Verification

Lecture 20

Bernd Finkbeiner

COlm UNIVERSITAT
"“"Illl"“" DES

I sAARLANDES

Plan for today

» Timed automata
» UPPAAL

(more on simulation tomorrow.)

Time-critical systems

» Timing issues are of crucial importance for many systems, e.g.,
» landing gear controller of an airplane, railway crossing, robot

controllers
» steel production controllers, communication protocols.......

» In time-critical systems correctness depends on:

» not only on the logical result of the computation, but
» also on the time at which the results are produced

» How to model timing issues:
» discrete-time or continuous-time?

A discrete time domain

» Time has a discrete nature, i.e., time is advanced by discrete
steps

» time is modelled by naturals; actions can only happen at
natural time values

» a specific tick action is used to model the advance of one time
unit

= delay between any two events is always a multiple of the

minimal delay of one time unit

» Properties can be expressed in traditional temporal logic

» the next-operator “measures” time

» two time units after being red, the light is green:
G (red = XXgreen)

» within two time units after red, the light is green:

G(red = (green v Xgreen v XXgreen))

» Main application area: synchronous systems, e.g., hardware

A discrete-time coffee machine
\/\y\idle

coffee-ordered

tea-ordered

coffee-prepared tea-prepare

A discrete time domain

» Main advantage: conceptual simplicity

» state graphs systems equipped with a “tick” transition suffice
» standard temporal logics can be used
= traditional model-checking algorithms suffice

» Main limitations:

» (minimal) delay between any pair of actions is a multiple of an a
priori fixed minimal delay
= difficult (or impossible) to determine this in practice
= limits modeling accuracy
= inadequate for asynchronous systems. e.g., distributed systems

A continuous time-domain

If time is continuous, state changes can happen at any point in time:

within four

O%‘ is modeled by
t=0 t=0.74 t=2 t=3 t=n t=4
t=0 t=0.74 t=2 t=3 t=n t=4

but: infinitely many states and infinite branching

How to check a property like:

once in a yellow state, eventually the system is in a blue state
within m time-units?

Approach

» Restrict expressivity of the property language
» e.g., only allow reference to natural time units

= Timed CTL
» Model timed systems symbolically rather than explicitly
= Timed Automata
» Consider a finite quotient of the infinite state space
on-demand
» i.e., using an equivalence that depends on the property and the
timed automaton

== Region Automata

What is a timed automaton?

edge
location |
\ N q
Q

» a program graph with locations and edges

» alocation is labeled with the valid atomic propositions

» taking an edge is instantaneous, i.e, consumes no time

What is a timed automaton?

» equipped with real-valued clocks x,y, z, . ..
» clocks advance implicitly, all at the same speed
» logical constraints on clocks can be used as guards of actions

What is a timed automaton?

clock reset xX>2

» clocks can be reset when taking an edge

» assumption:
all clocks are zero when entering the initial location initially

What is a timed automaton?

invariant

x
v
N

—~
x
—

» guards indicate when an edge may be taken

» alocation invariant specifies the amount of time that may be
spent in a location
» before a location invariant becomes invalid, an edge must be
taken

A real-time coffee machine

coffee-prepared <5 tea-prepare

x<15

(S,

x=1

{x}

Clock constraints

» Clock constraints over set C of clocks are defined by:

g = true|x<c‘x—y<c‘x§c‘X—ySC‘ﬁg | gng

» where c e Nand clocks x,y € C
» rational constants would do; neither reals nor addition of clocks!
» let CC(C) denote the set of clock constraints over C
» shorthands: x > c denotes - (x < ¢) and x € [¢;,¢;) or
G <x<cydenotes —(x<cy) & (x<¢)
» Atomic clock constraints do not contain true, - and A
» let ACC(C) denote the set of atomic clock constraints over C

» Simplification: In the following, we assume constraints are
diagonal-free, i.e., do neither containx -y < cnorx -y <c.

