Verification

Lecture 18

Bernd Finkbeiner

COlm UNIVERSITAT
"“"Illl"“" DES

I sAARLANDES

Plan for today

» CTL”
» Bisimulation
» Computing bisimulation quotients

» Simulation

Bisimulation vs. CTL* and CTL equivalence

Let TS be a finite state graph and s, s’ states in TS

The following statements are equivalent:

(1) s ~ s

(2) sands’ are CTL-equivalent,i.e, s =, s

(3) sand s’ are CTL*-equivalent, i.e., s =cr;+

thisis proveninthreesteps:i=cy € ~ S =+ S =1

important: equivalence is also obtained for any sub-logic containing -, A and X

The importance of this result

v

CTL and CTL* equivalence coincide

» despite the fact that CTL* is more expressive than CTL
» Bisimilar transition systems preserve the same CTL* formulas
» and thus the same LTL formulas (and LT properties)

» Non-bisimilarity can be shown by a single CTL (or CTL*)
formula

» TS; = ® and TS; # @ implies TS; 4 TS,
» You even do not need to use an until-operator!
» To check TS E @, it suffices to check TS/ ~= ©

Computing bisimulation quotients

Computing bisimulation quotients

A partition IT = {By, ..., B¢} of Sis a set of nonempty (B; + @) and
pairwise disjoint blocks B; that decompose S (S = i1« Bj).

A partition defines an equivalence relation ~

((9,q9")e ~<= 3IB; € 11.q,q’ € By).

Likewise, an equivalence relation ~ defines a partition IT = §/~.
A nonempty union C = ¥ B; of blocks is called a superblock.

A block B; of a partition IT is called stable w.r.t. a set B if either
Bi n Pre(B) = @, or B; € Pre(B).

(Pre(B) = {q € S| Post(q) N B # @&})
A partition IT is called stable w.r.t. a set B if all blocks of IT are.

Lemma 1. A partition IT with consistently labeled blocks is stable
with respect to all of its (super)blocks if, and only if, it defines a
bisimulation relation.

Partition refinement

For two partitions IT = {B1,..., B¢} and IT" = {B;,..., Bj} of S, we
say that IT is finer than I1” iff every block of IT" is a superblock of II.

For a given partition IT = {By, ..., Bk}, we call a (super)block C of I1
a splitter of a block B; / the partition IT if B; / IT is not stable w.r.t. C.

Refine(B;, C) denotes {B;} if B; is stable w.r.t. C, and
{BinPre(C),B;\ Pre(C)} if Cis a splitter of C.

Refine(I1, C) = ;-1 «Refine(B;, C).

.....

Lemma 2. Refine(I1, C) is finer than II.

An algorithm for bisimulation quotienting

Input: Transition system (S, Act, -, 1, AP, L)
Output: Bisimulation quotient

1. T =S/~ap (G,9")e~ap = L(q) =L(q")

2. while some block B € IT is a splitter of IT loop invariant: IT is coarser
2.1 pick a block B that is a splitter of IT than S/~7s
2.2 II = Refine(I1, B)

3. return II

Example

1. I =5/~ap (9.9")e~pp = L(q) = L(q")
2. while some block B € IT is a splitter of IT loop invariant: IT is coarser than S/~7s
2.1 pick a block B that is a splitter of IT
2.2 TI = Refine(Il, B)
3. returnI1

AN
NV

Example

1. T =S/~ap (9.9")e~pp < L(a) = L(q")
2. while some block B € IT is a splitter of IT loop invariant: IT is coarser than S/~7s
2.1 pick a block B that is a splitter of IT
2.2 TI = Refine(Il, B)
3. returnI1

Example

1. T =S/~ap (9.9")e~pp < L(a) = L(q")
2. while some block B € IT is a splitter of IT loop invariant: IT is coarser than S/~7s
2.1 pick a block B that is a splitter of IT
2.2 TI = Refine(Il, B)
3. returnI1

Example

1. T =S/~ap (9.9")e~pp < L(a) = L(q")
2. while some block B € IT is a splitter of IT loop invariant: IT is coarser than S/~7s
2.1 pick a block B that is a splitter of IT
2.2 TI = Refine(Il, B)
3. returnI1

NV

Example
1. =S/~
2. while some block B € IT is a splitter of IT
2.1 pick a block B that is a splitter of IT
2.2 TI = Refine(Il, B)
3. return Il

Vi

(9.9 Ye~pp = L(a) = L(q")

loop invariant: IT is coarser than S/~7g

Correctness and termination

1. =S/~ (a.9")e~ap = L(q) = L(q")
2. while some block B € IT is a splitter of IT loop invariant: I is coarser than S/~7s
2.1 pick a block B that is a splitter of IT
2.2 II = Refine(I1, B)
3. return II

Lemma 3. The algorithm terminates.

