Verification

Lecture 9

Bernd Finkbeiner
Peter Faymonville
Michael Gerke

Olm UNIVERSITAT
m]llwll“" DES

UL SAARLANDES

REVIEW: Overview of LTL model checking

Negation of property

‘ Model of system ‘ ‘ LTL-formula -¢ ‘

model checker

‘ Generalised Biichi automaton G_, ‘

¢

Transition system TS ‘ Biichi automaton A_, ‘

Product transition system
TS®A,

]

’—< TS® Ay F Prers(a,) ’—‘
Al \'I

‘Yes' [‘No’ (counter-example) j

REVIEW: The GNBA of LTL-formula ¢

For LTL-formula ¢, let G, = (Q, 24P, 8, Qo, F) where
» Qis the set of all elementary sets of formulas B ¢ closure(¢)
» Q = {BeQ|gpeB}
» F = {{BEQ|¢1 Ug, ¢ Bor ¢, GB} | 91U @2 eclosure(go)}

» The transition relation & : Q x 24P — 22is given by:
» 8(B,Bn AP) is the set of all elementary sets of formulas B’
satisfying:
(i) Forevery Qv eclosure(¢):OweB < yeB and
(ii) Forevery y; Uy, € closure(o):

iUy eB < (y2eB v (y1eB A y1UyeB))

REVIEW: Main result

[Vardi, Wolper & Sistla 1986]

For any LTL-formula ¢ (over AP) there exists a

GNBA G, over 24P such that:

(@) Words(¢) = L,(G,)

(b) G, can be constructed in time and space O (2/¢/)

(c) #accepting sets of G, is bounded above by O(|¢|)

= every LTL-formula expresses an w-regular property!

REVIEW: NBA are more expressive than LTL

There is no LTL formula ¢ with Words(¢) = P for the LT-property:
P = {AotiAr...c(21))" |aepyforiz 0]}

But there exists an NBA A with £,(A) =P

= there are w-regular properties that cannot be expressed in LTL!

REVIEW: Complexity for LTL to NBA

For any LTL-formula ¢ (over AP) there exists an NBA A,
with Words(¢) = L, (A,) and

which can be constructed in time and space in 29(#))

The LTL model-checking problem is co-NP-hard

The Hamiltonian path problem is polynomially reducible to

the complement of the LTL model-checking problem

In fact, the LTL model-checking problem is PSPACE-complete
[Sistla & Clarke 1985]

Reduction to Hamiltonian Path Problem

» Hamiltonian Path for a graph (V, E) passes every vertex exactly
once.

» State graph: (Vu {b},Eu (Vu{b}) x {b},
L(v) ={v}forveV,L(b) =2)

» LTL property “no path is Hamiltonian™:

-ACv A ov-00-w))

veV

PSPACE-hardness

» Let M be a polynomial space-bounded Turing machine that
accepts words of a language K (i.e., K is a PSPACE-language)

» We construct for each word w a state graph Sand an LTL
formula ¢ such that Sk ¢ iff w e K.

Single-tape Turing machine (Q, go,F, 2, §)
0:Qx2—>QxXZx{L,R N}
L: left, R: right, N: no move

Space-bounded: there is a polynomial P(n) such that the
computation on input word of length n visits at most P(n) tape
cells.

$={0,1,...,P(n)} u{(q,A,i)|geQuU{*},Ae2,0<i<P(n)}

Idea: g € Q identifies current state of Turing machine and current
position of cursor; * everywhere else.

» Configuration (Tape content Ay, ..., Ap(,), current state g,

cursor position i)

is encoded as path fragment

0(%,A1,1)1(%,A2,2)2...i = 1(q, A 1)i(*,Ajs1,i + 1) ... P(n)
» Computation is encoded as a sequence of such fragments.
» Legal configurations:

Pconf =0 (begin - (g‘lo{lf A (onnf)

Peont = Visice(n) O ' ®o where g = V(g a)es.gea(A)

Pont = Ni<icp(m) (O F 71D = A1gjepn) joi O 1= Dq)

Transition function
for8(q,A) = (p,B,L):

9qa =0 Ni<icp(n)(O? (9, A1) = y(q, A,i,p,B,L))

where
¥(qAi,p, B, L) = Aigjep(ny,igjces (O 7' C = O Y-12Pm1C)

content of all cells # i unchanged

A O 2i—1+2P(n)+1B
|
overwrite Aby Bin cell i

A O 2:‘—1+2P(n)+1—2p

move to state p and cursor to cell i — 1

®s = /\ 9qa [C shortfor V, (r, C,), p short for \/p (p, D,j)]
g,A

» Starting configuration
Pstare = begin A O qo A Ai<i<n O 2TA A NAn<i<p(ny O >~ blank

» Accepting configuration
Paccept = O \/quq

» Full encoding

Pw = Pconf N Petart N 95 A Paccept
= Model check —¢y,.

