Verification

Lecture 14

Bernd Finkbeiner

ICdm UNIVERSITAT
"H"H"“" DES
UL SAARLANDES

Plan for today

» LTL model checking (continued)

» LTL vs. NBA
» Persistency checking via nested DFS

Overview of LTL model checking

‘ Model of system ‘

e

LTL-formula -¢

model chegler

Generalised Biichi automaton G_,

¢

Biichi automaton A_,

Transition system TS \

Product transition system\
=
TS® A,

v

’—< TS® Ay F Prers(a,) ’—‘
Al Y/

(’No’ (counter-example))

REVIEW: Main result

[Vardi, Wolper & Sistla 1986]

For any LTL-formula ¢ (over AP) there exists a

GNBA G, over 24P such that:

(@) Words(¢) = L,(G,)

(b) G, can be constructed in time and space O (2/¢/)

(c) #accepting sets of G, is bounded above by O(|¢|)

= every LTL-formula expresses an w-regular property!

NBA are more expressive than LTL

There is no LTL formula ¢ with Words(¢) = P for the LT-property:
P = {AotiAr...c(21))" |aepyforiz 0]}

But there exists an NBA A with £,(A) =P

= there are w-regular properties that cannot be expressed in LTL!

Proof

» Proof by contradiction:

Assume there is an LTL formula ¢ with Words(¢) = P.
» Letw; = {a}"'@{a}* and

Wy = {a}n+2®{a}w

where n is the number of O -operators in ¢.

We show that wy € Words(¢) iff w, € Words(¢).

This contradicts Words(¢) = P.

Structural induction on ¢:

» ¢ € AP: ¢ only depends on first position

» ¢ =Quy:bylH, {a}"@{a}® ¢ Words(y) iff
{a}"'z{a}* € Words(v).
Hence, wy € Words(g) iff w, € Words(¢).

Proof (cont'd)

> 9=y Uy
1. wy € Words(¢) = w; € Words(¢):

» Case 1:wy & y. Then, by IH, w; = ya.

» Case 2:w; # y,. Let k be the smallest index such that
wilk...]Eyand VO <i<kwi[i...] Eyi.
=wylk+1,...]ryand V1 <i<kw,[i...] = ys.
Additionally, by IH, wy = v = w; E y;.

2. w; € Words(¢) = wy € Words(o)

» Case 1:w; &= ys. Then, by IH, wy = ys.

» Case 2: w; # ya. Let k be the smallest index such that
walk...]Eyand VO <i< kwy[i...] = ys.
=wilk-1,...]Eyand VO<i<k—-Tw[i...] Ey1.

Complexity of LTL-to-NBA translation

For any LTL-formula ¢ (over AP) there exists an NBA A,
with Words(¢) = L,(A,) and

which can be constructed in time and space in 29(#))

Justification complexity: next slide

Time and space complexity

v

States GNBA G, are elementary sets of formulae in closure(¢)

» sets B can be represented by bit vectors with single bit per
subformula y of ¢

» The number of states in G, is bounded by 2lel,
» The number of accepting sets of G, is bounded by |¢|.

» The number of states in NBA A, is thus bounded by
olel. lo| = 2(lpl+loglel) — 2O(¢l]) ged

Lower bound

There exists a family of LTL formulas ¢, with |p,| = O(poly(n))

such that every NBA A, for ¢, has at least 2" states

Proof

Let AP be non-empty, that is, |2AP| >2and:
Ly = (A1 AAr Ao |ACAP A oe ()7}, forn>0

Itfollows £, = Words(¢,) whereg, = A A (O'a<«— O""a)
acAP 0<i<n
¢n is an LTL formula of polynomial length: |¢,| € (9(|AP| ~n).

However, any NBA A with £, (A) = £, has at least 2" states.

Proof (cont'd)

Claim:any NBA Afor A\ A (O'a <« O""a) has at least 2" states
aeAP 0<i<n

» Words oftheform Ay ... A A1... A, @D D...areaccepted by A

» Athus has for every word A; ... A, of length n, a state
q(A1 ...An), which can be reached from an initial state by
consuming A ... An.

» From q(A...Ap), itis possible to visit an accept state infinitely
often by accepting the suffix A, ... A, 33 @ ...

» IfAr... Ay # A...A] then
Ar. AA L ALGDD. . ¢ Ly = Lo(A)

» Therefore, the states g(A; ... Ap) are all pairwise different

» Given |24| possible sequences A; ... A,
NBA A has > (|24P|)" > 2" states

Overview of LTL model checking

Negation of property

‘ Model of system ‘ ‘ LTL-formula -¢ ‘

model checker

‘ Generalised Biichi automaton G_, ‘

Transition system Tl/Nautomaton A, ‘

Product transition system
TS® A,

v

’— TS® Ay E Ppers(a,)
\Y —\‘V/
‘Yes' (’No’funter—example))

Synchronous product

For transition system TS = (S, Act, —, I, AP, L) without terminal states
and A = (Q, 2,8, Qo, F) a non-blocking NBA with = = 247, let:

TS® A = (S, Act,~",I',AP',L") where

> SI:SXQ’API=QandL,(<S,q>) _ {q}
43 L(t)
5—>t/\q—>p
(S, q> i>, <t’p)
> I’:{(SO)q> | SOEI AN HqOEOO'qOﬂ)q}

» —'is the smallest relation defined by:

REVIEW: Reduction to persistence checking

TS&= ¢ ifandonlyif
if and only if

if and only if

if and only if

Traces(TS) < Words(¢)
Traces(TS) n ((2%P)“ \ Words(¢)) = @

Traces(TS) n Words(-¢) = @
| ——
Lo(A-yp)

TS®A, EOO-F

LTL model checking is thus reduced to persistence checking!

On-the-fly LTL model checking

» Idea: find a counter-example during the generation of
Reach(TS) and A_,

» exploit the fact that Reach(TS) and A_, can be generated in
parallel
= Generate Reach(TS® A_,) “on demand”

» consider a new vertex only if no accepting cycle has been found
yet

» only consider the successors of a state in Aw that match
current state in TS

= Possible to find an accepting cycle without generating A,
entirely

» This on-the-fly scheme is adopted for example in the model
checker SPIN

Cycle detection

How to check for a reachable cycles containing an F-state?
» Alternative 1: (= unconditional fairness in Lecture 4)

» compute the strongly connected components (SCCs)
» check whether one such SCC is reachable from an initial state
» ...that contains an F-state

» Alternative 2:

» use a nested depth-first search
= adequate for on-the-fly verification
= easier for generating counterexamples

A two-phase depth first-search

1. Determine all F-states that are reachable from some initial
state

this is performed by a standard depth-first search
2. For each reachable F-state, check whether it belongs to a cycle

» start a depth-first search in s
» check for all states reachable from s whether there is an
“backward” edge to s

» Quadratic complexity

Two-phase depth first-search

Require: finite transition system TS without terminal states, and
proposition F
Ensure: "yes” if TS = & 0O —F”, otherwise "no”.

set of states R := &; Rr := &; {set of reachable states resp. F-states}
stack of states U := ¢; {DFS-stack for first DFS, initial empty}

set of states T := &; {set of visited states for the cycle check}
stack of states V := ¢; {DFS-stack for the cycle check}

foralls ¢/~ Rdo visit(s); od {phase one}
foralls ¢ Rrdo
T:=@; V= ¢ {phase two}
if cycle_check(s) then return "no” {s belongs to a cycle}
end for
return "yes” {none of the F-states belongs to a cycle}

Find F-states

process visit (state s)
push(s, U); {push s on the stack}
R:=R u {s};{marks as reachable}
repeat
s" = top(U);
if Post(s") c Rthen
pop(U);
ifs' = FthenRe := Rr U {5’ }; fi
else
lets” € Post(s') \ R
push(s", U);
R:=Ru {s" };{state s” is a new reachable state}
end if
until (U = ¢) endproc

this is standard DFS checking for F-states

Cycle detection

process boolean cycle_check(state s)
boolean cycle_found := false; {no cycle found yet}
push(s,V); T:=T u {s};{push s on the stack}
repeat
s":= top(V); {take top element of 1/}
if s € Post(s") then
cycle_found := true; {if s € Post(s"), a cycle is found}
push(s, V); {push s on the stack}
else
if Post(s') \ T + @ then
lets” ¢ Post(s') \ T;
push(s”,V); T:=T u {s" }; {push an unvisited successor of s’}
else pop(V); {unsuccessful cycle search for s’}
end if
end if
until ((V =¢) v cycle_found)
return cycle_found endproc

Nested depth-first search

» ldea: perform the two depth-first searches in an interleaved
way
» the outer DFS serves to encounter all reachable F-states
» the inner DFS seeks for backward edges leading to the F-state

» Nested DFS

» on full expansion of F-state s in the outer DFS, start inner DFS

» in inner DFS, visit all states reachable from s not visited in the
inner DFS yet

» no backward edge found to s? continue the outer DFS (look for
next F state)

» Counterexample generation: DFS stack concatenation
» stack U for the outer DFS = path fragment from sy € / to s (in
reversed order)

» stack V for the inner DFS = a cycle from state s to s (in reversed
order)

The outer DFS (1)

Require: transition system TS without terminal states, and proposition F
Ensure: "yes" if TS £ & O —F, otherwise "no” plus counterexample

set of states R := g; {set of visited states in the outer DFS}
stack of states U := ¢; {stack for the outer DFS}

set of states T := &; {set of visited states in the inner DFS}
stack of states V := ¢; {stack for the inner DFS}

boolean cycle_found := false;

while (/N R+ @ A —cycle_found) do
lets € | \ R; {explore the reachable}
reachable_cycle(s); {fragment with outer DFS}
end while
if —cycle_found then
return ("yes”) {TS = & 0O —F}
else
return ("no”, reverse(V.U)) {stack contents yield a counterexample}
end if

The outer DFS (2)

process reachable_cycle (state s)
push(s, U); {push s on the stack}
R:=Ru {s};
repeat
s" = top(U);
if Post(s') \ R + @ then
lets” € Post(s') \ R;
push(s", U); {push the unvisited successor of s}
R:=R u {s"”};{and mark it reachable}
else
pop(U); fouter DFS finished for s’}
if s’ = F then
cycle_found := cycle_check(s); {proceed with the inner DFS in state s’}
end if
end if
until (U = ¢) v cycle_found) {stop when stack for the outer DFS is empty or cycle found}
endproc

Correctness of nested DFS

Let:
» TS be a finite transition system over AP without terminal states and

» & O —F a persistence property

The nested DFS algorithm yields "no” ifand only if TS # & 0 —F ‘

