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Team

▸ Lectures: Bernd Finkbeiner, Martin Zimmermann

▸ Exercises: Leander Tentrup

▸ Discussion slots: Peter Faymonville, Michael Gerke, Felix Klein,

Andrey Kupriyanov, Heinrich Ody, Markus Rabe, Hazem Torfah



Structure

Mon Tue Wed Thu Fri

9:00--10:00 lecture lecture lecture lecture lecture

10:00--11:00 group work group work group work group work group work

11:00--11:30 discussion discussion discussion discussion discussion

BBQ

14:00--15:00 lecture lecture lecture lecture

15:00--16:00 group work group work group work group work

16:00--16:30 discussion discussion discussion discussion



Groups

▸ Please sign up in groups of 3

▸ Each group has an assigned meeting room and an assigned

tutor

▸ You meet with your tutor during your ‘‘discussion slot’’



Exams

▸ Please register for the exam in LSF/HISPOS

https://lsf.uni-saarland.de

▸ Exam: 09.10.2013, 9am

▸ Backup Exam: TBA

▸ The grade solely depends on the performance in the exam.

▸ You are allowed to take part in the exam if you reach at least

50% of the total points in the assignments presented in the

discussion slots.

https://lsf.uni-saarland.de


Course topic

Algorithms for automatic verificaton of hardware and software

based on methods from

▸ automata theory

▸ logic



Early history

▸ Mathematical approach towards program correctness

(Turing, 1949)

▸ Proof rules for sequential programs (Hoare, 1969)

▸ for a given input, does a computer program generate the

correct output?
▸ based on proof rules expressed in predicate logic

▸ Proof rules for concurrent programs (Pnueli, 1977)

▸ does the program perform correctly over an infinite run?
▸ based on proof rules expressed in temporal logic

▸ Automated verification of concurrent programs
(Emerson, Clarke, Sifakis 1981)

▸ systematic state space traversal
▸ ‘‘model checking’’



Model checking

Model checking is an automated technique that, given

amodel of a system and a formal property,

systematically checks whether this property holds

for that model.



Model checking overview
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Course structure

▸ Week 1: Hardware model checking

VIS, CTL, CTL model checking, BDDs, LTL

▸ Week 2: Protocol verification

SPIN, LTL model checking, bounded model checking

▸ Week 3: Real-time systems

Uppaal, timed automata, DBMs, bisimulation

▸ Week 4: Software verification

PiVC, deductive verification, decision procedures



Plan for today

▸ The VIS model checker

▸ Verilog examples

▸ Transition systems

▸ CTL



VIS

▸ VIS: ‘‘Verification interacting with synthesis’’

▸ verification and synthesis system for finite-state hardware

systems

▸ developed at University of California, Berkeley, and

University of Colorado, Boulder

▸ system given in (subset of) Verilog

▸ available from http://vlsi.colorado.edu/~vis/
or as a convenient VirtualBox Appliance from the course

webpage

http://vlsi.colorado.edu/~vis/


Counter

module counter(clk, count);

input clk;
output count;
wire clk; ←wire = connector

reg [1:0] count; ← reg = register (memory)

initial begin ← initialization

count = 0;
end

always @(posedge clk) ← executed in every step

count = count + 1;

endmodule



Simulation

vis> read_verilog counter.v
counter.v
vis> init_verify
vis> sim -n 5

# vis release 2.4 (compiled Mo 2. Sep 09:09:38 CEST 2013)
# Network: counter
# Simulation vectors have been randomly generated

.inputs

.latches count<0> count<1>

.outputs count<0> count<1>

.initial 0 0

.start_vectors

# ; count<0> count<1> ; count<0> count<1>

; 0 0 ; 0 0
; 1 0 ; 1 0
; 0 1 ; 0 1
; 1 1 ; 1 1
; 0 0 ; 0 0
# Final State : 0 0



3-bit counter

module counter(clk);
input clk;
wire clk;
wire [2:0] count;

counter_cell bit0 (clk, 1, count[0]);
counter_cell bit1 (clk, count[0], count[1]);
counter_cell bit2 (clk, count[1], count[2]);

endmodule



3-bit counter

module counter_cell(clk, carry_in, carry_out);
input clk;
input carry_in;
output carry_out;
reg value;

↓ continuous assignment

assign carry_out = value & carry_in;
initial value = 0;

always @(posedge clk) begin

case(value)
0: value = carry_in;
1: if (carry_in ==0) value = 1;
else value = 0;

endcase

end

endmodule



Arbiter

▸ Three requesting modules (called clients) are competing to get

a bus access.

