Verification

Lecture 12

Martin Zimmermann

Plan for today

- LTL
- ▶ Fairness in LTL
- LTL Model Checking

Review: Syntax

modal logic over infinite sequences [Pnueli 1977]

- Propositional logic
 - a ∈ AP
 - $\rightarrow \neg \phi$ and $\phi \wedge \psi$

atomic proposition negation and conjunction

- Temporal operators
 - $\bullet \bigcirc \phi$
 - φUψ

next state fulfills ϕ

 ϕ holds Until a ψ -state is reached

linear temporal logic is a logic for describing LT properties

Review: Intuitive semantics

Semantics over words

The LT-property induced by LTL formula φ over AP is:

$$\sigma \models \text{true}$$

$$\sigma \models a \quad \text{iff} \quad a \in A_0 \quad (\text{i.e.,} A_0 \models a)$$

$$\sigma \models \varphi_1 \land \varphi_2 \quad \text{iff} \quad \sigma \models \varphi_1 \text{ and } \sigma \models \varphi_2$$

$$\sigma \models \neg \varphi \quad \text{iff} \quad \sigma \not\models \varphi$$

$$\sigma \models \bigcirc \varphi \quad \text{iff} \quad \sigma[1..] = A_1 A_2 A_3 \ldots \models \varphi$$

$$\sigma \models \varphi_1 \cup \varphi_2 \quad \text{iff} \quad \exists j \geq 0. \ \sigma[j..] \models \varphi_2 \text{ and } \sigma[i..] \models \varphi_1, \ 0 \leq i < j$$

 $Words(\varphi) = \{ \sigma \in (2^{AP})^{\omega} \mid \sigma \models \varphi \}, \text{ where } \models \text{ is the smallest relation satisfying: }$

for $\sigma = A_0 A_1 A_2 \dots$ we have $\sigma[i...] = A_i A_{i+1} A_{i+2} \dots$ is the suffix of σ from index i on

Semantics over paths and states

Let $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system without terminal states, and let φ be an LTL-formula over AP.

• For infinite path fragment π of TS:

$$\pi \vDash \varphi$$
 iff $trace(\pi) \vDash \varphi$

▶ For state $s \in S$:

$$s \vDash \varphi$$
 iff $(\forall \pi \in Paths(s). \pi \vDash \varphi)$

► TS satisfies φ , denoted $TS \models \varphi$, if $Traces(TS) \subseteq Words(\varphi)$

Semantics for transition systems

```
TS \models \varphi
   (* transition system semantics *)
        Traces(TS) \subseteq Words(\varphi)
 (* definition of ⊨ for LT-properties *)
              TS \models Words(\varphi)
iff
      (* Definition of Words(\varphi) *)
     \pi \vDash \varphi for all \pi \in Paths(TS)
iff (* semantics of ⊨ for states *)
         s_0 \models \varphi \text{ for all } s_0 \in I.
```

Example

Semantics of negation

For paths, it holds $\pi \vDash \varphi$ if and only if $\pi \not\models \neg \varphi$ since:

$$Words(\neg \varphi) = (2^{AP})^{\omega} \setminus Words(\varphi)$$
.

But: $TS \not\models \varphi$ and $TS \models \neg \varphi$ are <u>not</u> equivalent in general It holds: $TS \models \neg \varphi$ implies $TS \not\models \varphi$. Not always the reverse! Note that:

$$TS
otin \varphi$$
 iff $Traces(TS) \notin Words(\varphi)$ iff $Traces(TS) \setminus Words(\varphi) \neq \varnothing$ iff $Traces(TS) \cap Words(\neg \varphi) \neq \varnothing$.

