Verification

Lecture 10

Martin Zimmermann

COlm UNIVERSITAT
"H"IHIIMI DES
JI SAARLANDES

Plan for today

» Equivalence of Biichi automata & w-regular expressions
» Generalized Blichi automata

Review: NBA and w-regular languages

The class of languages accepted by NBA

agrees with the class of w-regular languages

How to construct an NBA for the w-regular expression:
G=E.F+...+E.F;?
Rely on operations for NBA that mimic operations on w-regular
expressions:
(1) for NBA A; and A, there is an NBA accepting L, (A1) U L, (A3)
(2) for any regular language £ with ¢ ¢ £ there is an NBA accepting £*

(3) forregularlanguage £ and NBA A’ there is an NBA accepting
L.L,(A")

Concatenation of an NFA and an NBA

For NFA A and NBA A’ (both over the alphabet
there exists an NBA A" with
Lo(A")=L(A).Lo(A) and |A"|=0O(Al+]|A])

Proof
Let A=(Q,%,8,Qp,F), A’ = (Q’ Z,6,Qp, F)withQn Q' =
Define NBA A" = (Q” z,08",Qy, F") with
> QN QUQ, FN
. QY Qo |fQomF @,
0" Qo uQ otherwise.

3(g,A) ifgeQand §(q,A)nF =g,
» 8"(q,A) =18(q,A)uQ) ifgeQandd(g,A)NF#a,
8'(q,A) ifgeQ'.

For each (accepting) run p = gog1ga--- of A” on AgAiAy-+- € ¢
» either gogig-+ is an (accepting) run of A" on AgAiAy-+- (in case
QoNF+@)or
» thereisann > 0 such that

» go'-qnq is an accepting run of A on Aq---A, for some g € F, and
> Gn1qn+2qn+3-- is an (accepting) run of A" on Ay 1An2An 3.

Summarizing the results so far

For any w-regular language £
there exists an NBA A with £,(A) = L

NBA accept w-regular languages

For each NBA A: L, (A) is w-regular

Proof

Let A =(Q,%,4,Qq,F). Define the NFA A, , = (Q, 2,68, {q}, {p}),
(forg,p € Q).

» Leto € £,(A) with accepting run qog:g,--- that visits g € F
infinitely often.

o= Wo W1 wW>
—_———— — e — —
€L(Agg.q) €L(Aqgq) €L(Aqgq)
» On the other hand, each word of this form has an accepting
run of A.

Thus:

Ew(A)= U ﬁ(Aqo,q)~(£(Aq,q))w

qOEQO ,qeF

which is w-regular.

Checking non-emptiness

L,(A) # @ if and only if
3go€Qo.3geF. Iwe 2*. dve=*. ge 8*(qo,w) A g€ 6*(q,V)

there is a reachable accept state on a cycle

The emptiness problem for NBA A can be solved intime O(]A|)

Non-blocking NBA

» NBA Ais non-blocking if §(q,A) # @ forallgand A€ X
» for each input word there exists an infinite run

» For each NBA A there exists a non-blocking NBA trap(.A) with:
» |trap(A)| = O(|A]) and A=trap(A)

» ForA=(Q,%,6,Qo,F) lettrap(A) = (Q, 2,8, Qo, F) with:
> Q'=Q U {quap } where Gegp ¢ Q

Y _ | 8(gq,A) : ifgeQandd(q,A)+ o
(@A) = {Qtrap} : otherwise

Generalized Biuchi automata

Generalized Blichi automata

» NBA are as expressive as w-regular languages
» Variants of NBA exist that are equally expressive

» Muller, Rabin, and Streett automata
» generalized Biichi automata (GNBA)

GNBA are like NBA, but have a distinct acceptance criterion
» a GNBA requires to visit several sets Fi,, Fx (k > 0) infinitely
often
» for k=0, all runs are accepting
» for k=1this boils down to an NBA
» GNBA are useful to relate temporal logic and automata
» but they are equally expressive as NBA

v

Generalized Blichi automata

A generalized NBA (GNBA) G is a tuple (Q, 2, 8, Qo, F) where:
» Qis a finite set of states with Qg € Q a set of initial states
» X is an alphabet
» §:Qx 2 - 2%is a transition function
» F={F,...,F} isa(possibly empty) subset of 29