Timed automaton

A timed automaton is a tuple

TA = (Loc,Act,C,~,Loco,inv,AP,L) where:

» Loc is a finite set of locations.
» Locg € Locis a set of initial locations

Cis afinite set of clocks
2AP

v

» L:Loc — 2"" is a labeling function for the locations

~ € Loc x CC(C) x Act x 2¢ x Loc is a transition relation, and

v

v

inv: Loc - CC(C) is an invariant-assignment function

Intuitive interpretation

» Edge £ 2%, ¢' means:
» action « is enabled once guard g holds
» when moving from location £ to #', any clock in C’ will be reset
to zero
» inv(¢) constrains the amount of time that may be spent in
location ¢

» the location £ must be left before the invariant inv(¢) becomes
invalid

Guards versus location invariants

The effect of a lowerbound guard:

P

value

of x 2
x>2 20— R e e
—())

Guards versus location invariants

The effect of a lowerbound and upperbound guard:

Guards versus location invariants

The effect of a guard and an invariant:

P

valee |

of x 3
C X22 2R S S S
x<3 : 3 3

Arbitrary clock differences

- — - clockx
—— clocky

—_~=<

<[V

N
—
N

x
\%
N

—~
Y
—~

20

Composing timed automata

LetTA; = (Loc;,Act,-, Ci, ~i, Locy j, invj, AP, L,~) and H an action-set

TAq ||y TA; = (Loc,Act1 UAct,, C, «»,Loco,inv,AP,L) where:

» Loc = Locy x Locy and Locy = Locp,1 x Locp and C=Cyu G,
> inv((€1,£2)) = inv1 (f]) A inVZ(fz) and

L(<€1 s 62)) = L] (61) U L2(£2)
» ~ is defined by the inference rules:

910‘D1 g2ia,Dy
fora e H b gfg ;\D%D 2 6
(0, 62) "D 00,)
fora ¢ H: b 9(5,1Dg and 62%206
(1, 62) 755 (01, 05) (01, 02) 757 (04,)

21

Clock valuations

» A clock valuation v for set C of clocks is a functionv : C — Rsg
» assigning to each clock x € C its current value v(x)

» Clock valuation v+d for d € Ry is defined by:
» (v+d)(x) = v(x) +dforall clocks x € C

» Clock valuation reset x in v for clock x is defined by:

(resetxinv)(y) = { ;(y) :g:((

» resetxin (resetyinv) is abbreviated by reset x,y inv

22

Timed automaton semantics

For timed automaton TA = (Loc,Act, C,«»,Loco,inv,AP,L):
Transition system TS(TA) = (S, Act’, »,I,AP', L") where:
» S=Loc x val(C), state s = (¢, v) for location ¢ and clock
valuation v

v

Act’ = Act U Ry, (discrete) actions and time passage actions
I'={(lo,vo) | 4o €Locy A vo(x)=0forallxeC}

AP = AP U ACC(C)

L'({(6.v)) = L(£) U {g € ACC(C) [vE g}

» — is the transition relation defined on the next slide

v

v

v

23

Timed automaton semantics

The transition relation — is defined by the following two rules:
» Discrete transition: (¢, v) -9 (¢/,v'} if all following conditions
hold:

» there s an edge labeled (g : &, D) from location £ to £ such that:
» gissatisfied by v,ie,vEg

» v/ = vwith all clocksin Dresetto 0, i.e, v/ =resetDinv

» V' fulfills the invariant of location ¢, i.e., v/ = inv({)

» Delay transition: (¢,v) % (¢, v+d) for positive real d

» ifforany 0 < d’ < d the invariant of £ holds for v+d’, i.e.
v+d' = inv({)

24

Time divergence

» Let forany t < d, for fixed d € R, clock valuation #+t &= inv(¢)
» A possible execution fragment starting from the location £ is:

0n) 5 (0, n+dy) 25 (0, n+dy+da) B> (0, prdy+do+ds) 2
n n n n

» where d; > 0 and the infinite sequence d; + d, + ... converges
towards d
» such path fragments are called time-convergent
= time advances only up to a certain value
» Time-convergent execution fragments are unrealistic and

ignored
» much like unfair paths (as we will see later on)

25

Time divergence

v

Infinite path fragment 7 is time-divergent if ExecTime(m) = oo
The function ExecTime : Act U R.g — Ry is defined as:

v

0 ifreAct

ExecTime(1) = { d ifr=deRy

» Forinfinite execution fragment p = so > 51 —2>5;...in TS(TA)
let:

ExecTime(p) = > ExecTime(r;)
i=0
» for path fragment 7 in TS(TA) induced by p:
ExecTime() = ExecTime(p)

» Forstatesin TS(TA):
Pathsg, (s) = { w € Paths(s) | m is time-divergent }

26

Example: light switch

The path 7 in TS(Switch) in which on- and of-periods of one minute
alternate:

7 = (off,0) (off, 1) (on, 0) (on, 1) (off, 1) (off, 2) (on, 0) (on, 1) (off, 1) ...

is time-divergent as ExecTime(n) =1+ 1+1+... = oco.
The path:

7' = (off,0) (off, 1/2) (off, 3/4) (off, 7/8) (off, 15/16) ..