PSPACE-completeness

Claim: The LTL model checking problem can be solved by a
nondeterministic polynomial space-bounded algorithm
Idea: Guess, nondeterministically, an accepting runin S x G,
UolUq ...Unp-1 (V0V1 oo Vm)w

where n,m < [§] - 2/¢!

» Guess n, m nondeterministically by guessing
[log(Is| - 21#1)] = O(log(|s]) - |]) bits.
» Guess the sequence ugU ... Up_1Up ... Untm Where n; = (s;, B;)
such that
» s;isasuccessorof s;_; fori>1
» Bjis elementary
> B,‘ NAP = L(S,’)
» Bi € 8(Bi—1,L(si—1)) fori>1.

» Checkifu, = Upsm

» Check that whenever ¢ U ¢, € B;forsomeie{n,...n+m-1}
then3je{n,...,n+m—-1} with ¢, € B;

Required space

n + m can be exponential. However, we only need:

» pair of states uj_1, u;;

» flag which ¢1 U ¢, have appeared in loop;
» flag which ¢, have appeared;

> Up

= polynomial space

LTL satisfiability and validity checking

v

Satisfiability problem: Words(¢) # @ for LTL-formula ¢?

» does there exist a transition system for which ¢ holds?
» Solution: construct an NBA A, and check for emptiness

» nested depth-first search for checking persistence properties
Validity problem:is ¢ = true, i.e., Words(¢) = (2Ap)w?

» does ¢ hold for every transition system?

v

v

Solution: as for satisfiability, as ¢ is valid iff =¢ is not satisfiable

runtime is exponential;
a more efficient algorithm most probably does not exist!

LTL satisfiability and validity checking

The satisfiability and validity problem for LTL are PSPACE-complete

Idea: Reduce model checking problem of ¢ to satisfiability problem
by encoding transition system as LTL formula:

V=yANOYs ADOyYap

> ¥1=Vgaq

» Ys=Ngesqg > O Vq'ePOSt(q) q

> Yap = Nges G = Naet(q) 9 N NagL(q) —a
Check satisfiability of y A —¢.

Summary of LTL model checking (1)

v

LTL is a logic for formalizing path-based properties

» Expansion law allows for rewriting until into local conditions
and next

LTL-formula ¢ can be transformed algorithmically into NBA A,

» this may cause an exponential blow up
» algorithm: first construct a GNBA for ¢; then transform it into an
equivalent NBA

LTL-formulae describe w-regular LT-properties
» but do not have the same expressivity as w-regular languages

v

v

Summary of LTL model checking (2)

» TS E ¢ can be solved by a nested depth-first searchinTS® A,

» time complexity of the LTL model-checking algorithm is linear
in TS and exponential in |¢|

» Fairness assumptions can be described by LTL-formulae
the model-checking problem for LTL with fairness is reducible
to the standard LTL model-checking problem

» The LTL-model checking problem is PSPACE-complete

Satisfiability and validity of LTL amounts to NBA
emptiness-check

v

» The satisfiability and validitiy problems for LTL are
PSPACE-complete

Linear and branching temporal logic

» Linear temporal logic:

“statements about (all) paths starting in a state”

» s = 0(x < 20) iff for all possible paths starting in s always x < 20

» Branching temporal logic:
“statements about all or some paths starting in a state”

» s AG (x < 20) iff for all paths starting in s always x < 20
» s = EG (x < 20) iff for some path starting in s always x < 20
» nesting of path quantifiers is allowed
» Checking E ¢ in LTL can be done using A —¢
» ... but this does not work for nested formulas such as AGEF a

Linear versus branching temporal logic

» Semantics is based on a branching notion of time
» an infinite tree of states obtained by unfolding transition system
» one “time instant” may have several possible successor “time
instants”
» Incomparable expressiveness
» there are properties that can be expressed in LTL, but not in CTL
» there are properties that can be expressed in CTL, but notin LTL
» Distinct model checking algorithms, and their time
complexities

» Distinct treatment of fairness assumptions

» Distinct equivalences (pre-orders) on transition systems

» that correspond to logical equivalence in LTL and branching
temporal logics

Transition systems and trees

(50,0)
(s1,1)
& {Xzo} / \
{x+0} (52,2) (53,2)
(53,3) (52,3) (53,3)

R N

x=tx=0) (52,4) (504) (504) (24) (52,4)

“behavior” path-based: state-based:
in a state s trace(s) computation tree of s
temporal LTL: path formulas ¢ CTL: state formulas

logic se ¢ iff existential path quantification 3¢

Ve Paths(s).mE ¢

universal path quantification: V¢

complexity of the
model checking
problems

PSPACE--complete

O(\TS|-2“’")

