
Verification

Lecture 19

Bernd Finkbeiner



Plan for today

▸ Simulation equivalence

2



REVIEW: Bisimulation

Let TSi = (Si ,Acti ,→i , Ii ,AP, Li), i=1, 2, be transition systems

A bisimulation for (TS1, TS2) is a binary relationR ⊆ S1 × S2 such

that:

1. ∀s1 ∈ I1 ∃s2 ∈ I2 . (s1 , s2) ∈ R and ∀s2 ∈ I2 ∃s1 ∈ I1 . (s1 , s2) ∈ R

2. for all states s1 ∈ S1, s2 ∈ S2 with (s1 , s2) ∈ R it holds:

2.1 L1(s1) = L2(s2)

2.2 if s′1 ∈ Post(s1) then there exists s′2 ∈ Post(s2)with (s
′

1 , s
′

2) ∈R

2.3 if s′2 ∈ Post(s2) then there exists s′1 ∈ Post(s1)with (s
′

1 , s
′

2) ∈R

TS1 and TS2 are bisimilar, denoted TS1 ∼ TS2, if there exists a bisimulation for

(TS1 , TS2)

3



REVIEW: Bisimulation on states

R ⊆ S × S is a bisimulation on TS if for any (q1 , q2) ∈R:

▸ L(q1) = L(q2)

▸ if q′1 ∈ Post(q1) then there exists an q′2 ∈ Post(q2)with (q
′

1 , q
′

2) ∈R

▸ if q′2 ∈ Post(q2) then there exists an q′1 ∈ Post(q1)with (q
′

1 , q
′

2) ∈R

q1 and q2 are bisimilar, q1 ∼TS q2, if (q1 , q2) ∈R for some bisimulationR for TS

q1 ∼TS q2 if and only if TSq1 ∼ TSq2

4



REVIEW: Bisimulation vs. CTL∗ and CTL equivalence

Let TS be a finite state graph and s, s′ states in TS

The following statements are equivalent:

(1) s ∼TS s′

(2) s and s′ are CTL-equivalent, i.e., s ≡CTL s
′

(3) s and s′ are CTL∗-equivalent, i.e., s ≡CTL∗ s
′

this is proven in three steps: ≡CTL ⊆ ∼ ⊆ ≡CTL∗ ⊆ ≡CTL

important: equivalence is also obtained for any sub-logic containing ¬, ∧ and X

5



REVIEW: Simulation order

Let TSi = (Si ,Acti ,→i , Ii ,AP, Li) , i=1, 2,
be two transition systems over AP.

A simulation for (TS1, TS2) is a binary relationR ⊆ S1 × S2 such that:

1. ∀q1 ∈ I1 ∃q2 ∈ I2. (q1, q2) ∈R

2. for all (q1, q2) ∈R it holds:

2.1 L1(q1) = L2(q2)

2.2 if q′1 ∈ Post(q1)
then there exists q′2 ∈ Post(q2)with (q

′

1 , q
′

2) ∈R

TS1 ⪯ TS2 iff there exists a simulationR for (TS1 , TS2)

6



REVIEW: Similar but not bisimilar

s1 {a}

s2 ∅ s3 ∅

s4 {b} s5 { c }

t1 {a}

t2 ∅

t3 {b} t4 { c }

TSleft ≃ TSright but TSleft /∼ TSright

7



Simulation quotient

For TS = (S,Act,→, I,AP, L) and simulation equivalence ≃ ⊆ S × S let

TS/≃ = (S′, { τ },→′, I′,AP, L′), the quotient of TS under ≃

where

▸ S′ = S/≃= { [s]≃ ∣ s ∈ S} and I′ = { [s]≃ ∣ s ∈ I }
▸ →′ is defined by:

s α−−→ s′

[s]≃ τ−−→′ [s′]≃
▸ L′([s]≃) = L(s)

lemma: TS ≃ TS/≃ ; proof not straightforward!

