Verification

Lecture 1

Bernd Finkbeiner

ICdm UNIVERSITAT
“H"w"“" DES
UL SAARLANDES

Team

» Lectures: Bernd Finkbeiner, Martin Zimmermann
» Exercises: Leander Tentrup

» Discussion slots: Peter Faymonville, Michael Gerke, Felix Klein,
Andrey Kupriyanov, Heinrich Ody, Markus Rabe, Hazem Torfah

Structure

Mon Tue Wed Thu Fri
9:00--10:00 | lecture lecture lecture lecture lecture
10:00--11:00 | group work group work group work group work group work
11:00--11:30 | discussion discussion discussion discussion discussion
BBQ
14:00--15:00 | lecture lecture lecture lecture
15:00--16:00 | group work group work group work group work
16:00--16:30 | discussion discussion discussion discussion

Groups

» Please sign up in groups of 3

» Each group has an assigned meeting room and an assigned
tutor

» You meet with your tutor during your “discussion slot”

Exams

Please register for the exam in LSF/HISPOS
https://1sf.uni-saarl and. de

Exam: 09.10.2013, 9am
Backup Exam: TBA
The grade solely depends on the performance in the exam.

You are allowed to take part in the exam if you reach at least
50% of the total points in the assignments presented in the
discussion slots.

https://lsf.uni-saarland.de

Course topic

Algorithms for automatic verificaton of hardware and software

based on methods from
» automata theory
» logic

Early history

v

Mathematical approach towards program correctness
(Turing, 1949)
Proof rules for sequential programs (Hoare, 1969)
» fora given input, does a computer program generate the
correct output?
» based on proof rules expressed in predicate logic
Proof rules for concurrent programs (Pnueli, 1977)

» does the program perform correctly over an infinite run?
» based on proof rules expressed in temporal logic

v

v

v

Automated verification of concurrent programs
(Emerson, Clarke, Sifakis 1981)
» systematic state space traversal
» “model checking”

Model checking

Model checking is an automated technique that, given
a model of a system and a formal property,
systematically checks whether this property holds
for that model.

Model checking overview

requirements
Formalizing

property
specification

Modeling

Model Checking

violated +
counterexample

insufficient
memory

Course structure

» Week 1: Hardware model checking
VIS, CTL, CTL model checking, BDDs, LTL

» Week 2: Protocol verification
SPIN, LTL model checking, bounded model checking

» Week 3: Real-time systems
Uppaal, timed automata, DBMs, bisimulation

» Week 4: Software verification
PiVC, deductive verification, decision procedures

Plan for today

» The VIS model checker
» Verilog examples

» Transition systems
» CTL

VIS

VIS: “Verification interacting with synthesis”

verification and synthesis system for finite-state hardware
systems

developed at University of California, Berkeley, and
University of Colorado, Boulder

system given in (subset of) Verilog

available fromhtt p: // vl si . col or ado. edu/ ~vi s/
or as a convenient VirtualBox Appliance from the course
webpage

http://vlsi.colorado.edu/~vis/

Counter

module count er (cl k, count);

input cl k;

output count;
wire cl k;

reg [1: 0] count;

initial begin
count = 0;

end

always @(posedge cl k)
count = count + 1;

endmodule

<« wire = connector
< reg = register (memory)

<~ initialization

< executed in every step

Simulation

vi s> read_verilog counter.v
counter.v

vis>init_verify

Vis> sim-n 5

vis release 2.4 (conpiled Mo 2. Sep 09:09: 38 CEST 2013)
Network: counter

Sinul ation vectors have been randonly generated
.inputs

. latches count <0> count <1>

.out puts count <0> count <1>

.initial 00

.start_vectors

, count<0> count<1> ; count<0> count<1>

mororo

JOrRrRFPROO

NWororo
D O, OOo

#

@
o
o

3-bit counter

module counter(cl k);
input cl k;
wire cl k;
wire [2: 0] count;

counter _cell bit0O (clk, 1, count[O0]);
counter_cell bitl (clk, count[O], count[1]);
counter _cell bit2 (clk, count[1], count[2]);

endmodule

3-bit counter

module counter _cell (clk, carry_in, carry_out);
inputcl k;
inputcarry_in;
outputcarry_out;
regval ue;
| continuous assignment
assigncarry _out = value & carry_in;
initial val ue = 0;

always @(posedge cl k) begin
case(val ue)
0: wvalue = carry_in;

1. if (carry_in ==0) value = 1;
elseval ue = 0;
endcase

end
endmodule

Arbiter

» Three requesting modules (called clients) are competing to get
a bus access.

» At any point, only one module is allowed to get a bus access.

v

Each client has a controller attached to it, from which an
acknowledgment is given.

v

All the controllers communicate with an arbiter so that at any
time at most one controller gives an acknowledgment.