PTIME

O(Is]- @)

implementation-
relation

trace inclusion and the like
(proof is PSPACE-complete)

simulation and bisimulation
(proof in polynomial time)

fairness

no special techniques

special techniques needed

Branching temporal logics

There are various branching temporal logics:
» Hennessy-Milner logic
» Computation Tree Logic (CTL)

» Extended Computation Tree Logic (CTL*)
» combines LTL and CTL into a single framework

v

Alternation-free modal u-calculus

v

Modal y-calculus
» Propositional dynamic logic

Computation tree logic

modal logic over infinite trees [Clarke & Emerson 1981]

» Statements over states

» acAP atomic proposition

» ~®and® A ¥ negation and conjunction

» Eg there exists a path fulfilling ¢

» Ag all paths fulfill ¢
» Statements over paths

» XO the next state fulfills @

» OUVY @ holds until a ¥-state is reached

= note that Xand U alternate with A and E
» AXX® and AEX @ ¢ CTL, but AXAX ® and AXEX @ € CTL

Alternative syntax:E~ 3, A~ V, X~ O,G~0,F~ O,

Derived operators

potentially ®: EFO = E(trueU®)

inevitably @: AFO® = A(trueU)

potentially always ®: EG® = -AF-0

invariantly @: AGO = -EF-®

weak until: E(@WY) = -A((® A -¥)U(-D A -¥))
A(@OWY) = —E((® A -¥)U(-® A -¥))

the boolean connectives are derived as usual

Visualization of semantics

/Hﬁﬁﬁ (@5? ?4§}
el dedet dedn

EF red EGred E (yellow U red)

DAY IR aAy

\ \
$00Q Q %960 0 €06 o O

AF red AGred A (yellow U red)

Semantics of CTL state-formulas

Defined by a relation = such that

s = @ ifand only if formula ® holds in state s

sEa iff ael(s)
sE @ iff —(sE®)
SED AY ff (sE®) A (SEVY)

seEg iff 7 = ¢ for some path 7 that starts in s

sEAQ iff m & ¢ forall paths 7 that startins

Semantics of CTL path-formulas

Defined by a relation & such that

m = ¢ if and only if path n satisfies ¢ ‘

TEXD iff [1] = @
TEOUY iff(3j>0.7[]]F ¥ A (VO<k<j.a[k] = D))

where 7[i] denotes the state s; in the path =

Transition system semantics

» For CTL-state-formula @, the satisfaction set Sat(®) is defined
by:
Sat(®) = {seS|s=D}

» TS satisfies CTL-formula @ iff ® holds in all its initial states:

TSE® ifandonlyif Vsgel.so=®

» this is equivalent to / ¢ Sat(®)
» Point of attention: TS # ® and TS # - is possible!
» because of several initial states, e.g. so = EG® and s; # EG ®

CTL equivalence

CTL-formulas ® and ¥ (over AP) are equivalent, denoted ® = ¥
if and only if Sat(®) = Sat(\¥) for all transition systems TS over AP

o =¥ iff (TS=® ifandonlyif TSk VY)

Duality laws

AXD = —-EX-O
EX® = -AX-O
AF® = -EG-D
EF® = -AG-D
A(GUY) = —E((O A ~¥)W (-0 A —¥))

Expansion laws

RecallinLTL: Uy = v v (¢ A X(@Uvy))

In CTL:
A(®UY)

AFO
AGO

E(OUY)
EFO
EGD

¥ v (O AAXA(DOUY))
® v AXAFO
® A AXAGD

¥ v (O AEXE(DUY))
O v EXEFOD
® A EXEGD

Distributive laws

Recall in LTL:
G(pAny) = Go AGy
Flpvy) = FovFy
In CTL:
AG(® A ¥) = AGD A AGY
EF(dVY) = EFO® v EFY

note that EG(® A ¥) # EGO A EGYandAF(® v ¥) # AF® v AFY

Existential normal form (ENF)

The set of CTL formulas in existential normal form (ENF) is given by:

® = true | a | @ A @, | -0 | EXO | E(01UD;) | EGO

For each CTL formula, there exists an equivalent CTL formula in ENF

AX D
A(DUY)

-EX-®
-E (—\\I”U(—!q) A —|\I")) A -EG-Y

Model checking CTL

» How to check whether state graph TS satisfies CTL formula ®?

>

>

>

convert the formula @ into the equivalent @ in ENF
compute recursively the set Sat(®) = {geS|qg= D}
TS E @ if and only if each initial state of TS belongs to Sat(®)

» Recursive bottom-up computation of Sat(®):

>

>

>

consider the parse-tree of ®

start to compute Sat(a;), for all leafs in the tree

then go one level up in the tree and determine Sat(-) for these
nodes

e.g.: Sat(¥; A ¥y) = Sat(¥,) n Sat(¥,)
—_— —— ——

node at level / node at node at
level i—1 level j—1

then go one level up and determine Sat(-) of these nodes
and so on....... until the root is treated, i.e., Sat(®) is computed

Example

Basic algorithm

Require: finite transition system TS with states S and initial states /, and
CTL formula @ (both over AP)
Ensure: TS ©

{compute the sets Sat(®) = {qeS|qeD}}
foralli<|®|do
forall ¥ € Sub(®) with | ¥| =i do
compute Sat('¥) from Sat(¥') {for maximal proper ¥’ € Sub(\¥)}
end for
end for
return / ¢ Sat(D)

Characterization of Sat (1)

For all CTL formulas @, ¥ over AP it holds:

Sat(true) = S
Sat(a) = {qgeS|ael(q)}, foranyaecAP
Sat(dAY) = Sat(D) n Sat(V)
Sat(-®) = S~ Sat(®)
Sat(EX®) = {qeS|Post(q) nSat(D) + oz}

for a given finite transition system with states S

Characterization of Sat (2)

» Sat(E(®UY)) is the smallest subset T of S, such that:

(1)Sat(¥) T and (2) (geSat(®)andPost(q)NT+@) = qeT

» Sat(EG @) is the largest subset T of S, such that:

(3) TcSat(®) and (4)qeTimpliesPost(q) T + @

Computing Sat(E(®UWY)) (1)

v

Sat(E(®UVY)) is the smallest set T < Q such that:
(1) Sat(¥)<cT and (2) (geSat(®)andPost(q)NnT+@) = qeT
» This suggests to compute Sat(E (® U V)) iteratively:

To = Sat(¥) and Ty =T, u {qeSat(D)|Post(q)nT + @}

v

T; = states that can reach a W-state in at most i steps via a
®-path
» By induction on it follows:

TocThc...cTjcT ¢ ... € Sat(E(PUVY))

Computing Sat(E(®UVY)) (2)

v

TSisfinite, so forsomej > 0we have:Tj = Tjyq = Tjp = ...
» Therefore: Tj = Tj u {q e Sat(®) | Post(q)nTj# @}
Hence: { g € Sat(®) | Post(q) nTj# @} ¢ T,

» hence, T; satisfies (2), i.e.,

(g € Sat(®) and Post(q) nTj+ @) = qeTj

» further, Sat(¥) = To < Tjso, Tj satisfies (1), i.e. Sat(¥) ¢ T
As Sat(E (@ U Y)) is the smallest set satisfying (1) and (2):

» Sat(E(®@UVY)) ¢ Tyand thus Sat(E(QUVY)) =T;
Hence:To G T1 G T &...GTj=Tiui=...=Sat(E(PUVY))

v

v

v

Computing Sat(E(® U Y)) (3)

Require: finite transition system with states S CTL-formula E (® U V)
Ensure: Sat(E(®UV¥))={qeS|g=E(DUVY)}

V := Sat(\¥); {V administers states g with g = E (® U ¥)}
T := V; {T contains the already visited states g with g = E (® U ¥)}
while V # & do
let g’ € V;
V=vV~{q}
forallg ¢ Pre(q’) do
if ge Sat(®)~TthenV:=V u {qg};T:=T u {g},; endif
end for
end while
return T

Computing Sat(EG @)

V := S\ Sat(®); {V contains any not visited g’ with " # EG ®}
T := Sat(®); {T contains any g for which g = EG ® has not yet been disproven}
forall g € Sat(®) do c[q] := | Post(q) |; od {initialize array c}

while V + @ do
{loop invariant: c[q] = | Post(q) n (Tu V) |}
letq € V;{q' # @}
V:=V~{q'};{g’ has been considered}
forall g ¢ Pre(q") do
if g € T then
clq] = c[q] - 1;{update counter c[q] for predecessor g of g'}
if c[q] = 0 then
T:=T~{qg};V:=Vu{q};{gdoesnot have any successor in T}
end if
end if
end for
end while
return T

Alternative algorithm for Sat(EG @)

1. Consider only state g if g = ©, otherwise eliminate g

» change states to S’ = Sat(®),
= all removed states will not satisfy EG ®, and thus can be safely

removed
2. Determine all non-trivial strongly connected components in
TS[D]
» non-trivial SCC = maximal, connected subgraph with at least
one edge

= any state in such SCC satisfies EG ®
3. g = EG® is equivalent to “some SCC is reachable from q”
» this search can be done in a backward manner

