Verification

Lecture 12

Martin Zimmermann

COlm UNIVERSITAT
"H"IHIIMI DES
JI SAARLANDES

Plan for today

» LTL
» Fairness in LTL
» LTL Model Checking

Review: Syntax

modal logic over infinite sequences [Pnueli 1977]

» Propositional logic

» acAP atomic proposition

» ~pand ¢ Ay negation and conjunction
» Temporal operators

» O¢ next state fulfills ¢

» Uy ¢ holds Until a y-state is reached

linear temporal logic is a logic for describing LT properties

Review: Intuitive semantics

atomic prop. a

next step Oa

untilaU b

eventually Ga

always 0a

O

arbitrary

O

an-b

O

-a

arbitrary arbitrary arbitrary arbitrary
a arbitrary arbitrary arbitrary
an-b an-b b arbitrary
-a -a a arbitrary
/
a a a a

Semantics over words

The LT-property induced by LTL formula ¢ over AP is:

Words(¢) = {0 € (2AP)“’ | ok (p},where E is the smallest relation satisfying:

o

T m o m m T

true

a

P1A P2
¢
O¢

¢ U@

acAy (ie,AgEa)

ocE@andoE @

o e

o[1..]=AAAs...E ¢

3>20.0[j..] ¢ and ofi..] = ¢, 0<i<j

for o = AoA1Az ... we have o[i..] = AjAi1Aisa . . . is the suffix of o from index i on

Semantics over paths and states

Let 7S = (S, Act, —, 1, AP, L) be a transition system without terminal
states, and let ¢ be an LTL-formula over AP.

» For infinite path fragment 7 of TS:
TEQ iff trace(n) E ¢
» ForstateseS:
SEQ iff (V7 € Paths(s). = @)

» TS satisfies ¢, denoted TS & o, if Traces(TS) c Words(¢)

Semantics for transition systems

TSeE@
iff (* transition system semantics ¥)
Traces(TS) ¢ Words(¢)
iff (* definition of = for LT-properties *)
TS = Words(¢)
iff (* Definition of Words(¢) *)
m & ¢ for all 7 € Paths(TS)

iff (* semantics of & for states *)

soE ¢ forallsyel

Example

{ab}

{a,b}

{a}

Semantics of negation
For paths, it holds 7 = ¢ if and only if 7 # —¢ since:
Words(-¢) = (2°P)* \ Words(¢)

But: TS # ¢ and TS = —¢ are not equivalent in general
It holds: TS = —¢ implies TS # ¢. Not always the reverse!
Note that:

TS ¢ iff Traces(TS) ¢ Words(¢)
iff Traces(TS) \ Words(¢) + @
iff Traces(TS) n Words(-¢) # @

TS neither satisfies ¢ nor —¢ if there are
paths m and 7, in TS such that m = g and m, E ¢

Example

A transition system for which TS Gaand TS - a

Semantics of O, &, 0 and &GO

o E O¢ iff 3j>0.0[..]E¢
o E O¢ iff Vj>0.0[j..]E¢
c = OO iff Vj>0.3i>j0[i...]F¢
o B OOg¢ iff F20Vizjoli...]E¢

Equivalence

LTL formulas ¢, y are equivalent, denoted ¢ = v, if:

Words(¢) = Words(y)

Duality and idempotence laws

Duality: -0¢
- ¢
-O¢

ldempotency: oo¢
SO ¢

¢U(pUy)

(pUy)Uy

Absorption and distributive laws

Absorption: Coo¢ = 0o ¢
ooCo¢g = &o0¢
Distribution: O (¢Uy) = (O¢)U(Ov)
S(pvy) = Copv Oy
o Ay) = 0¢ Aoy
but...... O(gUy) £ (OP)U(OW)

S Ay) £ OpAOY
o(¢ vy) # D¢V Oy

Distributive laws

Slanb)y#0a A Ob and oO(avb) #oa v Oob
{b} {a}

/\

TS# O(a A b)and TS E (¢a) A (Ob)
TS# (ga) v (ab)andTS=0O(a v b)

Expansion laws

Expansion: ¢Uwy
O
0¢

v Vv (¢ A O(pUy))
pvOOP
¢ AOO¢

Expansion for until

Py = Words(¢p Uy) satisfies:
Py = Words(y) U {AcAiAy ... € Words(¢) | AAy...€Py }
and is the smallest LT-property P such that:

Words(y) U {AoAiA;... € Words(¢) | AiAr...eP} € P (%)

Proof: Words(¢ U v) is the smallest LT-prop. satisfying (¥)

» Let P be any LT-property that satisfies (*). We show that
Words(¢Uy) < P.

» Let BoBiB; ... € Words(¢ U y). Then there exists a k > 0 such
that B;Bj;1Bj.2 . .. € Words(¢) forevery0 < i< kand
BiBk41Bks2 - - . € Words(vy).

» We derive

by

BkBk+1Bk+2 ...€P
because ByBy,1Bky2 - - - € Words(y) and Words(y) < P.
Bk1BkBk1Bks2 ... € P

because if AgA1A; ... € Words(¢) and AjA; ... € Pthen AgAiA; . ..