TS neither satisfies φ nor $\neg \varphi$ if there are paths π_1 and π_2 in *TS* such that $\pi_1 \vDash \varphi$ and $\pi_2 \vDash \neg \varphi$

Example

A transition system for which $TS \not\models \Diamond a$ and $TS \not\models \neg \Diamond a$

Semantics of \Box , \diamondsuit , $\Box \diamondsuit$ and $\diamondsuit \Box$

$$\sigma \models \Diamond \varphi \quad \text{iff} \quad \exists j \geq 0. \ \sigma[j..] \models \varphi$$

$$\sigma \models \Box \varphi \quad \text{iff} \quad \forall j \geq 0. \ \sigma[j..] \models \varphi$$

$$\sigma \models \Box \Diamond \varphi \quad \text{iff} \quad \forall j \geq 0. \ \exists i \geq j. \ \sigma[i...] \models \varphi$$

$$\sigma \models \Diamond \Box \varphi \quad \text{iff} \quad \exists j \geq 0. \ \forall i \geq j. \ \sigma[i...] \models \varphi$$

Equivalence

LTL formulas ϕ , ψ are equivalent, denoted $\phi \equiv \psi$, if:

$$Words(\phi) = Words(\psi)$$

Duality and idempotence laws

Duality:
$$\neg \Box \phi \equiv \Diamond \neg \phi$$
$$\neg \Diamond \phi \equiv \Box \neg \phi$$
$$\neg \Box \phi \equiv \Box \neg \phi$$
Idempotency:
$$\Box \Box \phi \equiv \Box \phi$$
$$\Diamond \Diamond \phi \equiv \Diamond \phi$$
$$\phi \cup (\phi \cup \psi) \equiv \phi \cup \psi$$
$$(\phi \cup \psi) \cup \psi \equiv \phi \cup \psi$$

Absorption and distributive laws

Absorption:
$$\diamondsuit \Box \diamondsuit \phi \equiv \Box \diamondsuit \phi$$
 $\Box \diamondsuit \Box \phi \equiv \diamondsuit \Box \phi$

Distribution: $\bigcirc (\phi \cup \psi) \equiv (\bigcirc \phi) \cup (\bigcirc \psi)$
 $\diamondsuit (\phi \lor \psi) \equiv \diamondsuit \phi \lor \diamondsuit \psi$
 $\Box (\phi \land \psi) \equiv \Box \phi \land \Box \psi$

but : $\diamondsuit (\phi \cup \psi) \neq (\diamondsuit \phi) \cup (\diamondsuit \psi)$
 $\diamondsuit (\phi \land \psi) \neq \diamondsuit \phi \land \diamondsuit \psi$
 $\Box (\phi \lor \psi) \neq \Box \phi \lor \Box \psi$

Distributive laws

$$\Diamond(a \land b) \not\equiv \Diamond a \land \Diamond b$$
 and $\Box(a \lor b) \not\equiv \Box a \lor \Box b$

$$TS \notin \Diamond(a \land b) \text{ and } TS \vDash (\Diamond a) \land (\Diamond b)$$

 $TS \notin (\Box a) \lor (\Box b) \text{ and } TS \vDash \Box(a \lor b)$

Expansion laws

Expansion:
$$\phi \cup \psi \equiv \psi \vee (\phi \wedge \bigcirc (\phi \cup \psi))$$

 $\Leftrightarrow \phi \equiv \phi \vee \bigcirc \Leftrightarrow \phi$
 $\Box \phi \equiv \phi \wedge \bigcirc \Box \phi$

Expansion for until

 $P_{U} = Words(\varphi \cup \psi)$ satisfies:

$$P_{\mathsf{U}} = Words(\psi) \cup \left\{ A_0 A_1 A_2 \dots \in Words(\varphi) \mid A_1 A_2 \dots \in P_{\mathsf{U}} \right\}$$

and is the smallest LT-property P such that:

$$Words(\psi) \cup \{A_0A_1A_2... \in Words(\varphi) \mid A_1A_2... \in P\} \subseteq P \quad (*)$$

Proof: $Words(\varphi \cup \psi)$ is the smallest LT-prop. satisfying (*)

- Let *P* be any LT-property that satisfies (*). We show that $Words(\varphi \cup \psi) \subseteq P$.
- Let $B_0B_1B_2... \in Words(\varphi \cup \psi)$. Then there exists a $k \ge 0$ such that $B_iB_{i+1}B_{i+2}... \in Words(\varphi)$ for every $0 \le i < k$ and $B_kB_{k+1}B_{k+2}... \in Words(\psi)$.
- We derive

