Verification

Lecture 2

Bernd Finkbeiner

ICdm UNIVERSITAT
“H"w"“" DES
UL SAARLANDES

Review: Model checking

requirements
Formalizing

property
specification

Modeling

Model Checking

violated +
counterexample

insufficient
memory

Review: Transition systems

A transition system TS is a tuple (S, Act, », 1, AP, L) where

» Sisaset of states

» Actis a set of actions

» —> C SxActx Sis atransition relation
» | c Sisasetof initial states

» APis a set of atomic propositions

» L:S>2%Pisa labeling function

Sand Act are either finite or countably infinite

Notation: s % s’ instead of (s, a,s") € —

Computation tree logic

modal logic over infinite trees [Clarke & Emerson 1981]

» Statements over states

» acAP atomic proposition

» ~®and® A ¥ negation and conjunction

» Eg there exists a path fulfilling ¢

» Ag all paths fulfill ¢
» Statements over paths

» XO the next state fulfills @

» OUVY @ holds until a ¥-state is reached

= note that Xand U alternate with A and E
» AXX® and AEX @ ¢ CTL, but AXAX ® and AXEX @ € CTL

Alternative syntax:E~ 3, A~ V, X~ O,G~0,F~ O,

Derived operators

potentially ®: EFO = E(trueU®)

inevitably @: AFO® = A(trueU)

potentially always ®: EG® = -AF-0

invariantly @: AGO = -EF-®

weak until: E(@WY) = -A((® A -¥)U(-D A -¥))
A(@OWY) = —E((® A -¥)U(-® A -¥))

the boolean connectives are derived as usual

Visualization of semantics

/Hﬁﬁﬁ (@5? ?4§}
el dedet dedn

EF red EGred E (yellow U red)

DAY IR aAy

\ \
$00Q Q %960 0 €06 o O

AF red AGred A (yellow U red)

Semantics of CTL state-formulas

Defined by a relation = such that

s = @ ifand only if formula ® holds in state s

sEa iff ael(s)
sE @ iff —(sE®)
SED AY ff (sE®) A (SEY)

seEg iff 7 = ¢ for some path 7 that starts in s

sEAQ iff m & ¢ forall paths 7 that startins

Semantics of CTL path-formulas

Defined by a relation & such that

m = ¢ if and only if path n satisfies ¢ ‘

TEXD iff [1] = @
TEOUY iff(3j>0.7[]]F ¥ A (VO<k<j.a[k] = D))

where 7[i] denotes the state s; in the path =

Transition system semantics

» For CTL-state-formula @, the satisfaction set Sat(®) is defined
by:
Sat(®) = {seS|s=D}

» TS satisfies CTL-formula @ iff ® holds in all its initial states:

TSE® ifandonlyif Vsgel.soE=®

» this is equivalent to / ¢ Sat(®)

» Note: Itis possible that both TS £ ® and TS # -®
» (because of several initial states, e.g. so £ EG® and s; # EG @)

CTL equivalence

CTL-formulas ® and ¥ (over AP) are equivalent, denoted ® = ¥
if and only if Sat(®) = Sat(\¥) for all transition systems TS over AP

o =¥ iff (TS=® ifandonlyif TSk VY)

Duality laws

AXD = —-EX-O
EX® = -AX-O
AF® = -EG-D
EF® = -AG-D
A(GUY) = —E((O A ~¥)W (-0 A —¥))

Expansion laws

A(OUY)
AF®
AG®

E(OUY)
EFO
EGD

¥ v (D AAXA(OUY))
® v AXAFD
® A AXAGOD

¥ v (O A EXE(OUWY))
® v EXEF®
® A EXEGD

Distributive laws

AG(® A Y¥) = AGD A AGY

EF(dV¥) = EFD v EFY

note that EG(® A ¥) # EGO A EGYandAF(® v ¥) # AF® v AFY

Existential normal form (ENF)

The set of CTL formulas in existential normal form (ENF) is given by:

® = true | a | @ A @, | -0 | EXO | E(01UD;) | EGO

For each CTL formula, there exists an equivalent CTL formula in ENF

AX D
A(DUY)

-EX-®
-E (—\\I”U(—!q) A —|\I")) A -EG-Y

Model checking CTL

» How to check whether state graph TS satisfies CTL formula ®?

>

>

>

convert the formula @ into the equivalent @ in ENF
compute recursively the set Sat(®) = {geS|qg= D}
TS E @ if and only if each initial state of TS belongs to Sat(®)

» Recursive bottom-up computation of Sat(®):

>

>

>

consider the parse-tree of ®

start to compute Sat(a;), for all leaves in the tree

then go one level up in the tree and determine Sat(-) for these
nodes

eg.: Sat(¥; A ¥y) = Sat(¥,) n Sat(¥,)
—_— —— ——

node at level / node at node at
level i—1 level j—1

then go one level up and determine Sat(-) of these nodes
and so on....... until the root is treated, i.e., Sat(®) is computed

Example