(See vis-2.4/examples/arbiter)

Arbiter

active

arbiter
sel
clientA/ clientB/ i
clientC/
controllerA controller controllerC
pass]ctrlB
pass_ctrlA pass_ctrIC

typedefenum A, B, C, X sel ection;
typedefenum | DLE, READY, BUSY controller_state;
typedef enum NO REQ REQ HAVE TOKEN client_state;

module mai n(cl k) ;
input cl k;
output ackA, ackB, ackC,
sel ecti on wire sel;
wire active;

assign active = pass_tokenA || pass_tokenB || pass_tokenC,

controller controllerA(clk, regA, ackA, sel, pass_tokenA A);
controller controllerB(clk, reqB, ackB, sel, pass_tokenB, B);
controller controllerC(clk, reqC, ackC, sel, pass_tokenC, O);
arbiter arbiter(clk, sel, active);

client clientA(clk, regA, ackA);

client clientB(clk, reqB, ackB);

client clientC(clk, reqC, ackC;

endmodule

module controller(clk, req, ack, sel, pass_token, id);
input cl k, req, sel, id;
output ack, pass_token;

sel ection wire sel, id;
reg ack, pass_token;
controller_state reg state;

initial state = | DLE;
initial ack = 0;
initial pass_token = 1,

wire i s_sel ected;
assign i s_selected = (sel ==id);

always @(posedge cl k) begin
case(st ate)
| DLE:
if (is_selected)
if (req)
begin
st at e = READY;
pass_t oken = 0;
end
else
pass_t oken = 1;
else
pass_t oken = 0;

READY:
begin
state
ack =
end
BUSY:
if ('req)
begin
state
ack =

pass_t oken =

end
endcase
end
endmodule

= BUSY;

=

= | DLE;
0;
1;

module arbiter(clk, sel, active);
input cl k, active;
output sel ;

sel ecti on wire sel ;
sel ection reg state;

initial state = A;
assign sel = active ? state : X

always @(posedge cl k) begin
if (active)
case(st at e)
A: state =
B: state
C. state
endcase

I
>0m

end
endmodule

module client(clk, req, ack);
input cl k, ack;
output req;

reg req;
client_state reg state;

wire rand_choi ce;

initial req

= 0;
initial state =

NO_REQ
assign rand_choi ce = $NI(0, 1);

always @(posedge cl k) begin
case(st ate)

NO REQ
if (rand_choi ce)
begin
req = 1;
state = REQ

end

REQ
if (ack) state = HAVE TOKEN,

HAVE_TOKEN:
if (rand_choi ce)
begin
req = 0;
state = NO REQ
end
endcase

end
endmodule

Model checking

» Mutual exclusion: No two different acks are given at the same
time.
AG (!(ackA=1 » ackB=1 + ackB=1 * ackC=1 +
ackC=1 * ackA=1l));

vis> read _verilog arbiter.v
vis> init_verify
vi s> nodel check arbiter.ctl

MC. formul a passed -- AQ!((((ackA=1 =
ackB=1) + (ackB=1 * ackC=1l)) + (ackC=1 =
ackA=1))))

Transition systems

v

model to describe the behaviour of systems

v

digraphs where nodes represent states, and edges model
transitions
» state:
» the current value of the registers together with the values of
the input bits
» the current values of all program variables + the program
counter
» transition: (“state change”)

» the change of the registers and output bits for a new input
» the execution of a program statement

Transition systems

A transition system TS is a tuple (S, Act, », 1, AP, L) where

» Sisaset of states

» Actis a set of actions

» — C SxActx Sis a transition relation
» | c Sisasetof initial states

» APis a set of atomic propositions

» L:S>2%Pisa labeling function

Sand Act are either finite or countably infinite

Notation: s % s’ instead of (s, a,s") € —

A beverage vending machine

get_sprite get_beer

insert_coin

Direct successors and predecessors

Post(s, a) = {s’eS | s—"‘»s’}, Post(s) = |J Post(s,a)
acAct

Pre(s,a) = {s’eS | s’—“»s}, Pre(s) = |J Pre(s,a).
acAct

Post(C,a) = | J Post(s,a), Post(C) = | Post(s)forCcS.

seC seC
Pre(C,a) = | J Pre(s,a), Pre(C) = | Pre(s)forCcS.
seC seC

State s is called terminal if and only if Post(s) = @

Action- and AP-determinism

Transition system TS = (S, Act, —, 1, AP, L) is action-deterministic iff:

|[I| <1 and |Post(s,a)| <1 foralls,«

Transition system TS = (S, Act, —, I, AP, L) is AP-deterministic iff:

1] < 1 and | Post(s) n {s'€S|L(s)=A}| <1 foralls,Aec2?

equally labeled successors of s

The role of nondeterminism

Here: nondeterminism is a feature!
» to model concurrency by interleaving
» no assumption about the relative speed of processes
» to model implementation freedom
» only describes what a system should do, not how

» to model under-specified systems, or abstractions of real
systems

» use incomplete information

in automata theory, nondeterminism may be exponentially more succinct

but that’s not the issue here!

Executions

» Afinite execution fragment p of TS is an alternating sequence
of states and actions ending with a state:

= Soa157Qy ...anSysuch thats; 21> s;.1 forall0 < i< n.
p

» An infinite execution fragment p of TS is an infinite, alternating
sequence of states and actions:

p = SoaqS1 @252 as... such thats; =5, forall 0 <.

» An execution of TS is an initial, maximal execution fragment
» a maximal execution fragment is either finite ending in a
terminal state, or infinite
» an execution fragment is initial if so € /

Example executions

p1 = pay <", select %> sprite <25 pay <91, select > sprite
py = select %> sprite 225 pay -9, select > beer 2%, . .
p = pay -, select %> sprite <2 pay <21, select %> sprite

Execution fragments p; and p are initial, but p; is not
p is not maximal as it does not end in a terminal state
Assuming that p; and p; are infinite, they are maximal

sget

Reachable states

State s € Sis called reachable in TS if there exists an initial, finite
execution fragment

so s 5y 22 G5 =5,

Reach(TS) denotes the set of all reachable states in TS.

Modeling sequential circuits

{y} 3

{r} oy}

Transition system representation of a simple hardware circuit
Input variable x, output variable y, and register r
Output function —(x @ r) and register evaluation function x v r