Lemma 4. The loop invariant holds initially.

Lemma 5. The loop invariant is preserved.

Theorem. The algorithm returns the quotient S/~7s of the coarsest
bisimulation ~7s.

Simulation

Simulation order

Let TS; = (S,',ACT,', —i, 1;, AP, L,‘) ,i=1,2,
be two transition systems over AP.

A simulation for (TSq,TS;) is a binary relation R € S; x S, such that:

1. Vg1 ehh3g2€h.(q1,92) €R
2. forall (g1,92) € R it holds:
2.1 Li(qq) = La(q2)

2.2 if g € Post(qy)
then there exists g5 € Post(q,) with (g7,g5) € R

TS, < TS, iff there exists a simulation R for (757, TS,)

Simulation order

/

a1 - q
R
a2

but not necessarily:

a1
R

/

@ - q

can be completed to

can be completed to

a1

q2

a1

92

The use of simulations

» As a notion of correctness for refinement

>

>

TS < TS' whenever TS is obtained by deleting transitions from
TS’
e.g., nondeterminism is resolved by choosing one alternative

» As a notion of correctness for abstraction

>

abstract from concrete values of certain program or control
variables

use instead abstract values or ignore their value completely
used in e.g., software model checking of C and Java
formalized by an abstraction function f that maps s onto its
abstraction f(s)

Abstraction function

» f: S — Sisan abstraction function if
f(a)=f(q) = L(q)=L(a")
» Sis a set of concrete states and S a set of abstract states, i.e.
Sl<Is
» Abstraction functions are useful for:
» data abstraction: abstract from values of program or control
variables

f : concrete data domain — abstract data domain

» predicate abstraction: use predicates over the program
variables

f : state — valuations of the predicates

» localization reduction: partition program variables into visible
and invisible

f : all variables — visible variables
20

Abstract transition system

For TS = (S, Act, >, 1, AP, L) and abstraction function f : S — S let:

TSf = (f,Act, —f,1f, AP, L), the abstraction of TS under f

where
a,
» —¢ is defined by: S—S,
f(s) S f(s)

>l ={f(s)[sel}
» Le(f(s)) = L(s); for s e S\ £(S), labeling is undefined

’ R ={(s,f(s))|seS}isasimulation for (TS, TSf) ‘

21

Simulation order on paths

Whenever we have:
So — S — S
R
fo

this can be completed to
So — ST — S5
R R R

o - 61 — D

the proof of this fact is by induction on the length of the path

53

53
R
t3

22

Simulation is a pre-order

<is a preorder, i.e., reflexive and transitive

23

Simulation equivalence

TSy and TS, are simulation equivalent, denoted TS ~ TS,,
if T51 < T52 and T52 < T51

24

Similar but not bisimilar

ogo!
ol

TSpere = TSright but TSier # TSright

25

Simulation order on states

A simulation for TS = (S, Act, -, 1, AP, L) is a binary relation R < Sx S
such that for all (g1,92) € R:

1. L(g1) = L(q2)
2. if g} € Post(q)
then there exists an g5 € Post(g,) with (q7,95) € R

g1 is simulated by g5, denoted by g1 <15 g2,
if there exists a simulation R for TSwith (g1,92) € R

a1 <15 q2 ifandonlyif TS; < TSq,

g1 ~ g2 ifandonlyif g <5 g2and gy < gy

26

Simulation quotient

For TS = (S, Act, —,1,AP, L) and simulation equivalence ~ ¢ S x S let
TS/~= (§',{7},-',I',AP,L"), the quotient of TS under =~

where
» §'=5/~= {[s]~|seS}tand/ ={[s].|sel}

s

» —'is defined by: __
v 1/([s]) = L(s) [s]= 5" [5]-

lemma: TS ~ TS/~ ; proof not straightforward!

27