▸ At any point, only one module is allowed to get a bus access.

▸ Each client has a controller attached to it, from which an

acknowledgment is given.

▸ All the controllers communicate with an arbiter so that at any

time at most one controller gives an acknowledgment.

(See vis-2.4/examples/arbiter)
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typedef enum A, B, C, X selection;
typedef enum IDLE, READY, BUSY controller_state;
typedef enum NO_REQ, REQ, HAVE_TOKEN client_state;

module main(clk);
input clk;
output ackA, ackB, ackC;
selection wire sel;
wire active;

assign active = pass_tokenA || pass_tokenB || pass_tokenC;

controller controllerA(clk, reqA, ackA, sel, pass_tokenA, A);
controller controllerB(clk, reqB, ackB, sel, pass_tokenB, B);
controller controllerC(clk, reqC, ackC, sel, pass_tokenC, C);
arbiter arbiter(clk, sel, active);
client clientA(clk, reqA, ackA);
client clientB(clk, reqB, ackB);
client clientC(clk, reqC, ackC);

endmodule



module controller(clk, req, ack, sel, pass_token, id);
input clk, req, sel, id;
output ack, pass_token;

selection wire sel, id;
reg ack, pass_token;
controller_state reg state;

initial state = IDLE;
initial ack = 0;
initial pass_token = 1;

wire is_selected;
assign is_selected = (sel == id);



always @(posedge clk) begin

case(state)
IDLE:

if (is_selected)
if (req)
begin

state = READY;
pass_token = 0;

end

else

pass_token = 1;
else

pass_token = 0;



READY:
begin

state = BUSY;
ack = 1;

end

BUSY:
if (!req)
begin

state = IDLE;
ack = 0;
pass_token = 1;

end

endcase

end

endmodule



module arbiter(clk, sel, active);
input clk, active;
output sel;

selection wire sel;
selection reg state;

initial state = A;

assign sel = active ? state : X;

always @(posedge clk) begin

if (active)
case(state)

A: state = B;
B: state = C;
C: state = A;

endcase

end

endmodule



module client(clk, req, ack);
input clk, ack;
output req;

reg req;
client_state reg state;

wire rand_choice;

initial req = 0;
initial state = NO_REQ;

assign rand_choice = $ND(0,1);

always @(posedge clk) begin

case(state)
NO_REQ:

if (rand_choice)
begin

req = 1;
state = REQ;

end



REQ:
if (ack) state = HAVE_TOKEN;

HAVE_TOKEN:
if (rand_choice)
begin

req = 0;
state = NO_REQ;

end

endcase

end

endmodule



Model checking

▸ Mutual exclusion: No two different acks are given at the same

time.

AG ( !(ackA=1 * ackB=1 + ackB=1 * ackC=1 +
ackC=1 * ackA=1) );

vis> read_verilog arbiter.v
vis> init_verify
vis> model_check arbiter.ctl

# MC: formula passed -- AG(!((((ackA=1 *
ackB=1) + (ackB=1 * ackC=1)) + (ackC=1 *
ackA=1))))



Transition systems

▸ model to describe the behaviour of systems

▸ digraphs where nodes represent states, and edges model

transitions

▸ state:
▸ the current value of the registers together with the values of

the input bits
▸ the current values of all program variables + the program

counter

▸ transition: (‘‘state change’’)
▸ the change of the registers and output bits for a new input
▸ the execution of a program statement



Transition systems

A transition system TS is a tuple (S,Act,→, I,AP, L)where
▸ S is a set of states

▸ Act is a set of actions

▸ Ð→ ⊆ S × Act × S is a transition relation

▸ I ⊆ S is a set of initial states

▸ AP is a set of atomic propositions

▸ L ∶ S→ 2AP is a labeling function

S and Act are either finite or countably infinite

Notation: s α
−−→ s′ instead of (s, α, s′) ∈ Ð→



A beverage vending machine
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Direct successors and predecessors

Post(s, α) = { s′ ∈ S ∣ s α−−→ s′ }, Post(s) = ⋃
α∈Act

Post(s, α)

Pre(s, α) = { s′ ∈ S ∣ s′ α−−→ s }, Pre(s) = ⋃
α∈Act

Pre(s, α).

Post(C, α) = ⋃
s∈C

Post(s, α), Post(C) = ⋃
s∈C

Post(s) for C ⊆ S.

Pre(C, α) = ⋃
s∈C

Pre(s, α), Pre(C) = ⋃
s∈C

Pre(s) for C ⊆ S.

State s is called terminal if and only if Post(s) = ∅



Action- and AP-determinism

Transition system TS = (S,Act,→, I,AP, L) is action-deterministic iff:

∣ I ∣ ≤ 1 and ∣Post(s, α) ∣ ≤ 1 for all s, α

Transition system TS = (S,Act,→, I,AP, L) is AP-deterministic iff:

∣ I ∣ ≤ 1 and ∣ Post(s) ∩ { s′ ∈ S ∣ L(s′) = A}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
equally labeled successors of s

∣ ≤ 1 for all s,A ∈ 2AP



The role of nondeterminism

Here: nondeterminism is a feature!

▸ to model concurrency by interleaving
▸ no assumption about the relative speed of processes

▸ to model implementation freedom
▸ only describes what a system should do, not how

▸ to model under-specified systems, or abstractions of real
systems

▸ use incomplete information

in automata theory, nondeterminismmay be exponentially more succinct

but that’s not the issue here!



Executions

▸ A finite execution fragment ρ of TS is an alternating sequence

of states and actions ending with a state:

ρ = s0 α1 s1 α2 . . . αn sn such that si
αi+1−−−−→ si+1 for all 0 ≤ i < n.

▸ An infinite execution fragment ρ of TS is an infinite, alternating

sequence of states and actions:

ρ = s0 α1 s1 α2 s2 α3 . . . such that si
αi+1−−−−→ si+1 for all 0 ≤ i.

▸ An execution of TS is an initial, maximal execution fragment
▸ a maximal execution fragment is either finite ending in a

terminal state, or infinite
▸ an execution fragment is initial if s0 ∈ I



Example executions

ρ1 = pay coin−−−−→ select τ−−→ sprite
sget−−−−→pay coin−−−−→ select τ−−→ sprite

sget−−−−→ . . .

ρ2 = select τ−−→ sprite
sget−−−−→pay coin−−−−→ select τ−−→beer

bget−−−−→ . . .

ρ = pay coin−−−−→ select τ−−→ sprite
sget−−−−→pay coin−−−−→ select τ−−→ sprite

Execution fragments ρ1 and ρ are initial, but ρ2 is not

ρ is not maximal as it does not end in a terminal state

Assuming that ρ1 and ρ2 are infinite, they are maximal



Reachable states

State s ∈ S is called reachable in TS if there exists an initial, finite

execution fragment

s0
α1−−−→ s1

α2−−−→ . . .
αn−−−→ sn = s .

Reach(TS) denotes the set of all reachable states in TS.



Modeling sequential circuits

XOR

OR

fyg
NOT

fxg
frg fx;r;yg

x= 0 r = 0

x= 0 r = 1

x= 1 r = 0

x= 1 r = 1

r

x y

Transition system representation of a simple hardware circuit

Input variable x, output variable y, and register r

Output function ¬(x ⊕ r) and register evaluation function x ∨ r


