Verification

Please write the names of all group members on the solutions you hand in.

Problem 1: CTL warm-up

Express the following properties as CTL formulas over $AP = \{a, b, c\}$ and provide a justification. For more complicated formulas, also comment on their subformulas!

- 1. There exists a path on which the following holds for every state s: there exists a path which starts in s, and on which eventually a holds and in the next state, $\neg a$ holds.
- 2. There exists a reachable state s for which the following holds: a is true and on all paths starting from s, c holds as long as b does not hold.
- 3. On every path the following holds for every state: a is valid if and only if b is valid and in the previous state, c is valid.

Problem 2: CTL Semantics

Prove or disprove the following implications:

- 1. Let $\Phi_1 = \mathsf{AF}\, a \vee \mathsf{AF}\, b$ and $\Phi_2 = \mathsf{AF}\, (a \vee b)$. Prove or disprove $\Phi_1 \to \Phi_2$ and $\Phi_2 \to \Phi_1$.
- 2. Now consider $\Psi_1 = \mathsf{E} (a \, \mathsf{U} \, \mathsf{E} (b \, \mathsf{U} \, c))$ and $\Psi_2 = \mathsf{E} (\mathsf{E} (a \, \mathsf{U} \, b) \, \mathsf{U} \, c)$. Again, prove or disprove $\Psi_1 \to \Psi_2$ and $\Psi_2 \to \Psi_1$.

Problem 3: LTL vs. CTL

Prove that there does not exist an equivalent LTL-formula for the CTL-formula

$$\Phi = \mathsf{AF}\,(a \wedge \mathsf{EX}\,a).$$

Problem 4: CTL Model Checking

Consider the following CTL formulas and the state graph S shown on the right:

$$\begin{array}{rcl} \Phi_1 & = & \operatorname{EG}\operatorname{AF} \neg b \\ \\ \Phi_2 & = & \operatorname{E}\left(\operatorname{EX} a \operatorname{U} \neg a\right) \\ \\ \Phi_3 & = & \operatorname{AX}\left(\operatorname{EG} \neg a \ \lor \ \operatorname{EG} b\right) \end{array}$$

Give the satisfaction sets $Sat(\Phi_i)$ and decide whether $S \models \Phi_i$ holds $(1 \le i \le 3)$.

Problem 5: CTL Model Checking with Fairness

Consider the CTL-formula $\Phi = \mathsf{AG}\left(a \to \mathsf{AF}\left(b \land \neg a\right)\right)$ together with the following CTL fairness assumption

$$\begin{split} fair & = & \Box \diamondsuit \operatorname{AX}\left(a \land \neg b\right) \to \Box \diamondsuit \operatorname{AX}\left(b \land \neg a\right) \\ & \land \diamondsuit \Box \operatorname{EF}b \to \Box \diamondsuit b. \end{split}$$

For the state graph \mathcal{S} on the right, prove that $\mathcal{S} \models_{fair} \Phi$.