GNBA: the states (example)

▸ Let φ = a U (¬a ∧ b) and σ = {a}{a, b}{b} . . .
▸ Bi is a subset of {a, b,¬a ∧ b, φ } ∪ {¬a,¬b,¬(¬a ∧ b),¬φ }
▸ this set of formulas is also called the closure of φ

▸ Extend A0 = {a} , A1 = {a, b}, A2 = {b}, . . . as follows:
▸ extend A0 with ¬b, ¬(¬a ∧ b), and φ as they hold in σ0 = σ (and

no others)
▸ extend A1 with ¬(¬a ∧ b) and φ as they hold in σ1 (and no

others)
▸ extend A2 with ¬a, ¬a ∧ b and φ as they hold in σ2 (and no

others)
▸ . . . and so forth
▸ this is not effective and is performed in the automaton (not on

words)

▸ Result:

σ = {a,¬b,¬(¬a ∧ b), φ }
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

B0

{a, b,¬(¬a ∧ b), φ }
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

B1

{¬a, b,¬a ∧ b, φ }
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

B2

. . .



Closure

For LTL-formula φ, the set closure(φ)
consists of all sub-formulas ψ of φ and their negation ¬ψ

(where ψ and ¬¬ψ are identified)

for φ = aU (¬a ∧ b), closure(φ) = {a, b,¬a,¬b,¬a ∧ b,¬(¬a ∧ b), φ,¬φ }

can we take Bi as any subset of closure(φ)? no! they must be elementary



Elementary sets of formulae

B ⊆ closure(φ) is elementary if:

1. B is logically consistent if for all φ1 ∧ φ2,ψ ∈ closure(φ):
▸ φ1 ∧ φ2 ∈ B ⇔ φ1 ∈ B and φ2 ∈ B
▸ ψ ∈ B ⇒ ¬ψ /∈ B
▸ true ∈ closure(φ) ⇒ true ∈ B

2. B is locally consistent if for all φ1 Uφ2 ∈ closure(φ):
▸ φ2 ∈ B ⇒ φ1 Uφ2 ∈ B
▸ φ1 Uφ2 ∈ B and φ2 /∈ B ⇒ φ1 ∈ B

3. B is maximal, i.e., for all ψ ∈ closure(φ):
▸ ψ ∉ B ⇒ ¬ψ ∈ B



The GNBA of LTL-formula φ

For LTL-formula φ, let Gφ = (Q, 2AP, δ,Q0,F)where
▸ Q is the set of all elementary sets of formulas B ⊆ closure(φ)

▸ Q0 = {B ∈ Q ∣ φ ∈ B}
▸ F = {{B ∈ Q ∣ φ1 Uφ2 /∈ B or φ2 ∈ B} ∣ φ1Uφ2 ∈ closure(φ)}
▸ The transition relation δ ∶ Q × 2AP → 2Q is given by:

▸ δ(B, B ∩ AP) is the set of all elementary sets of formulas B′

satisfying:

(i) For every◯ψ ∈ closure(φ):◯ψ ∈ B ⇔ ψ ∈ B′, and
(ii) For every ψ1 Uψ2 ∈ closure(φ):

ψ1 Uψ2 ∈ B ⇔ (ψ2 ∈ B ∨ (ψ1 ∈ B ∧ ψ1 Uψ2 ∈ B′))



GNBA for LTL-formula◯a

{a,◯a}

B1

{a,¬◯a}

B2

{¬a,◯a}

B3

{¬a,¬◯a}

B4

a

¬a

a

a

¬a

¬a

¬a

a



GNBA for LTL-formula aUb

{a, b, aUb}

B1

{¬a,¬b,¬(aUb) }

B4

{a,¬b,¬(aUb) }

B5

{¬a, b, aUb}

B2

{a,¬b, aUb}

B3



Main result

[Vardi, Wolper & Sistla 1986]

For any LTL-formula φ (over AP) there exists a

GNBA Gφ over 2
AP such that:

(a) Words(φ) = Lω(Gφ)
(b) Gφ can be constructed in time and spaceO(2∣φ∣)
(c) #accepting sets of Gφ is bounded above byO(∣φ∣)

⇒ every LTL-formula expresses an ω-regular property!