 $\Rightarrow B_0B_1B_2\ldots\in P.$

```
B_k B_{k+1} B_{k+2} \dots \in P
because B_k B_{k+1} B_{k+2} \dots \in Words(\psi) and Words(\psi) \subseteq P.
\Rightarrow B_{k-1} B_k B_{k+1} B_{k+2} \dots \in P
because if A_0 A_1 A_2 \dots \in Words(\varphi) and A_1 A_2 \dots \in P then A_0 A_1 A_2 \dots \in P.
\Rightarrow B_{k-2} B_{k-1} B_k B_{k+1} B_{k+2} \dots \in P, analogously
```

Weak until

- ► The <u>weak-until</u> (or: unless) operator: $\varphi W \psi \stackrel{\text{def}}{=} (\varphi U \psi) \vee \Box \varphi$
 - as opposed to until, φ W ψ does not require a ψ -state to be reached
- Until U and weak until W are <u>dual</u>:

$$\neg(\varphi \cup \psi) \equiv (\varphi \land \neg \psi) \vee (\neg \varphi \land \neg \psi)$$

$$\neg(\varphi \vee \psi) \equiv (\varphi \land \neg \psi) \vee (\neg \varphi \land \neg \psi)$$

- Until and weak until are equally expressive:
 - $\blacktriangleright \Box \psi \equiv \psi \text{ W false and } \varphi \cup \psi \equiv (\varphi \cup \psi) \land \neg \Box \neg \psi$
- Until and weak until satisfy the same expansion law
 - but until is the smallest, and weak until the largest solution!

Expansion for weak until

$$P_{\mathbf{W}} = Words(\varphi \mathbf{W} \psi)$$
 satisfies:

$$P_{W} = Words(\psi) \cup \{A_0A_1A_2... \in Words(\varphi) \mid A_1A_2... \in P_{W}\}$$

and is the greatest LT-property P such that:

$$Words(\psi) \cup \{A_0A_1A_2... \in Words(\varphi) \mid A_1A_2... \in P\} \supseteq P \quad (**)$$

Proof: $Words(\varphi W \psi)$ is the greatest LT-prop. satisfying (**)

- Let *P* be any LT-property that satisfies (**). We show that $P \subseteq Words(\varphi \ W \ \psi)$.
- ▶ Let $B_0B_1B_2 \dots \notin Words(\varphi \otimes \psi)$. Then there exists a $k \geq 0$ such that $B_iB_{i+1}B_{i+2} \dots \models \varphi \land \neg \psi$ for every $0 \leq i < k$ and $B_kB_{k+1}B_{k+2} \dots \models \neg \varphi \land \neg \psi$.
- We derive

```
B_k B_{k+1} B_{k+2} \dots \notin P
because B_k B_{k+1} B_{k+2} \dots \notin Words(\psi) and
B_k B_{k+1} B_{k+2} \dots \notin Words(\varphi) and
B_{k-1} B_k B_{k+1} B_{k+2} \dots \notin P
because B_k B_{k+1} B_{k+2} \dots \notin P and B_{k-1} B_k B_{k+1} B_{k+2} \dots \notin Words(\psi)
B_{k-2} B_{k-1} B_k B_{k+1} B_{k+2} \dots \notin P, analogously
\vdots
B_0 B_1 B_2 \dots \notin P.
```

(Weak-until) positive normal form

- Canonical form for LTL-formulas
 - negations only occur adjacent to atomic propositions
 - disjunctive and conjunctive normal form is a special case of PNF
 - for each LTL-operator, a dual operator is needed
 - e.g., $\neg(\varphi \cup \psi) \equiv ((\varphi \land \neg \psi) \cup (\neg \varphi \land \neg \psi)) \lor \Box (\varphi \land \neg \psi)$
 - that is: $\neg(\varphi \cup \psi) \equiv (\varphi \land \neg \psi) \vee (\neg \varphi \land \neg \psi)$
- ▶ For $a \in AP$, the set of LTL formulas in PNF is given by:

$$\varphi ::= \text{true} \left| \text{false} \right| a \left| \neg a \right| \varphi_1 \wedge \varphi_2 \left| \varphi_1 \vee \varphi_2 \right| \bigcirc \varphi \left| \varphi_1 \cup \varphi_2 \left| \varphi_1 \cup \varphi_2 \right| \varphi_1 \cup \varphi_2 \right|$$

