
Verification

Lecture 2

Bernd Finkbeiner

Review: Model checking

satisfied

insufficient

memory

counterexample

system

violated +

Model Checking

requirements

Formalizing Modeling

systemmodel
property

specification

Review: Transition systems

A transition system TS is a tuple (S,Act,→, I,AP, L)where
▸ S is a set of states

▸ Act is a set of actions

▸ Ð→ ⊆ S × Act × S is a transition relation

▸ I ⊆ S is a set of initial states

▸ AP is a set of atomic propositions

▸ L ∶ S→ 2AP is a labeling function

S and Act are either finite or countably infinite

Notation: s α−−→ s′ instead of (s, α, s′) ∈ Ð→

Computation tree logic

modal logic over infinite trees [Clarke & Emerson 1981]

▸ Statements over states
▸ a ∈ AP atomic proposition
▸ ¬Φ andΦ ∧ Ψ negation and conjunction
▸ Eφ there exists a path fulfilling φ
▸ Aφ all paths fulfill φ

▸ Statements over paths
▸ XΦ the next state fulfillsΦ
▸ ΦUΨ Φ holds until a Ψ-state is reached

⇒ note that X and U alternate with A and E
▸ AXXΦ and AEX Φ /∈ CTL, but AXAX Φ and AXEX Φ ∈ CTL

Alternative syntax: E ≈ ∃, A ≈ ∀, X ≈ ◯ , G ≈ ◻ , F ≈ ◇ .

Derived operators

potentiallyΦ: E FΦ = E (trueUΦ)

inevitablyΦ: A FΦ = A (trueUΦ)

potentially alwaysΦ: EGΦ ∶= ¬AF¬Φ

invariantlyΦ: AGΦ = ¬E F¬Φ

weak until: E (ΦWΨ) = ¬A ((Φ ∧ ¬Ψ)U (¬Φ ∧ ¬Ψ))

A (ΦWΨ) = ¬E ((Φ ∧ ¬Ψ)U (¬Φ ∧ ¬Ψ))

the boolean connectives are derived as usual

Visualization of semantics

AF red A (yellowU red)

E (yellowU red)EG red

AG red

EF red

Semantics of CTL state-formulas

Defined by a relation ⊧ such that

s ⊧ Φ if and only if formulaΦ holds in state s

s ⊧ a iff a ∈ L(s)

s ⊧ ¬Φ iff ¬(s ⊧ Φ)

s ⊧ Φ ∧ Ψ iff (s ⊧ Φ) ∧ (s ⊧ Ψ)

s ⊧ Eφ iff π ⊧ φ for some path π that starts in s

s ⊧ Aφ iff π ⊧ φ for all paths π that start in s

Semantics of CTL path-formulas

Defined by a relation ⊧ such that

π ⊧ φ if and only if path π satisfies φ

π ⊧ XΦ iff π[1] ⊧ Φ

π ⊧ ΦUΨ iff (∃ j ≥ 0. π[j] ⊧ Ψ ∧ (∀0 ≤ k < j. π[k] ⊧ Φ))

where π[i] denotes the state si in the path π

Transition system semantics

▸ For CTL-state-formulaΦ, the satisfaction set Sat(Φ) is defined
by:

Sat(Φ) = { s ∈ S ∣ s ⊧ Φ }
▸ TS satisfies CTL-formulaΦ iffΦ holds in all its initial states:

TS ⊧ Φ if and only if ∀s0 ∈ I. s0 ⊧ Φ

▸ this is equivalent to I ⊆ Sat(Φ)

▸ Note: It is possible that both TS /⊧ Φ and TS /⊧ ¬Φ
▸ (because of several initial states, e.g. s0 ⊧ EGΦ and s′0 /⊧ EGΦ)

CTL equivalence

CTL-formulasΦ and Ψ (over AP) are equivalent, denotedΦ ≡ Ψ

if and only if Sat(Φ) = Sat(Ψ) for all transition systems TS over AP

Φ ≡ Ψ iff (TS ⊧ Φ if and only if TS ⊧ Ψ)

Duality laws

AXΦ ≡ ¬EX¬Φ

EXΦ ≡ ¬AX¬Φ

AFΦ ≡ ¬EG¬Φ

E FΦ ≡ ¬AG¬Φ

A (ΦUΨ) ≡ ¬E ((Φ ∧ ¬Ψ)W (¬Φ ∧ ¬Ψ))

Expansion laws

A (ΦUΨ) ≡ Ψ ∨ (Φ ∧ AXA (ΦUΨ))
AFΦ ≡ Φ ∨ AXAFΦ

AGΦ ≡ Φ ∧ AXAGΦ

E (ΦUΨ) ≡ Ψ ∨ (Φ ∧ EXE (ΦUΨ))
E FΦ ≡ Φ ∨ EXEFΦ

EGΦ ≡ Φ ∧ EXEGΦ

Distributive laws

AG (Φ ∧ Ψ) ≡ AGΦ ∧ AGΨ

E F (Φ ∨Ψ) ≡ E FΦ ∨ E FΨ

note that EG (Φ ∧ Ψ) /≡ EGΦ ∧ EGΨ and AF (Φ ∨ Ψ) /≡ AFΦ ∨ AFΨ

Existential normal form (ENF)

The set of CTL formulas in existential normal form (ENF) is given by:

Φ ∶∶= true ∣ a ∣ Φ1 ∧ Φ2 ∣ ¬Φ ∣ EXΦ ∣ E (Φ1 UΦ2) ∣ EGΦ

For each CTL formula, there exists an equivalent CTL formula in ENF

AXΦ ≡ ¬EX¬Φ

A (ΦUΨ) ≡ ¬E (¬ΨU (¬Φ ∧ ¬Ψ)) ∧ ¬EG¬Ψ

Model checking CTL

▸ How to check whether state graph TS satisfies CTL formula Φ̂?
▸ convert the formula Φ̂ into the equivalentΦ in ENF
▸ compute recursively the set Sat(Φ) = {q ∈ S ∣ q ⊧ Φ }
▸ TS ⊧ Φ if and only if each initial state of TS belongs to Sat(Φ)

▸ Recursive bottom-up computation of Sat(Φ):
▸ consider the parse-tree ofΦ
▸ start to compute Sat(ai), for all leaves in the tree
▸ then go one level up in the tree and determine Sat(⋅) for these
nodes

e.g.,: Sat(Ψ1 ∧ Ψ2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
node at level i

) = Sat(Ψ1¯
node at
level i−1

) ∩ Sat(Ψ2¯
node at
level i−1

)

▸ then go one level up and determine Sat(⋅) of these nodes
▸ and so on....... until the root is treated, i.e., Sat(Φ) is computed

Example

∧ Sat(Φ)

EXSat(Ψ) EU Sat(Ψ′)

a

b EG Sat(Ψ′′)

¬

c

Φ = EXa±
Ψ

∧ E (bU EG¬c)
´¹¹¹¹¹¸¹¹¹¹¹¹¶

Ψ′′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ψ′

.