Proof

Words(φ) ⊆ Lω(Gφ)
▸ Let σ = A0A1 . . . ∈Words(φ).
▸ We construct an accepting run B0B1 . . . of Gφ on σ as follows:
Bi = {ψ ∈ closure(φ) ∣ AiAi+1 . . . ⊧ ψ}
1. B0B1 . . . is a run of Gφ on σ , because for all positions i:

▸ Ai = Bi ∩ AP
▸ ◯ψ ∈ Bi

iff AiAi+1Ai+2 . . . ⊧ ◯ψ

iff Ai+1Ai+2 . . . ⊧ ψ

iff ψ ∈ Bi+1
▸ ψ1 Uψ2 ∈ Bi

iff AiAi+1Ai+2 . . . ⊧ ψ1 Uψ2

iff AiAi+1Ai+2 . . . ⊧ ψ2 or (AiAi+1 . . . ⊧ ψ1 and Ai+1Ai+2 . . . ⊧ ψ1 Uψ2)

iff ψ2 ∈ Bi or (ψ1 ∈ Bi and ψ1 Uψ2 ∈ Bi+1)



Proof (cont’d)

2. B0B1 . . . is an accepting run, i.e., for everyψ1,j Uψ2,j ∈ closure(φ),
Bi ∈ Fj = {B ∈ Q ∣ ψ1,j Uψ2,j /∈ B or ψj,2 ∈ B} for infinitely many i.

▸ Suppose Bi /∈ Fj for all i ≥ k for some k
▸ Bi /∈ Fj ⇒ ψ1,j Uψ2,j ∈ Bi and ψ2,j /∈ Bi
▸ Hence, AiAi+1 . . . ⊧ ψ1,j Uψ2,j and AiAi+1 . . . /⊧ ψ2,j

▸ Thus, AkAk+1 . . . ⊧ ψ1,j Uψ2,j but AiAi+1 . . . /⊧ ψ2,j for all i ≥ k.
▸ Contradiction.



Proof (cont’d)

Lω(Gφ) ⊆Words(φ)
▸ Let A0A1 . . . ∈ Lω(Gφ)with accepting run B0B1 . . ..

▸ We show that for all positions i ≥ 0, ψ ∈ Bi iff AiAi+1 . . . ⊧ ψ.

Proof by structural induction on ψ:

▸ ψ ∈ AP: Since δ(B,A) = ∅ if A ≠ B ∩ AP, Ai = Bi ∩ AP

▸ ψ =◯ψ′: By IH, ψ′ ∈ Bi+1 iff Ai+1Ai+2 . . .ψ
′.

Hence,◯ψ′ ∈ Bi iff AiAi+1 . . . ⊧ ◯ψ

▸ ψ = ψ1 ∧ ψ2: By IH, . . .

▸ ψ = ¬ψ′: By IH, . . .
▸ ψ = ψ1Uψ2:

1. AiAi+1 . . . ⊧ ψ⇒ ψ ∈ Bi:
▸ Assume AiAi+1 . . . ⊧ ψ1 Uψ2.
▸ There exists a k ≥ i s.t. AkAk+1 . . . ⊧ ψ2 and AjAj+1 ⊧ ψ1 for all

i ≤ j < k
▸ ⇒ ψ2 ∈ Bk and ψ1 ∈ Bj for all i ≤ j < k
▸ Hence, ψ1 Uψ2 ∈ Bk , ψ1 Uψ2 ∈ Bk−1, . . ., ψ1 Uψ2 ∈ Bi .



Proof (cont’d)

2. ψ ∈ Bi ⇒ AiAi+1 . . . ⊧ ψ
▸ Assume ψ1 Uψ2 ∈ Bi
▸ Case 1: ψ2 /∈ Bj for all j ≥ i:
By ind. on j, ψ1 ∈ Bj and ψ1 Uψ2 ∈ Bj for all j ≥ i

⇒ Bj /∈ {B ∈ Q ∣ ψ1 Uψ2 /∈ B or ψ2 ∈ B}. Contradiction.
▸ Case 2: There is a smallest k ≥ i with ψ2 ∈ Bk .

Hence, by IH, AkAk+1 . . . ⊧ ψ2

By ind. on j, i ≤ j < k, ψ1 ∈ Bj, and

hence, by IH, AjAj+1 . . . ⊧ ψ1

⇒ AiAi+1Ai+2 . . . ⊧ ψ1 Uψ2



NBA are more expressive than LTL

There is no LTL formula φ withWords(φ) = P for the LT-property:

P = {A0A1A2 . . . ∈ (2{a})
ω ∣ a ∈ A2i for i ≥ 0}

But there exists an NBAAwith Lω(A) = P

⇒ there are ω-regular properties that cannot be expressed in LTL!



Proof

▸ Proof by contradiction:

Assume there is an LTL formula φ withWords(φ) = P.
▸ Letw1 = {a}n+1∅{a}ω and

w2 = {a}n+2∅{a}ω
where n is the number of◯ -operators in φ.

We show thatw1 ∈Words(φ) iffw2 ∈Words(φ).
This contradictsWords(φ) = P.
Structural induction on φ:

▸ φ ∈ AP: φ only depends on first position

▸ φ =◯ψ: by IH, {a}n∅{a}ω ∈Words(ψ) iff
{a}n+1∅{a}ω ∈Words(ψ).
Hence,w1 ∈Words(φ) iffw2 ∈Words(φ).