The size of G, denoted |G|, is the number of states and transitions in G:

9] = Q1+, > 13(a.A)

qeQ Aex

Language of a GNBA

v

GNBA G =(Q,Z,8,Qo, F) and word g = ApAtA; ... € Z¢
» Arunfor o in G is an infinite sequence go g1 g . . . such that:
» o € Qg and qiiqm forall0<i
» Runqo@q ...is accepting if for all F € F: g; € F for infinitely
many i
» 0 € X% is accepted by G if there exists an accepting run for ¢

» The accepted language of G:
» L4,(G) = {0 €| there exists an accepting runfor g in G }

GNBA G and G’ are equivalent if £,(G) = L,(G")

v

Example

true crity

crity true

F={a}{q2}}

A GNBA for the property "both processes are infinitely often in their
critical section”

From GNBA to NBA

For any GNBA G there exists an NBA A with:
L,(9) = Lo(A) and ’»A| = O(’g| : ’}-D

where F denotes the set of acceptance setsin G

Proof

LetG=(Q,%,8,Q0,F).Wlo.g: F={F,....,Fc}, k>O0.
Define A = (Q', X, 8',Qq, F') with

» Q' =Qx{1,...,k},
» Qp=Qx{1},
» F'=Fx {1},
g 5((q,i),A)={

wherek+1=1.

{(d".1)|d" €d(q.A)} ifq ¢ Fi
{(q',i+1)|q €5(q,A)} otherwise.

Arun (qo,i0)(q1,h) (G2, ia)-- of A on AgAAy-+- is accepting <
the run gogi1g,-+- of G on AgAA;-+- is accepting.

Example

crity crity

crity true

Product of Buichi automata

The product construction for finite automata does not work:

A
Aj é \(%’1) (Garr1)
. O— O

A
A

A
@ O
A 9@/\;\‘ (a1r2) (1)
A

A e A,

Lo(A1) =Ly(A2) ={A },but L,(A410 A) =0

Intersection

For GNBA G; and G, there exists a GNBA G with
ﬁw(g) = ﬁw(g‘l) N £w(g2) and |g| = O(|g1| : |g2|)

Proof

Let gi = (Qiy zy 81': QO,I') f.l) Wlth Q1 N QZ =d.
Deﬁne g = (O'I X OZ) Z) 6) OO,1 X QO,Z’f) Wlth

q1 € 81(q1,A) A gy € 82(q2,A)
(a1,a3) € 6({q1,92),A)

and

fz{ﬂX02|F1EE}U{Q1><F2|F2€.¢2}

Facts about Blichi automata

» They are as expressive as w-regular languages
They are closed under various operations and also under n
» deterministic automaton —A accepts £, (.A)

v

» Nondeterministic BA are more expressive
than deterministic BA
» Emptiness check = check for reachable recurrent accept state
» this can be done in O(|A|)

Linear-time Temporal Logic

Syntax

modal logic over infinite sequences [Pnueli 1977]

» Propositional logic

» acAP atomic proposition

» ~pand ¢ Ay negation and conjunction
» Temporal operators

» O¢ next state fulfills ¢

» Uy ¢ holds Until a y-state is reached

linear temporal logic is a logic for describing LT properties

Derived operators

pvy = ~(=¢r-y)
¢=v = ~pVy
p=y = (p=y) A (y=9¢)
poy = (¢ -y) Vv (=4 Ay
true = ¢ v =¢
false = —true
O¢ = trueUdg “sometimes in the future”
O¢ = - =¢ “from now on forever”

precedence order: the unary operators bind stronger than the binary ones.
- and O bind equally strong. U takes precedence over A, v, and —

Intuitive semantics

atomic prop. a

next step Oa

untilaU b

eventually Ga

always 0a

a

O

arbitrary

O

an-b

O

-a

O

arbitrary arbitrary arbitrary arbitrary
a arbitrary arbitrary arbitrary
an-b an-b b arbitrary
-a -a a arbitrary
/
a a a a

Traffic light properties

v

Once red, the light cannot become green immediately:

a(red = - (Ogreen)

v

The light becomes green eventually: & green

v

Once red, the light always becomes green eventually:
O(red = < green)

v

Once red, the light always becomes green eventually after
being yellow for some time inbetween:

o(red - O (red U (yellow A O (yellow Ugreen))))

