Verification

Lecture 17

Bernd Finkbeiner

COlm UNIVERSITAT
"“"Illl"“" DES

I sAARLANDES

Plan for today

» CTL*

» Bisimulation

REVIEW: LTL and CTL are incomparable

» Some LTL-formulas cannot be expressed in CTL, e.g.,
» FGa
» F(a A Xa)

» Some CTL-formulas cannot be expressed in LTL, e.g.,
» AFAGa
» AF(a A AXa)
» AGEFa

= Cannot be expressed = there does not exist an equivalent
formula

Syntax of CTL*

CTL* state-formulas are formed according to:
O = true | a | O A Oy ‘ -0 | Eo

where a € AP and ¢ is a path-formula

CTL* path-formulas are formed according to the grammar:

¢u=@ | 1A P2 | -9 \ X¢ \ ¢1U 92
where @ is a state-formula, and ¢, ¢; and ¢, are path-formulas

in CTL*: A(p = =k —.

CTL* semantics

sea iff ael(s)
SE-O iff notsk®
sE® AY iff (sed®)and(sEY)
seEg iff 7= ¢ forsome 7 € Paths(s)
nE® iff #[0]=®
TE@iAgy iff mE@andmE @,
TE - iff notmEg
TEXD iff #[1.]=®

r=®UY iff 3j>0. (r[j..]EY A (VO<k<j a[k..] ED))

Transition system semantics

» For CTL*-state-formula @, the satisfaction set Sat(®) is defined
by:
Sat(®) = {qeS|qe D}

» TS satisfies CTL*-formula @ iff ® holds in all its initial states:

TSE® ifandonlyif Vgel.go=®

this is exactly as for CTL

Embedding of LTL in CTL"

For LTL formula ¢ and TS without terminal states (both over AP) and
foreachge S:

qgE ¢ if and only if qgEAg
S——— ~————
LTL semantics CTL* semantics

In particular:

TS EirL @ if and only if TS FEcTLs A(p

CTL" is more expressive than LTL and CTL

For the CTL*-formula over AP = {a,b }:
® = (AFG a) v (AGEF b)

there does not exist any equivalent LTL or CTL formula

CTL*

CTL* state-formulas are formed according to:
®u=true | a| @A @y | <0 | Eg | Ag

where a € AP and ¢ is a path-formula

CTL* path-formulas are formed according to the grammar:
Q=01 A @2 |) ‘ XD ‘ O, U D,

where @, @4, ®, are state-formulas, and ¢, ¢1 and ¢, are
path-formulas

CTL* is as expressive as CTL
For example: E(FanFb) =EF(anEFb) v EF(bAEFa)

CTL* formula CTL formula
Some rules for transforming CTL* formulas into equivalent CTL formulas:
E(-(®1UD,))
E(XD AXD;)
E(X® A (OUD,))
((q)] Uq)z) A (‘I’] U‘I’z)

E((D1A-D2)U(-D1A-D;)) v EG-D,
EX (D1 A D))

(P2 AEX®) v (@ AEX(DAE(DUD,)))
E((@1A¥)U(P2AE(¥UW))) v
E((®1A¥)U (¥ AE(DUD,)))

adding boolean combinations of path formulas to CTL does not change its
expressiveness
but CTL* formulas can be much shorter than shortest equivalent CTL formulas

10

CTL* model checking

v

Adopt the same bottom-up procedure as for (fair) CTL
» Replace each maximal proper state subformula ¥ by new
proposition ay
» ay € L(s) ifand only if s € Sat('¥)
Most interesting case: formulas of the form E ¢
» by replacing all maximal state sub-formulas in ¢, an
LTL-formula results!

