Verification

Lecture 17

Bernd Finkbeiner

Plan for today

- ▶ CTL*
- Bisimulation

REVIEW: LTL and CTL are incomparable

- Some LTL-formulas cannot be expressed in CTL, e.g.,
 - ▶ FGa
 - $F(a \wedge Xa)$
- Some CTL-formulas cannot be expressed in LTL, e.g.,
 - AF AG a
 - ▶ AF (a ∧ AX a)
 - AG EF a
- ⇒ Cannot be expressed = there does not exist an equivalent formula

Syntax of CTL*

CTL* state-formulas are formed according to:

$$\Phi ::= \text{true} \mid a \mid \Phi_1 \wedge \Phi_2 \mid \neg \Phi \mid \mathsf{E} \varphi$$

where $a \in AP$ and φ is a path-formula

CTL* path-formulas are formed according to the grammar:

$$\varphi ::= \Phi \mid \varphi_1 \land \varphi_2 \mid \neg \varphi \mid X \varphi \mid \varphi_1 \cup \varphi_2$$

where Φ is a state-formula, and φ , φ_1 and φ_2 are path-formulas

in CTL*: A
$$\varphi = \neg E \neg \varphi$$
.

4

CTL* semantics

```
s \vDash a iff a \in L(s)

s \vDash \neg \Phi iff not s \vDash \Phi

s \vDash \Phi \land \Psi iff (s \vDash \Phi) and (s \vDash \Psi)

s \vDash E \varphi iff \pi \vDash \varphi for some \pi \in Paths(s)
```

```
\pi \vDash \Phi \qquad \text{iff} \qquad \pi[0] \vDash \Phi
\pi \vDash \varphi_1 \land \varphi_2 \qquad \text{iff} \qquad \pi \vDash \varphi_1 \text{ and } \pi \vDash \varphi_2
\pi \vDash \neg \varphi \qquad \text{iff} \qquad \text{not } \pi \vDash \varphi
\pi \vDash \mathsf{X} \Phi \qquad \text{iff} \qquad \pi[1..] \vDash \Phi
\pi \vDash \Phi \cup \Psi \qquad \text{iff} \qquad \exists j \ge 0. \ (\pi[j..] \vDash \Psi \land (\forall \ 0 \le k < j. \ \pi[k..] \vDash \Phi))
```

Transition system semantics

For CTL*-state-formula Φ , the <u>satisfaction set</u> $Sat(\Phi)$ is defined by:

$$Sat(\Phi) = \{ q \in S \mid q \models \Phi \}$$

▶ TS satisfies CTL*-formula Φ iff Φ holds in all its initial states:

$$TS \models \Phi$$
 if and only if $\forall q \in I. q_0 \models \Phi$

this is exactly as for CTL

Embedding of LTL in CTL*

For LTL formula φ and *TS* without terminal states (both over *AP*) and for each $q \in S$:

$$q \models \varphi$$
 if and only if $q \models A \varphi$
LTL semantics CTL* semantics

In particular:

$$TS \models_{LTL} \varphi$$
 if and only if $TS \models_{CTL*} A \varphi$

7

CTL* is more expressive than LTL and CTL

For the CTL*-formula over
$$AP = \{a, b\}$$
:

$$\Phi = (\mathsf{AFG}\,a) \vee (\mathsf{AGEF}\,b)$$

there does <u>not</u> exist any equivalent LTL or CTL formula

CTL⁺ state-formulas are formed according to:

$$\Phi ::= \mathsf{true} \; \middle| \; a \; \middle| \; \Phi_1 \; \land \; \Phi_2 \; \middle| \; \neg \Phi \; \middle| \; \mathsf{E} \, \varphi \; \middle| \; \mathsf{A} \, \varphi$$

where $a \in AP$ and φ is a path-formula

CTL⁺ path-formulas are formed according to the grammar:

$$\varphi ::= \varphi_1 \wedge \varphi_2 \mid \neg \varphi \mid X \Phi \mid \Phi_1 \cup \Phi_2$$

where Φ, Φ_1, Φ_2 are state-formulas, and φ, φ_1 and φ_2 are path-formulas

9

CTL⁺ is as expressive as CTL

For example:
$$\underbrace{\mathbb{E}(\mathsf{F}a \wedge \mathsf{F}b)}_{\mathsf{CTL}^+ \mathsf{formula}} \equiv \underbrace{\mathbb{E}\mathsf{F}(a \wedge \mathsf{EF}b) \vee \mathsf{EF}(b \wedge \mathsf{EF}a)}_{\mathsf{CTL} \mathsf{formula}}$$

Some rules for transforming CTL⁺ formulas into equivalent CTL formulas:

adding boolean combinations of path formulas to CTL does not change its expressiveness

but CTL⁺ formulas can be much shorter than shortest equivalent CTL formulas

CTL* model checking

- Adopt the same bottom-up procedure as for (fair) CTL
- Replace each maximal proper state subformula Ψ by new proposition a_{Ψ}
 - $a_{\Psi} \in L(s)$ if and only if $s \in Sat(\Psi)$
- Most interesting case: formulas of the form E φ
 - by replacing all maximal state sub-formulas in φ , an LTL-formula results!