By_>Bk_1BxBk41Bk.> - . - € P, analogously

BoB1Bz ...€P.

eP.

Weak until

v

The weak-until (or: unless) operator: g Wy =" (o Uy) v 0O¢

» as opposed to until, ¢ Wy does not require a y-state to be
reached

Until U and weak until W are dual:

v

(¢ A =)W (=¢p A =y)
(¢ A =p)U(=¢p A -y)

-(pUy)
-(pWy)

» Until and weak until are equally expressive:
» Oy = yWfalseand pUy = (pWy)A-O-y
Until and weak until satisfy the same expansion law
» but until is the smallest, and weak until the largest solution!

v

Expansion for weak until

P\ = Words(¢ W v) satisfies:
Pw = Words(y) u {AcAA;... € Words(g) | AAy...eP\y }
and is the greatest LT-property P such that:

Words(y) U {AoAiAz... € Words(¢) | AiAy...e P} 2 P (**)

Proof: Words(¢ W v) is the greatest LT-prop. satisfying (**)

» Let P be any LT-property that satisfies (**). We show that
P < Words(¢ Wy).

» Let BoBiB; ... ¢ Words(¢ W y). Then there exists a k > 0 such
that BiBi11Bis2 ... = ¢ A~y forevery 0 <j < kand
BkBk41Bks2 - - - E = A -y

» We derive

b4y

BiBys1Bisz ... ¢ P

because ByBy,1Bx.2 - . . ¢ Words(y) and

BkBk11Byya - - . ¢ Words(¢) and

By_1BkBys1Bis2 ... P

because ByBy,1Bxi2 ... ¢ Pand By_1ByBi1Bx.2 - . . ¢ Words(y)
Bk_2Bx_1BkBx11Bks2 - - - ¢ P, analogously

BoBiB, ... ¢ P.

(Weak-until) positive normal form

» Canonical form for LTL-formulas

» negations only occur adjacent to atomic propositions
» disjunctive and conjunctive normal form is a special case of PNF
» for each LTL-operator, a dual operator is needed
> eg,~(pUy) = ((p A =¥)U(=p A =y)) v O(p A ~y)
> thatis: =(¢Uy) = (¢ A ~y)W(-¢ A -y)
» For a € AP, the set of LTL formulas in PNF is given by:

@ u= true‘false|a|ﬁa|(p1/\(pz|<p1V<P2|O(P‘(P1U‘P2‘<P1W‘P2

» Oand < are also permitted: g = ¢ Wfalse and O¢ = trueU ¢

(Weak until) PNF is always possible

‘ For each LTL-formula there exists an equivalent LTL-formula in PNF

Transformations:

—~true ~ false

—false ~ true

Q@ ~ @

S(pAy) ~ —pvay

(pvy) ~ -pn-y

-O¢ ~ O-¢

=(pUy) ~ (¢ A =y)W(-¢ A -y)
-(pWy) ~ (¢Ar-y)U(=¢r-y)
—|<>(P ~ D—\(p

—||:|(p ~r <>—\(p

but an exponential growth in size is possible

Example

Consider the LTL-formula -0 ((aUb) v Oc)
This formula is not in PNF, but can be transformed into PNF as
follows:

-~a((aub) v Oc)

o-((aub) v Oc)

&(=(aub) A =Oc)

O((a A =b)W(-a A -b) A O=c)

can the exponential growth in size be avoided?

The release operator

d

The release operator: Ry =" —(=¢p U-y)

» y always holds, a requirement that is released as soon as ¢
holds

Until U and release R are dual:

v

v

pUy = =(-9R-vy)
¢Ry = -(-pU-y)

v

Until and release are equally expressive:
» Oy = falseRyand pUy = -(-¢R-vy)

v

Release satisfies the expansion law:
Ry =y A (¢ v O(9Ry))

Semantics of release

ok @Ry
(* definition of R *)
-3j>0.(ofj.] -y AVi<jofi.]E-p)
(* semantics of negation *)

-3j>0.(alj.]# v A Vi<jo[i]#)
(* duality of 3and V *)

j20.~(olj] ¢y A Vi<jo[i]#g)

(* de Morgan'’s law *)

vj20.(=(olj.]# w) v ~Vi<joli.]# o)

(* semantics of negation *)
ijO.(a[j.]I:I// v i<j. o]l]i:go)

Vj>0.0[j.]Ey or 3i>0.(o[i.]= @A Vk<ialk.]tzw)

Positive normal form (revisited)

For a € AP, LTL formulas in PNF are given by:

@ = true‘false‘a|—|a| (p1/\(P2|(P1V(P2‘ O‘P|‘P1U‘P2“P1R(P2

PNF in linear size

For any LTL-formula ¢ there exists

an equivalent LTL-formula y in PNF with |y| = O(J¢]|)

Transformations:

—~true ~ false
—false ~ true
Q@ ~ @
(pry) ~ —pv-y
(pvy) ~ —pA-y
-O¢ ~ O-¢
-(pUy) ~ -pR-y
-(pRy) ~ -pU-y
—|<>(p ~ D—|(P