qg = E¢ iff q# A-g iff q ¥ -¢
—_— ——
CTL* semantics LTL semantics

» Satcri«(E@) = S\ Satyn(—¢)

v

v

CTL* model-checking algorithm

foralli<|®|do

forall ¥ € Sub(®) with | ¥| =i do

switch(\¥):

true

a

ay N djp
-ad

Eg

end switch

sat(¥) == S;
Sat(¥):={qeS|ael(q)};
Sat(¥) := Sat(ay) n Sat(a,);

Sat(\¥) = S\ Sat(a);
determine Sat;7; (-¢) by means of an LTL model checker;
Sat(‘P) =5\ SGTLTL(ﬁQD)

AP := AP u {ay }; {introduce fresh atomic proposition}
replace ¥ with ay
forall g € Sat(¥) do L(q) :=L(q) u {ay }; od

end for
end for
return | ¢ Sat(®)

Time complexity

For transition system TS with N states and M transitions,
CTL* formula @, the CTL* model-checking problem TS £ ®
can be determined in time O((N+M)-2/°0).

the CTL* model-checking problem is PSPACE-complete

Bisimulation

Implementation relations

» A binary relation on transition systems
» when does a transition systems correctly implement another?
» Important for system synthesis

» stepwise refinement of a system specification TS into an
“implementation” TS’

» Important for system analysis

» use the implementation relation as a means for abstraction
» replace TS & ¢ by TS' = ¢ where | TS'| < | TS| such that:

TSEiffTS =9 or TS'E¢ = TSk ¢

= Focus on state-based bisimulation and simulation

» logical characterization: which logical formulas are preserved
by bisimulation?

Bisimulation equivalence

Let TS; = (Si, Act, —, 1, AP, L), i=1, 2, be transition systems
A bisimulation for (TS, TS;) is a binary relation R ¢ S; x S, such
that:

1. Vs el 3s, el (51,52) € R and Vs elh3dsy el (s1,5)€R
2. for all states sy € Sy, 55 € S; with (s1,52) € R it holds:
2.1 L1 (51) = Lz(Sz)
2.2 if s} € Post(sy) then there exists s} € Post(s;) with (s7,s5) € R

2.3 if s € Post(sy) then there exists s} € Post(s1) with (s7,55) € R

TS; and TS; are bisimilar, denoted TS; ~ TS, if there exists a bisimulation for
(751, 7S2)

Bisimulation equivalence

and

a1

a2

a1

92

q,

can be completed to

can be completed to

a1
R

q2

a1
R

92

Example (1)

{ beer} { sprite }

R = {(So,to), (S1,t1), (Sz,tz), (52,t3), (53,t4)}

is a bisimulation for (TS;, TS,) where AP = { pay, beer, sprite }

Example (2)

{ sprite } { beer} { sprite }

TS, ¢ TS5 for AP = { pay, beer, sprite }

But: { (S0, Uo), (51,u1), (51,U2), (52,U3), (52, Ua), (53, U3), (53,Us) }

is a bisimulation for (TSy, TSs) for AP = { pay, drink }

~ is an equivalence

For any transition systems TS, TSq, TS, and TS3 over AP:
TS ~ TS (reflexivity)
TS ~ TS, implies TS, ~ TS (symmetry)
TSy ~ TSz and TS, ~ TS3 implies TSy ~ TS3 (transitivity)

20

Bisimulation on paths

Whenever we have:

So
R
fo

this can be completed to

So
R

to

— S — S2
R R

53

53

t3

proof: by induction on index i of state s;

21

Bisimulation vs. trace equivalence

TS1 ~ TS, implies Traces(TSy) = Traces(TS,)

bisimilar transition systems thus satisfy the same LT properties!

22

Bisimulation on states

R ¢ Sx Sisabisimulation on TS if for any (g1, g2) € R:
> L(g1) = L(g2)
> if g} € Post(g1) then there exists an g5, € Post(q,) with (g},G5) € R
> if g} € Post(g,) then there exists an g} € Post(q,) with (g},q5) € R

g1 and g, are bisimilar, g1 ~rs g2, if (g1,g2) € R for some bisimulation R for TS

a1 ~rs g2 ifandonlyif TS, ~ TS,

23

Coarsest bisimulation

~7s is an equivalence and the coarsest bisimulation for TS

24

Quotient transition system

For TS = (S, Act, >, 1,AP, L) and bisimulation ~5; € S x Son TS let
TS/~ = (S, {1},=",I',AP,l"), the quotient of TS under ~

where
» §"=5/~={[s]~|seS}with[s]. = {s'eS|s~ys}
» -’ is defined by: ﬁ
> I={[s]-]sel}
> L'([s].) = L(s)

25

The Bakery algorithm

Py

[loop forever do

noncritical

m: yii=y2+1

await (y, =0 Vv y; <y>)
c1: critical

y1:=0

Py

loop forever do
noncritical
Mmoo Y=y 4l
await (y; =0 Vv y, <y1)
C critical
y2:=0

26

Example path fragment

process P,

process P, |

=

<

, | effect

m

G
m

n;
n;

GQ

wwwwo=—=—= =0

A ONMNNMNDNMNNNOO

P, requests access to critical section
P, requests access to critical section
P, enters the critical section
P, leaves the critical section
P; requests access to critical section
P, enters the critical section
P, leaves the critical section
P, requests access to critical section
P, enters the critical section

27

Data abstraction

Function f maps a reachable state of TS onto an abstract one in TS9%;

Lets = (1,02, y1 = by, ¥y, = by) be a state of TSy with ¢; € { n;, w;, ¢; } and
b,'EIN
Then:
(€1,02,y1 =0,y2=0) ifb;=b,=0
(€1,02,y1=0,y, >0) ifby=0andb,>0
f(s) =1 (1,02,y1>0,y,=0) ifby>0andb,=0
(61, 42,y1 > y2 > 0) ifby >by,>0
(61,£2,y2 > Y1 >0) ifb2>b1 >0

R ={(sf(s)) |seS}isabisimulation for (TS, TSa2;

for any subset of AP = { noncrit;, wait;, crit; | i = 1,2}

Bisimulation quotient

w1 Wy
Y2>y1>0

wi G
V1>y2>0

aw,
y2>51>0

29

TSGor = TSgak/ ~ for AP={crity,crit, }

Remarks

» In this example, data abstraction yields a bisimulation relation
» (typically, only a simulation relation is obtained, more later)
> TSEP = g with, e.g.,:
» O(=crity v —crit;) and
(oo waity = oocrity) A (OO wait, = OOcrit,)

> Since TSE2% ~ TSpq, it follows TSgax F ¢
Note: Traces(TS425) = Traces(TSpax)

v

30

CTL* equivalence
States g1 and g5 in TS (over AP) are CTL*-equivalent:
G1 =+ G2 ifandonlyif (g1 = @ iff g = @)
for all CTL* state formulas over AP

TS1 = TS, ifandonlyif (TS; E @ iff TS; = @)

for any sublogic of CTL*, logical equivalence is defined analogously

31

Bisimulation vs. CTL* and CTL equivalence

Let TS be a finite state graph and s, s’ states in TS

The following statements are equivalent:

(1) s ~ s

(2) sands’ are CTL-equivalent,i.e, s =, s

(3) sand s’ are CTL*-equivalent, i.e., s =cr;+

thisis proveninthreesteps:i=cy € ~ S =+ S =1

important: equivalence is also obtained for any sub-logic containing -, A and X

32

The importance of this result

v

CTL and CTL* equivalence coincide

» despite the fact that CTL* is more expressive than CTL
» Bisimilar transition systems preserve the same CTL* formulas
» and thus the same LTL formulas (and LT properties)

» Non-bisimilarity can be shown by a single CTL (or CTL*)
formula

» TS; = ® and TS; # @ implies TS; 4 TS,
» You even do not need to use an until-operator!
» To check TS E @, it suffices to check TS/ ~= @

33