▶ \Box and \Diamond are also permitted: $\Box \varphi \equiv \varphi$ W false and $\Diamond \varphi = \text{true } \bigcup \varphi$

(Weak until) PNF is always possible

For each LTL-formula there exists an equivalent LTL-formula in PNF

Transformations:

but an exponential growth in size is possible

Example

Consider the LTL-formula $\neg \Box ((a \cup b) \lor \bigcirc c)$ This formula is not in PNF, but can be transformed into PNF as follows:

$$\neg \Box ((a \cup b) \lor \bigcirc c)$$

$$\equiv \Diamond \neg ((a \cup b) \lor \bigcirc c)$$

$$\equiv \Diamond (\neg (a \cup b) \land \neg \bigcirc c)$$

$$\equiv \Diamond ((a \land \neg b) \lor (\neg a \land \neg b) \land \bigcirc \neg c)$$

can the exponential growth in size be avoided?

The release operator

- ► The <u>release</u> operator: $\varphi R \psi \stackrel{\text{def}}{=} \neg (\neg \varphi U \neg \psi)$
 - ψ always holds, a requirement that is released as soon as φ holds
- Until U and release R are <u>dual</u>:

$$\varphi \cup \psi \equiv \neg (\neg \varphi \land \neg \psi)$$
 $\varphi \land \psi \equiv \neg (\neg \varphi \cup \neg \psi)$

- Until and release are <u>equally expressive</u>:
 - ▶ $\Box \psi \equiv \text{false R } \psi \text{ and } \varphi \cup \psi \equiv \neg (\neg \varphi \, \mathsf{R} \neg \psi)$
- Release satisfies the <u>expansion law</u>:

$$\varphi R \psi \equiv \psi \wedge (\varphi \vee \bigcirc (\varphi R \psi))$$

Semantics of release

```
\sigma \vDash \varphi R \psi
iff
                                                                                                              (* definition of R *)
          \neg \exists j \geq 0. \left(\sigma[j..] \vDash \neg \psi \land \forall i < j. \ \sigma[i..] \vDash \neg \varphi\right)
         \neg \exists j \geq 0. \left(\sigma[j..] \neq \psi \land \forall i < j. \sigma[i..] \neq \varphi\right)
iff
                                                                                              (* semantics of negation *)
iff
                                                                                                        (* duality of \exists and \forall *)
           \forall j \geq 0. \ \neg \Big( \sigma[j..] \not \models \psi \ \land \ \forall i < j. \ \sigma[i..] \not \models \varphi \Big)
iff
                                                                                                           (* de Morgan's law *)
           \forall j \geq 0. \left( \neg (\sigma[j..] \neq \psi) \lor \neg \forall i < j. \sigma[i..] \neq \varphi \right)
iff
                                                                                              (* semantics of negation *)
           \forall j \geq 0. \left( \sigma[j..] \models \psi \lor \exists i < j. \sigma[i..] \models \varphi \right)
iff
           \forall j \geq 0. \ \sigma[j..] \models \psi \ \text{or} \ \exists i \geq 0. \ \left(\sigma[i..] \models \varphi \land \forall k \leq i. \ \sigma[k..] \models \psi\right)
```

Positive normal form (revisited)

For $a \in AP$, LTL formulas in PNF are given by:

$$\varphi ::= \mathsf{true} \, \Big| \, \mathsf{false} \, \Big| \, a \, \Big| \, \neg a \, \Big| \, \varphi_1 \wedge \varphi_2 \, \Big| \, \varphi_1 \vee \varphi_2 \, \Big| \, \bigcirc \varphi \, \Big| \, \varphi_1 \, \mathsf{U} \, \varphi_2 \, \Big| \, \varphi_1 \, \mathsf{R} \, \varphi_2$$

PNF in linear size

For any LTL-formula φ there exists an equivalent LTL-formula ψ in PNF with $|\psi| = \mathcal{O}(|\varphi|)$

Transformations: