Verification

Please write the names of all group members on the solutions you hand in.

Problem 1: Decision Procedures

- (1) Apply the decision procedure for T_{E} to the following Σ_{E} formulae:
 - (a) $f(f(f(a))) = f(f(a)) \wedge f(f(f(f(a)))) = a \wedge f(a) \neq a$

(b)
$$f(g(x)) = g(f(x)) \wedge f(g(f(y))) = x \wedge f(y) = x \wedge g(f(x)) \neq x$$

- (2) Apply the DAG-based decision procedure for T_{E} to the Σ_{E} -formulae (a) and (b).
- (3) Apply the decision procedure for T_{cons} to the following T_{cons} -formulae:
 - (c) $\operatorname{car}(x) = y \wedge \operatorname{cdr}(x) = z \wedge x \neq \operatorname{cons}(y, z)$
 - (d) $\neg \operatorname{atom}(x) \wedge \operatorname{car}(x) = y \wedge \operatorname{cdr}(x) = z \wedge x \neq \operatorname{cons}(y, z)$

Problem 2: Theories / Nelson-Oppen

For each of the following formulae, identify the combination of theories in which it lies. To avoid ambiguity, prefer $T_{\mathbb{Z}}$ to $T_{\mathbb{Q}}$. Then apply the Nelson-Oppen method using the appropriate decision procedures. Use either the nondeterministic or the deterministic version. *Hint: For theory* T_{A} , see chapter 9.5 for details.

- (a) $1 \le x \land x \le 2 \land cons(1, y) \ne cons(x, y) \land cons(2, y) \ne cons(x, y)$
- (b) $a[i] \ge 1 \land a[i] + x \le 2 \land x > 0 \land x = i \land a \langle x \triangleleft 2 \rangle [i] \ne 1$