
Verification

Lecture 14

Bernd Finkbeiner



Plan for today

▸ LTL model checking (continued)
▸ LTL vs. NBA
▸ Persistency checking via nested DFS



Overview of LTL model checking

model checker

‘No’ (counter-example)

Model of system

Transition system TS

Negation of property

Product transition system

TS⊗A¬φ

TS⊗A¬φ ⊧ Ppers(A¬φ)

LTL-formula ¬φ

Büchi automatonA¬φ

Generalised Büchi automaton G¬φ

System

‘Yes’



REVIEW: Main result

[Vardi, Wolper & Sistla 1986]

For any LTL-formula φ (over AP) there exists a

GNBA Gφ over 2AP such that:

(a) Words(φ) = Lω(Gφ)
(b) Gφ can be constructed in time and spaceO(2∣φ∣)
(c) #accepting sets of Gφ is bounded above byO(∣φ∣)

⇒ every LTL-formula expresses an ω-regular property!



NBA are more expressive than LTL

There is no LTL formula φ withWords(φ) = P for the LT-property:

P = {A0A1A2 . . . ∈ (2{a})
ω ∣ a ∈ A2i for i ≥ 0}

But there exists an NBAAwith Lω(A) = P

⇒ there are ω-regular properties that cannot be expressed in LTL!



Proof

▸ Proof by contradiction:

Assume there is an LTL formula φ withWords(φ) = P.
▸ Letw1 = {a}n+1∅{a}ω and

w2 = {a}n+2∅{a}ω
where n is the number of◯ -operators in φ.

We show thatw1 ∈Words(φ) iffw2 ∈Words(φ).
This contradictsWords(φ) = P.
Structural induction on φ:

▸ φ ∈ AP: φ only depends on first position

▸ φ = ◯ψ: by IH, {a}n∅{a}ω ∈Words(ψ) iff
{a}n+1∅{a}ω ∈Words(ψ).
Hence,w1 ∈Words(φ) iffw2 ∈Words(φ).



Proof (cont’d)

▸ φ = ψ1 Uψ2:

1. w1 ∈Words(φ) ⇒ w2 ∈Words(φ):
▸ Case 1: w1 ⊧ ψ2. Then, by IH,w2 ⊧ ψ2.
▸ Case 2: w1 /⊧ ψ2. Let k be the smallest index such that

w1[k . . .] ⊧ ψ2 and ∀0 ≤ i < k.w1[i . . .] ⊧ ψ1.

⇒ w2[k + 1, . . .] ⊧ ψ2 and ∀1 ≤ i < k.w2[i . . .] ⊧ ψ1.

Additionally, by IH,w1 ⊧ ψ1 ⇒ w2 ⊧ ψ1.

2. w2 ∈Words(φ) ⇒ w1 ∈Words(φ)
▸ Case 1: w2 ⊧ ψ2. Then, by IH,w1 ⊧ ψ2.
▸ Case 2: w2 /⊧ ψ2. Let k be the smallest index such that

w2[k . . .] ⊧ ψ2 and ∀0 ≤ i < k.w2[i . . .] ⊧ ψ1.

⇒ w1[k − 1, . . .] ⊧ ψ2 and ∀0 ≤ i < k − 1.w1[i . . .] ⊧ ψ1.



Complexity of LTL-to-NBA translation

For any LTL-formula φ (over AP) there exists an NBAAφ

withWords(φ) = Lω(Aφ) and
which can be constructed in time and space in 2O(∣φ∣)

Justification complexity: next slide



Time and space complexity

▸ States GNBA Gφ are elementary sets of formulae in closure(φ)
▸ sets B can be represented by bit vectors with single bit per

subformula ψ of φ

▸ The number of states in Gφ is bounded by 2∣φ∣.

▸ The number of accepting sets of Gφ is bounded by ∣φ∣.
▸ The number of states in NBAAφ is thus bounded by

2∣φ∣ ⋅ ∣φ∣ = 2(∣φ∣+log ∣φ∣) = 2O(∣φ∣). qed



Lower bound

There exists a family of LTL formulas φn with ∣φn∣ = O(poly(n))
such that every NBAAφn

for φn has at least 2
n states



Proof

Let AP be non-empty, that is, ∣2AP∣ ≥ 2 and:

Ln = {A1 . . .An A1 . . .An σ ∣ Ai ⊆ AP ∧ σ ∈ (2AP)ω }, for n ≥ 0

It follows Ln = Words(φn)where φn = ⋀
a∈AP

⋀
0≤i<n

(◯i a←→◯n+i a)

φn is an LTL formula of polynomial length: ∣φn∣ ∈ O(∣AP∣ ⋅ n).

However, any NBAAwith Lω(A) = Ln has at least 2
n states.



Proof (cont’d)

Claim: any NBAA for ⋀
a∈AP

⋀
0≤i<n

(◯i a←→◯n+i a) has at least 2n states

▸ Words of the form A1 . . .An A1 . . .An∅∅∅ . . . are accepted byA
▸ A thus has for every word A1 . . .An of length n, a state

q(A1 . . .An), which can be reached from an initial state by

consuming A1 . . .An.

▸ From q(A1 . . .An), it is possible to visit an accept state infinitely

often by accepting the suffix A1 . . .An∅∅∅ . . .

▸ If A1 . . .An /= A′1 . . .A
′
n then

A1 . . .An A
′
1 . . .A

′
n∅∅∅ . . . ∉ Ln = Lω(A)

▸ Therefore, the states q(A1 . . .An) are all pairwise different
▸ Given ∣2AP∣ possible sequences A1 . . .An,
NBAA has ≥ (∣2AP∣)n ≥ 2n states



Overview of LTL model checking

model checker

‘No’ (counter-example)

Model of system

Transition system TS

Negation of property

Product transition system

TS⊗A¬φ

TS⊗A¬φ ⊧ Ppers(A¬φ)

LTL-formula ¬φ

Büchi automatonA¬φ

Generalised Büchi automaton G¬φ

System

‘Yes’



Synchronous product

For transition system TS = (S,Act,→, I,AP, L)without terminal states

andA = (Q, Σ, δ,Q0, F) a non-blocking NBA with Σ = 2AP, let:

TS⊗A = (S′,Act,→ ′
, I′,AP′, L′) where

▸ S′ = S ×Q, AP′ = Q and L′(⟨s, q⟩) = {q}

▸ → ′ is the smallest relation defined by:
s α−−→ t ∧ q

L(t)−−−−→p

⟨s, q⟩ α−−→′ ⟨t, p⟩
▸ I′ = { ⟨s0, q⟩ ∣ s0 ∈ I ∧ ∃q0 ∈ Q0. q0

L(s0)−−−−−→q}



REVIEW: Reduction to persistence checking

TS ⊧ φ if and only if Traces(TS) ⊆Words(φ)

if and only if Traces(TS) ∩ ((2AP)ω ∖Words(φ)) = ∅

if and only if Traces(TS) ∩ Words(¬φ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Lω(A¬φ)

= ∅

if and only if TS⊗A¬φ ⊧ ◇◻ ¬F

LTL model checking is thus reduced to persistence checking!



On-the-fly LTL model checking

▸ Idea: find a counter-example during the generation of
Reach(TS) andA¬φ

▸ exploit the fact that Reach(TS) andA¬φ can be generated in

parallel

⇒ Generate Reach(TS⊗A¬φ) ‘‘on demand’’
▸ consider a new vertex only if no accepting cycle has been found

yet
▸ only consider the successors of a state inA¬φ that match

current state in TS

⇒ Possible to find an accepting cycle without generatingA¬φ
entirely

▸ This on-the-fly scheme is adopted for example in the model

checker SPIN



Cycle detection

How to check for a reachable cycles containing an F-state?

▸ Alternative 1: (→ unconditional fairness in Lecture 4)
▸ compute the strongly connected components (SCCs)
▸ check whether one such SCC is reachable from an initial state
▸ . . . that contains an F-state

▸ Alternative 2:
▸ use a nested depth-first search

⇒ adequate for on-the-fly verification

⇒ easier for generating counterexamples



A two-phase depth first-search

1. Determine all F-states that are reachable from some initial
state

this is performed by a standard depth-first search

2. For each reachable F-state, check whether it belongs to a cycle
▸ start a depth-first search in s
▸ check for all states reachable from swhether there is an

‘‘backward’’ edge to s

▸ Quadratic complexity



Two-phase depth first-search

Require: finite transition system TSwithout terminal states, and

proposition F

Ensure: ’’yes’’ if TS ⊧◇◻ ¬F’’, otherwise ’’no’’.

set of states R ∶= ∅; RF ∶= ∅; {set of reachable states resp. F-states}
stack of states U ∶= ε; {DFS-stack for first DFS, initial empty}

set of states T ∶= ∅; {set of visited states for the cycle check}

stack of states V ∶= ε; {DFS-stack for the cycle check}

for all s ∈ I ∖ R do visit(s); od {phase one}

for all s ∈ RF do
T ∶= ∅; V ∶= ε; {phase two}
if cycle_check(s) then return ’’no’’ {s belongs to a cycle}

end for

return ’’yes’’ {none of the F-states belongs to a cycle}



Find F-states

process visit (state s)

push(s,U); {push s on the stack}

R ∶= R ∪ { s}; {mark s as reachable}

repeat

s′ ∶= top(U);
if Post(s′) ⊆ R then

pop(U);
if s′ ⊧ F then RF ∶= RF ∪ { s

′ }; fi
else

let s′′ ∈ Post(s′) ∖ R

push(s′′ ,U);
R ∶= R ∪ { s′′ }; {state s′′ is a new reachable state}

end if

until (U = ε) endproc

this is standard DFS checking for F-states



Cycle detection

process boolean cycle_check(state s)

boolean cycle_found ∶= false; {no cycle found yet}

push(s, V); T ∶= T ∪ { s}; {push s on the stack}

repeat

s′ ∶= top(V); {take top element of V}

if s ∈ Post(s′) then
cycle_found ∶= true; {if s ∈ Post(s′), a cycle is found}
push(s, V); {push s on the stack}

else

if Post(s′) ∖ T ≠ ∅ then

let s′′ ∈ Post(s′) ∖ T ;

push(s′′ , V); T ∶= T ∪ { s′′ }; {push an unvisited successor of s′}

else pop(V); {unsuccessful cycle search for s′}

end if

end if

until ((V = ε) ∨ cycle_found)
return cycle_found endproc



Nested depth-first search

▸ Idea: perform the two depth-first searches in an interleaved
way

▸ the outer DFS serves to encounter all reachable F-states
▸ the inner DFS seeks for backward edges leading to the F-state

▸ Nested DFS
▸ on full expansion of F-state s in the outer DFS, start inner DFS
▸ in inner DFS, visit all states reachable from s not visited in the

inner DFS yet
▸ no backward edge found to s? continue the outer DFS (look for

next F state)

▸ Counterexample generation: DFS stack concatenation
▸ stack U for the outer DFS = path fragment from s0 ∈ I to s (in

reversed order)
▸ stack V for the inner DFS = a cycle from state s to s (in reversed

order)



The outer DFS (1)

Require: transition system TSwithout terminal states, and proposition F

Ensure: ’’yes’’ if TS ⊧ ◇◻ ¬F, otherwise ’’no’’ plus counterexample

set of states R ∶= ∅; {set of visited states in the outer DFS}

stack of states U ∶= ε; {stack for the outer DFS}
set of states T ∶= ∅; {set of visited states in the inner DFS}

stack of states V ∶= ε; {stack for the inner DFS}
boolean cycle_found ∶= false;

while (I ∖ R ≠ ∅ ∧ ¬cycle_found) do
let s ∈ I ∖ R; {explore the reachable}

reachable_cycle(s); {fragment with outer DFS}

end while

if ¬cycle_found then
return (’’yes’’) {TS ⊧ ◇◻ ¬F}

else

return (’’no’’, reverse(V .U)) {stack contents yield a counterexample}

end if



The outer DFS (2)

process reachable_cycle (state s)

push(s,U); {push s on the stack}

R ∶= R ∪ { s};
repeat

s′ ∶= top(U);
if Post(s′) ∖ R ≠ ∅ then

let s′′ ∈ Post(s′) ∖ R;

push(s′′ ,U); {push the unvisited successor of s′}

R ∶= R ∪ { s′′ }; {and mark it reachable}

else

pop(U); {outer DFS finished for s′}

if s′ ⊧ F then

cycle_found ∶= cycle_check(s′); {proceed with the inner DFS in state s′}

end if

end if

until ((U = ε) ∨ cycle_found) {stop when stack for the outer DFS is empty or cycle found}

endproc



Correctness of nested DFS

Let:

▸ TS be a finite transition system over APwithout terminal states and

▸ ◇◻ ¬F a persistence property

The nested DFS algorithm yields ’’no’’ if and only if TS /⊧◇◻ ¬F


