Prof. Bernd Finkbeiner, Ph.D. Peter Faymonville, M.Sc. Michael Gerke, B.Sc.

Verification

Please write the names of all group members on the solutions you hand in.

Problem 1:

Prove or disprove the following equivalences of LTL-formulas:

 $\Box \varphi \to \diamondsuit \psi \equiv \varphi \ \mathcal{U}(\psi \lor \neg \varphi) \qquad \Box \diamondsuit \varphi \to \Box \diamondsuit \psi \equiv \Box(\varphi \to \diamondsuit \psi) \qquad \diamondsuit (\varphi \ \mathcal{U}\psi) \equiv \diamondsuit \psi$

For disproving, a counterexample for one direction of the equivalence suffices. For proving, show both directions by applying already known equivalences for LTL or giving an argument using the LTL semantics.

Problem 2:

We consider the LTL formula $\varphi = \Box(a \to (\neg b \ \mathcal{U} \ (a \land b)))$ over S: the set $AP = \{a, b\}$ of atomic propositions and want to check $S \models \varphi$, where S is the state graph shown on the right.

 (a) Come up with an NBA A_{¬φ}. You don't need to use the algorithm from the lecture for this. *Hint: Four states suffice!*

- (b) Construct $S \otimes \mathcal{A}_{\neg \varphi}$.
- (c) Use the nested DFS algorithm from the lecture to check $S \models \varphi$. Sketch the algorithm's main steps and interpret its outcome.

Problem 3:

Consider the LTL formula $\varphi = \Box \diamondsuit p$.

- (a) Convert φ into an equivalent formula ψ containing only $p, true, \neg, \land, \mathcal{U}$.
- (b) Give the elementary sets wrt. $closure(\psi)$.
- (c) Construct the GNBA \mathcal{G}_{ψ} using the algorithm given in the lecture.

Problem 4:

Prove that there is an LTL formula φ over $AP = \{p\}$ such that no NBA \mathcal{A} with only a *single* accepting state satisfies $\mathcal{L}(\mathcal{A}) = Words(\varphi)$.