►
$$q \models \mathsf{E}\,\varphi$$
 iff $q \not\models \mathsf{A}\,\neg\varphi$ iff $q \not\models \neg\varphi$

CTL* semantics

► $Sat_{CTL*}(\mathsf{E}\,\varphi) = S \setminus Sat_{LTL}(\neg\varphi)$

CTL* model-checking algorithm

```
for all i \leq |\Phi| do
   for all \Psi \in Sub(\Phi) with |\Psi| = i do
      switch(\Psi):
        true : Sat(\Psi) := S;
           : Sat(\Psi) := \{ q \in S \mid a \in L(q) \};
        a_1 \wedge a_2 : Sat(\Psi) := Sat(a_1) \cap Sat(a_2);
        \neg a : Sat(\Psi) := S \setminus Sat(a);
        E \varphi : determine Sat_{LTL}(\neg \varphi) by means of an LTL model checker;
                     : Sat(\Psi) := S \setminus Sat_{ITI}(\neg \varphi)
      end switch
      AP := AP \cup \{a_{\Psi}\}; {introduce fresh atomic proposition}
      replace \Psi with a_{\Psi}
      forall q \in Sat(\Psi) do L(q) := L(q) \cup \{a_{\Psi}\}; od
   end for
end for
return I \subseteq Sat(\Phi)
```

Time complexity

For transition system *TS* with *N* states and *M* transitions, CTL* formula Φ , the CTL* model-checking problem $TS \models \Phi$ can be determined in time $\mathcal{O}((N+M)\cdot 2^{|\Phi|})$.

the CTL* model-checking problem is PSPACE-complete

Bisimulation

Implementation relations

- A binary relation on transition systems
 - when does a transition systems correctly implement another?
- Important for system synthesis
 - stepwise <u>refinement</u> of a system specification TS into an "implementation" TS'
- Important for system analysis
 - use the implementation relation as a means for abstraction
 - ▶ replace $TS \models \varphi$ by $TS' \models \varphi$ where $|TS'| \ll |TS|$ such that:

$$TS \vDash \varphi \text{ iff } TS' \vDash \varphi \quad \text{or} \quad TS' \vDash \varphi \implies TS \vDash \varphi$$

- ⇒ Focus on state-based bisimulation and simulation
 - logical characterization: which logical formulas are preserved by bisimulation?

Bisimulation equivalence

Let $TS_i = (S_i, Act_i, \rightarrow_i, I_i, AP, L_i)$, i=1, 2, be transition systems A <u>bisimulation</u> for (TS_1, TS_2) is a binary relation $\mathcal{R} \subseteq S_1 \times S_2$ such that:

- 1. $\forall s_1 \in I_1 \exists s_2 \in I_2$. $(s_1, s_2) \in \mathcal{R}$ and $\forall s_2 \in I_2 \exists s_1 \in I_1$. $(s_1, s_2) \in \mathcal{R}$
- 2. for all states $s_1 \in S_1$, $s_2 \in S_2$ with $(s_1, s_2) \in \mathcal{R}$ it holds:
 - 2.1 $L_1(s_1) = L_2(s_2)$
 - 2.2 if $s_1' \in Post(s_1)$ then there exists $s_2' \in Post(s_2)$ with $(s_1', s_2') \in \mathcal{R}$
 - 2.3 if $s_2' \in Post(s_2)$ then there exists $s_1' \in Post(s_1)$ with $(s_1', s_2') \in \mathcal{R}$

 TS_1 and TS_2 are bisimilar, denoted $TS_1 \sim TS_2$, if there exists a bisimulation for (TS_1, TS_2)

Bisimulation equivalence

	$q_1 \rightarrow q'_1$ \mathcal{R} q_2	can be completed to	\mathcal{R}	\rightarrow	\mathcal{R}
and					
	9 1		<i>q</i> ₁	\rightarrow	q_1'
	${\cal R}$	can be completed to	${\cal R}$		${\cal R}$
	$q_2 \rightarrow q_2'$		q_2	\rightarrow	q_2'

Example (1)

$$\mathcal{R} = \{(s_0, t_0), (s_1, t_1), (s_2, t_2), (s_2, t_3), (s_3, t_4)\}$$

is a bisimulation for (TS_1, TS_2) where $AP = \{pay, beer, sprite\}$

Example (2)

$$TS_1 \not\uparrow TS_3$$
 for $AP = \{ pay, beer, sprite \}$

But:
$$\{(s_0, u_0), (s_1, u_1), (s_1, u_2), (s_2, u_3), (s_2, u_4), (s_3, u_3), (s_3, u_4)\}$$

is a bisimulation for (TS_1, TS_3) for $AP = \{pay, drink\}$

~ is an equivalence

For any transition systems TS, TS_1 , TS_2 and TS_3 over AP:

TS ∼ *TS* (reflexivity)

 $TS_1 \sim TS_2$ implies $TS_2 \sim TS_1$ (symmetry)

 $TS_1 \sim TS_2$ and $TS_2 \sim TS_3$ implies $TS_1 \sim TS_3$ (transitivity)

Bisimulation on paths

Whenever we have:

this can be completed to

proof: by induction on index i of state s_i

Bisimulation vs. trace equivalence

$$TS_1 \sim TS_2$$
 implies $Traces(TS_1) = Traces(TS_2)$

bisimilar transition systems thus satisfy the same LT properties!

Bisimulation on states

 $\mathcal{R} \subseteq S \times S$ is a <u>bisimulation</u> on *TS* if for any $(q_1, q_2) \in \mathcal{R}$:

- $L(q_1) = L(q_2)$
- if $q_1' \in Post(q_1)$ then there exists an $q_2' \in Post(q_2)$ with $(q_1', q_2') \in \mathcal{R}$
- if $q_2' \in Post(q_2)$ then there exists an $q_1' \in Post(q_1)$ with $(q_1', q_2') \in \mathcal{R}$

 q_1 and q_2 are <u>bisimilar</u>, $q_1 \sim_{TS} q_2$, if $(q_1, q_2) \in \mathcal{R}$ for some bisimulation \mathcal{R} for TS

$$q_1 \sim_{TS} q_2$$
 if and only if $TS_{q_1} \sim TS_{q_2}$

Coarsest bisimulation

 $|_{\sim_{TS}}$ is an equivalence and the coarsest bisimulation for TS

Quotient transition system

For $TS = (S, Act, \rightarrow, I, AP, L)$ and bisimulation $\sim_{TS} \subseteq S \times S$ on TS let $TS/\sim_{TS} = (S', \{\tau\}, \rightarrow', I', AP, L')$, the quotient of TS under \sim_{TS}

where

- $S' = S/\sim_{TS} = \{ [s]_{\sim} \mid s \in S \} \text{ with } [s]_{\sim} = \{ s' \in S \mid s \sim_{TS} s' \}$
- ► →' is defined by: $\frac{s \xrightarrow{\alpha} s'}{[s]_{\sim} \xrightarrow{\tau'} [s']_{\sim}}$
- $\mid I' = \{ [s]_{\sim} \mid s \in I \}$
- $L'([s]_{\sim}) = L(s)$

The Bakery algorithm

$$P_1 :: \begin{bmatrix} \textbf{loop forever do} \\ & \textbf{noncritical} \\ n_1 : & y_1 := y_2 + 1 \\ w_1 : & \textbf{await} (y_2 = 0 \lor y_1 \lessdot y_2) \\ \textbf{c}_1 : & \textbf{critical} \\ & y_1 := 0 \end{bmatrix}$$

```
P_1 :: \left[ \begin{array}{c} \textbf{loop forever do} \\ \textbf{noncritical} \\ \textbf{n}_1 : \quad y_1 := y_2 + 1 \\ \textbf{w}_1 : \quad \textbf{await} \ (y_2 = 0 \ \lor \ y_1 < y_2 \ ) \\ \textbf{c}_1 : \quad \textbf{critical} \\ \textbf{y}_1 := 0 \end{array} \right] \quad \| \quad P_2 :: \left[ \begin{array}{c} \textbf{loop forever do} \\ \textbf{noncritical} \\ \textbf{n}_1 : \quad y_2 := y_1 + 1 \\ \textbf{w}_1 : \quad \textbf{await} \ (y_1 = 0 \ \lor \ y_2 < y_1 \ ) \\ \textbf{c}_1 : \quad \textbf{critical} \\ \textbf{y}_2 := 0 \end{array} \right]
```