Proof (cont’d)

▸ φ = ψ1 Uψ2:

1. w1 ∈Words(φ)⇒ w2 ∈Words(φ):
▸ Case 1: w1 ⊧ ψ2. Then, by IH,w2 ⊧ ψ2.
▸ Case 2: w1 /⊧ ψ2. Let k be the smallest index such that

w1[k . . .] ⊧ ψ2 and ∀0 ≤ i < k.w1[i . . .] ⊧ ψ1.

⇒ w2[k + 1, . . .] ⊧ ψ2 and ∀1 ≤ i < k.w2[i . . .] ⊧ ψ1.

Additionally, by IH,w1 ⊧ ψ1 ⇒ w2 ⊧ ψ1.

2. w2 ∈Words(φ)⇒ w1 ∈Words(φ)
▸ Case 1: w2 ⊧ ψ2. Then, by IH,w1 ⊧ ψ2.
▸ Case 2: w2 /⊧ ψ2. Let k be the smallest index such that

w2[k . . .] ⊧ ψ2 and ∀0 ≤ i < k.w2[i . . .] ⊧ ψ1.

⇒ w1[k − 1, . . .] ⊧ ψ2 and ∀1 ≤ i < k − 1.w1[i . . .] ⊧ ψ1.



Complexity for LTL to NBA

For any LTL-formula φ (over AP) there exists an NBAAφ

withWords(φ) = Lω(Aφ) and
which can be constructed in time and space in 2O(∣φ∣)

Justification complexity: next slide



Time and space complexity

▸ States GNBA Gφ are elementary sets of formulae in closure(φ)
▸ sets B can be represented by bit vectors with single bit per

subformula ψ of φ

▸ The number of states in Gφ is bounded by 2∣subf(φ)∣

▸ where subf(φ) denotes the set of all subformulae of φ
▸ ∣subf(φ)∣ ≤ 2⋅∣φ∣; so, the number of states in Gφ is bounded by

2O(∣φ∣)

▸ The number of accepting sets of Gφ is bounded byO(∣φ∣)
▸ The number of states in NBAAφ is thus bounded by

2O(∣φ∣) ⋅O(∣φ∣) = 2O(∣φ∣+log ∣φ∣) = 2O(∣φ∣) qed



Lower bound

There exists a family of LTL formulas φn with ∣φn∣ = O(poly(n))
such that every NBAAφn

for φn has at least 2
n states



Proof

Let AP be non-empty, that is, ∣2AP∣ ≥ 2 and:

Ln = {A1 . . .An A1 . . .An σ ∣ Ai ⊆ AP ∧ σ ∈ (2AP)ω }, for n ≥ 0

It follows Ln = Words(φn)where φn = ⋀
a∈AP

⋀
0≤i<n

(◯i a←→◯n+i a)

φn is an LTL formula of polynomial length: ∣φn∣ ∈ O(∣AP∣ ⋅ n)
However, any NBAAwith Lω(A) = Ln has at least 2

n states



Proof (cont’d)

Claim: any NBAA for ⋀
a∈AP

⋀
0≤i<n

(◯i a←→◯n+i a) has at least 2n states

▸ Words of the form A1 . . .An A1 . . .An∅∅∅ . . . are accepted byA
▸ A thus has for every word A1 . . .An of length n, a state

q(A1 . . .An), which can be reached from an initial state by

consuming A1 . . .An.

▸ From q(A1 . . .An), it is possible to visit an accept state infinitely

often by accepting the suffix A1 . . .An∅∅∅ . . .

▸ If A1 . . .An /= A′1 . . .A
′
n then

A1 . . .An A
′
1 . . .A

′
n∅∅∅ . . . ∉ Ln = Lω(A)

▸ Therefore, the states q(A1 . . .An) are all pairwise different
▸ Given ∣2AP∣ possible sequences A1 . . .An,
NBAA has ≥ (∣2AP∣)n ≥ 2n states



Complexity for LTL model checking

The time and space complexity of LTL model checking is inO(∣TS∣⋅2∣φ∣)



On-the-fly LTL model checking

▸ Idea: find a counter-example during the generation of
Reach(TS) andA¬φ

▸ exploit the fact that Reach(TS) andA¬φ can be generated in

parallel

⇒ Generate Reach(TS⊗A¬φ) ‘‘on demand’’
▸ consider a new vertex only if no accepting cycle has been found

yet
▸ only consider the successors of a state inA¬φ that match

current state in TS

⇒ Possible to find an accepting cycle without generatingA¬φ

entirely

▸ This on-the-fly scheme is adopted for example in the model

checker SPIN



The LTL model-checking problem is co-NP-hard

The Hamiltonian path problem is polynomially reducible to

the complement of the LTL model-checking problem

In fact, the LTL model-checking problem is PSPACE-complete

[Sistla & Clarke 1985]