I . , i
is time-convergent, since ExecTime(n’) = ¥, (3) =1< o0
i>1
27

Timelock

» State s € TS(TA) contains a timelock if Pathsg;, (s) = @

» there is no behavior in s where time can progress ad infinitum

» clearly: any terminal state contains a timelock (but also
non-terminal states may contain a timelock)
» terminal location does not necessarily yield a state with
timelock (e.g., inv = true)
» TAis timelock-free if no state in Reach(TS(TA)) contains a
timelock

» Timelocks are considered as modeling flaws that should be
avoided

28

Zenoness

v

A TA that performs infinitely many actions in finite time is Zeno
Path 7 in TS(TA) is Zeno if:

» itis time-convergent, and

» infinitely many actions a € Act are executed along 7
» TAis non-Zeno if there does not exist an initial Zeno path in
TS(TA)

» any min TS(TA) is time-divergent or

» is time-convergent with nearly all (i.e., all except for finitely

many) transitions being delay transitions

v

» Zeno paths are considered as modeling flaws that should be
avoided

29

A sufficient criterion for Non-Zenoness

Let TA with set C of clocks such that for every control cycle:

gr1:a1,Gy 92:02,C gn:an,Cp
~ L.

60 ~ £1 ~ gn

there exists a clock x € C such that:
1. x e C;forsome 0 <i<n,and

2. there exists a constant ¢ € N, such that for all clock
evaluations #:

1n(x) < cimplies (1 # gj or 1 # inv(¢;)), for some 0 <j < n

Then: TA is non-Zeno

30

Timelock, time-divergence and Zenoness

» A timed automaton is only considered an adequate model of a
time-critical system if it is:
non-Zeno and timelock-free
» Time-convergent paths will be explicitly excluded from the
analysis.

31

Timed CTL

Syntax of TCTL state-formulas over AP and set C:
d):::true|a|g|CD/\CD‘ —-(D|E(p‘A(p
where a € AP, g € ACC(C) and ¢ is a path-formula defined by:
pu=0U @

where J ¢ Ry is an interval whose bounds are naturals
Forms of J: [n,m], (n,m], [n,m) or (n,m) forn,m e Nandn <m

for right-open intervals, m = o is also allowed

32

Some abbreviations

» FO = trueV’ @

» EG’® = ~AF/-® and AG’® = —-EF’-0

» F®=FO0®) @

and G®=G>®) o

33

Semantics of TCTL

For state s = (¢,) in TS(TA) the satisfaction relation i is defined by:

S E true

SEa iff
SEQ iff
sE - iff
SED A Y iff
seEg iff
sEAg iff

ael(?)

nEg

notsk= @

(sE®)and (s=Y¥)

n = ¢ for some 7 € Paths;, (s)

m &= ¢ for all 7w € Paths;,(s)

path quantification over time-divergent paths only

34

The = relation
» For infinite path fragments in TS(TA) performing co many
actions let:

do di [} .
So—=>S1——=S—= ... withdy,di,d>...>0

denote the equivalence class containing all infinite path
fragments induced by execution fragments of the form:

ki k k
1 0 1 1 1 2
dO dO o1 d1 dl a2 d2 d2 o3
Sg > ... > Sg+dg — S1 > ... > S1+d] —> S > ... > SH+dy — .
— —— ——
time passage of time passage of time passage of
dg time-units d time-units d; time-units

where k; € IN, d; € Rsg and «; € Act such that Z}’.L d{ =d,.
Notation: s;+d = (¢;, n;+d) where s; = (¢}, ;).

» For infinite path fragments in TS(TA) performing finitely many
actions:

do ds dy dn-1 1 1 1

50:>S1:>52:> ”':—>Sn:>sn+1:>sn+2ﬁ ceegs

Semantics of TCTL

do d
For time-divergent path 7 € sg == s, SN

TEOU Y
iff

3i>0.s+d = ¥ for some d € [0,d;] with ¥} dx+d eJ
and
Vj<i.si+d £ @ v ¥ forevery d’ € [0,d;] with ijjo di+d <Yibdi+d

36