8



Universal fragment of CTL∗

∀CTL∗ state-formulas are formed according to:

Φ ∶∶= true ∣ false ∣ a ∣ ¬a ∣ Φ1 ∧ Φ2 ∣ Φ1 ∨ Φ2 ∣ Aφ

where a ∈ AP and φ is a path-formula

∀CTL∗ path-formulas are formed according to:

φ ∶∶= Φ ∣ Xφ ∣ φ1 ∧ φ2 ∣ φ1 ∨ φ2 ∣ φ1Uφ2 ∣ φ1 Rφ2

whereΦ is a state-formula, and φ, φ1 and φ2 are path-formulas

9



Universal CTL∗ contains LTL

For every LTL formula there exists an equivalent ∀CTL∗ formula

Proof: Bring LTL formula into positive normal form (PNF).

10



Simulation order and ∀CTL∗

Let TS be a finite transition system (without terminal states) and q, q′ states in TS.

The following statements are equivalent:

(1) q ⪯TS q′

(2) for all ∀CTL∗-formulasΦ: q′ ⊧ Φ implies q ⊧ Φ

(3) for all ∀CTL-formulasΦ: q′ ⊧ Φ implies q ⊧ Φ

proof is carried out in three steps: (1) ⇒ (2) ⇒ (3) ⇒ (1)

11



Existential fragment of CTL∗

∃CTL∗ state-formulas are formed according to:

Φ ∶∶= true ∣ false ∣ a ∣ ¬a ∣ Φ1 ∧ Φ2 ∣ Φ1 ∨ Φ2 ∣ ∃φ

where a ∈ AP and φ is a path-formula

∃CTL∗ path-formulas are formed according to:

φ ∶∶= Φ ∣ Xφ ∣ φ1 ∧ φ2 ∣ φ1 ∨ φ2 ∣ φ1Uφ2 ∣ φ1 Rφ2

whereΦ is a state-formula, and φ, φ1 and φ2 are path-formulas

12



Simulation order and ∃CTL∗

Let TS be a finite transition system (without terminal states) and q, q′ states in TS.

The following statements are equivalent:

(1) q ⪯TS q′

(2) for all ∃CTL∗-formulasΦ: q ⊧ Φ implies q′ ⊧ Φ

(3) for all ∃CTL-formulasΦ: q ⊧ Φ implies q′ ⊧ Φ

13



≃, ∀CTL∗, and ∃CTL∗ equivalence

For finite transition system TSwithout terminal states:

≃TS = ≡∀CTL∗ = ≡∀CTL = ≡∃CTL∗ = ≡∃CTL

14



Simulation preorder checking

Require: finite transition system TS = (S,Act,→, I,AP, L) over AP
Ensure: simulation order ⪯TS

R ∶= { (q1 , q2) ∣ L(q1) = L(q2) };

whileR is not a simulation do

choose (q1 , q2) ∈R
such that (q1 , q

′

1) ∈ E, but for all q
′

2 with (q2 , q
′

2) ∈ E, (q
′

1 , q
′

2) /∈R;

R ∶=R∖ {(q1 , q2) }
end while

return R

The number of iterations is bounded from above by ∣S∣2, since:

S × S ⊇R0 ⫌R1 ⫌ R2 ⫌ . . . ⫌ Rn = ⪯

15



Checking trace equivalence

Let TS1 and TS2 be finite transition systems over AP. Then:

1. The problem whether

Tracesfin(TS1) = Tracesfin(TS2) is PSPACE-complete

2. The problem whether

Traces(TS1) = Traces(TS2) is PSPACE-complete

16



Overview implementation relations

bisimulation simulation trace

equivalence order equivalence

preservation of CTL∗ ∀CTL∗/∃CTL∗ LTL

temporal-logical CTL ∀CTL/∃CTL
properties

checking PTIME PTIME PSPACE-

equivalence complete

graph PTIME PTIME ---

minimization

17