Example path fragment

process P ₁	process P ₂	<i>y</i> ₁	<i>y</i> ₂	effect
n_1	n ₂	0	0	P ₁ requests access to critical section
w_1	n_2	1	0	P ₂ requests access to critical section
w_1	W_2	1	2	P ₁ enters the critical section
<i>c</i> ₁	W_2	1	2	P ₁ leaves the critical section
n_1	W_2	0	2	P_1 requests access to critical section
w_1	W_2	3	2	P ₂ enters the critical section
w_1	<i>c</i> ₂	3	2	P ₂ leaves the critical section
w_1	n_2	3	0	P ₂ requests access to critical section
w_1	W_2	3	4	P ₁ enters the critical section
•••				

Data abstraction

Function f maps a reachable state of TS_{Bak} onto an abstract one in TS_{Bak}^{abs} Let $s = \langle \ell_1, \ell_2, y_1 = b_1, y_2 = b_2 \rangle$ be a state of TS_{Bak} with $\ell_i \in \{ n_i, w_i, c_i \}$ and $b_i \in \mathbb{N}$ Then:

$$f(s) = \begin{cases} \langle \ell_1, \ell_2, y_1 = 0, y_2 = 0 \rangle & \text{if } b_1 = b_2 = 0 \\ \langle \ell_1, \ell_2, y_1 = 0, y_2 > 0 \rangle & \text{if } b_1 = 0 \text{ and } b_2 > 0 \\ \langle \ell_1, \ell_2, y_1 > 0, y_2 = 0 \rangle & \text{if } b_1 > 0 \text{ and } b_2 = 0 \\ \langle \ell_1, \ell_2, y_1 > y_2 > 0 \rangle & \text{if } b_1 > b_2 > 0 \\ \langle \ell_1, \ell_2, y_2 > y_1 > 0 \rangle & \text{if } b_2 > b_1 > 0 \end{cases}$$

$$\mathcal{R} = \{ (s, f(s)) \mid s \in S \}$$
 is a bisimulation for $(TS_{Bak}, TS_{Bak}^{abs})$

for any subset of $AP = \{ noncrit_i, wait_i, crit_i \mid i = 1, 2 \}$

Bisimulation quotient

 $TS_{Bak}^{abs} = TS_{Bak}/\sim \text{ for } AP = \{ crit_1, crit_2 \}$

Remarks

- In this example, data abstraction yields a bisimulation relation
 - (typically, only a simulation relation is obtained, more later)
- ► $TS_{Bak}^{abs} \models \varphi$ with, e.g.,:
 - ► $\Box(\neg crit_1 \lor \neg crit_2)$ and $(\Box \diamondsuit wait_1 \Rightarrow \Box \diamondsuit crit_1) \land (\Box \diamondsuit wait_2 \Rightarrow \Box \diamondsuit crit_2)$
- Since $TS_{Bak}^{abs} \sim TS_{Bak}$, it follows $TS_{Bak} \models \varphi$
- Note: $Traces(TS_{Bak}^{abs}) = Traces(TS_{Bak})$

CTL* equivalence

States q_1 and q_2 in TS (over AP) are CTL*-equivalent:

$$q_1 \equiv_{CTL^*} q_2$$
 if and only if $(q_1 \models \Phi \text{ iff } q_2 \models \Phi)$
for all CTL* state formulas over AP

$$TS_1 \equiv_{CTL^*} TS_2$$
 if and only if $(TS_1 \models \Phi \text{ iff } TS_2 \models \Phi)$

for any sublogic of CTL*, logical equivalence is defined analogously

Bisimulation vs. CTL* and CTL equivalence

Let TS be a finite state graph and s, s' states in TS

The following statements are equivalent:

(1)
$$s \sim_{TS} s'$$

- (2) s and s' are CTL-equivalent, i.e., $s \equiv_{CTL} s'$
- (3) s and s' are CTL*-equivalent, i.e., $s \equiv_{CTL^*} s'$

this is proven in three steps: $\equiv_{CTL} \subseteq \sim \subseteq \equiv_{CTL^*} \subseteq \equiv_{CTL}$

important: equivalence is also obtained for any sub-logic containing \neg , \land and X

The importance of this result

- CTL and CTL* equivalence coincide
 - despite the fact that CTL* is more expressive than CTL
- Bisimilar transition systems preserve the same CTL* formulas
 - and thus the same LTL formulas (and LT properties)
- Non-bisimilarity can be shown by a single CTL (or CTL*) formula
 - ► $TS_1 \models \Phi$ and $TS_2 \not\models \Phi$ implies $TS_1 \not\models TS_2$
- You even do not need to use an until-operator!
- ▶ To check $TS \models \Phi$, it suffices to check $TS / \sim \models \Phi$