
Verification

Lecture 20

Bernd Finkbeiner

Plan for today

▸ Timed automata

▸ UPPAAL

(more on simulation tomorrow.)

2

Time-critical systems

▸ Timing issues are of crucial importance for many systems, e.g.,
▸ landing gear controller of an airplane, railway crossing, robot

controllers
▸ steel production controllers, communication protocols

▸ In time-critical systems correctness depends on:
▸ not only on the logical result of the computation, but
▸ also on the time at which the results are produced

▸ How to model timing issues:
▸ discrete-time or continuous-time?

3

A discrete time domain

▸ Time has a discrete nature, i.e., time is advanced by discrete
steps

▸ time is modelled by naturals; actions can only happen at

natural time values
▸ a specific tick action is used to model the advance of one time

unit⇒ delay between any two events is always a multiple of the

minimal delay of one time unit

▸ Properties can be expressed in traditional temporal logic
▸ the next-operator ‘‘measures’’ time
▸ two time units after being red, the light is green:

G (red ⇒ XXgreen)
▸ within two time units after red, the light is green:

G (red ⇒ (green ∨ Xgreen ∨ XXgreen))
▸ Main application area: synchronous systems, e.g., hardware

4

A discrete-time coffee machine

idle

coffee-ordered tea-ordered

coffee-prepared tea-prepared

tick

tick

tick

tick

tick

tick

tick

tick

tick

tick

5

A discrete time domain

▸ Main advantage: conceptual simplicity
▸ state graphs systems equipped with a ‘‘tick’’ transition suffice
▸ standard temporal logics can be used⇒ traditional model-checking algorithms suffice

▸ Main limitations:
▸ (minimal) delay between any pair of actions is a multiple of an a

priori fixed minimal delay⇒ difficult (or impossible) to determine this in practice⇒ limits modeling accuracy⇒ inadequate for asynchronous systems. e.g., distributed systems

6

A continuous time-domain

If time is continuous, state changes can happen at any point in time:

t = 0 t = 0.74 t = 2 t = 3 t = π t = 4

.

t = 0 t = 0.74 t = 2 t = 3 t = π t = 4

within four
time-units

is modeled by

but: infinitely many states and infinite branching

How to check a property like:

once in a yellow state, eventually the system is in a blue state

within π time-units?

7

Approach

▸ Restrict expressivity of the property language
▸ e.g., only allow reference to natural time units

Ô⇒ Timed CTL
▸ Model timed systems symbolically rather than explicitly

Ô⇒ Timed Automata

▸ Consider a finite quotient of the infinite state space
on-demand

▸ i.e., using an equivalence that depends on the property and the

timed automaton

Ô⇒ Region Automata

8

What is a timed automaton?

edge

location

off on

▸ a program graph with locations and edges

▸ a location is labeled with the valid atomic propositions

▸ taking an edge is instantaneous, i.e, consumes no time

9

What is a timed automaton?

y = 9

x ≥ 2

x ≥ 2

guard

off on

▸ equipped with real-valued clocks x, y, z, . . .

▸ clocks advance implicitly, all at the same speed

▸ logical constraints on clocks can be used as guards of actions

10

What is a timed automaton?

x ≥ 2
{ x }

clock reset

off on

y = 9

{ x }

x ≥ 2
{ x, y }

▸ clocks can be reset when taking an edge

▸ assumption:

all clocks are zero when entering the initial location initially

11

What is a timed automaton?

x ≥ 2
{ x }off on

y ≤ 9x ≤ 2

invariant

x ≥ 2
{ x, y }

y = 9

{ x }

▸ guards indicate when an edge may be taken

▸ a location invariant specifies the amount of time that may be
spent in a location

▸ before a location invariant becomes invalid, an edge must be

taken

12

A real-time coffee machine

idle

coffee-ordered tea-ordered

coffee-prepared tea-prepared

true

{ x }
true

{ x }

x ≤ 10

x ≤ 10 x ≤ 15

x ≤ 15

x = 15
{ x }

x = 15
{ x }

x = 10
{ x }

x = 10
{ x }

13

Clock constraints

▸ Clock constraints over set C of clocks are defined by:

g ∶∶= true ∣ x < c ∣ x − y < c ∣ x ≤ c ∣ x − y ≤ c ∣ ¬g ∣ g ∧ g

▸ where c ∈ N and clocks x, y ∈ C
▸ rational constants would do; neither reals nor addition of clocks!
▸ let CC(C) denote the set of clock constraints over C
▸ shorthands: x ≥ c denotes ¬(x < c) and x ∈ [c1 , c2) or
c1 ≤ x < c2 denotes ¬(x < c1) & (x < c2)

▸ Atomic clock constraints do not contain true, ¬ and ∧
▸ let ACC(C) denote the set of atomic clock constraints over C

▸ Simplification: In the following, we assume constraints are

diagonal-free, i.e., do neither contain x − y ≤ c nor x − y < c.

14

Timed automaton

A timed automaton is a tuple

TA = (Loc,Act, C,↝, Loc0, inv,AP, L) where:

▸ Loc is a finite set of locations.

▸ Loc0 ⊆ Loc is a set of initial locations

▸ C is a finite set of clocks

▸ L ∶ Loc→ 2AP is a labeling function for the locations

▸ ↝ ⊆ Loc × CC(C) × Act × 2C × Loc is a transition relation, and

▸ inv ∶ Loc→ CC(C) is an invariant-assignment function

15

Intuitive interpretation

▸ Edge ℓ
g∶α,C′−−−−−→ ℓ

′ means:
▸ action α is enabled once guard g holds
▸ when moving from location ℓ to ℓ

′

, any clock in C′ will be reset

to zero

▸ inv(ℓ) constrains the amount of time that may be spent in
location ℓ

▸ the location ℓmust be left before the invariant inv(ℓ) becomes

invalid

16

Guards versus location invariants

The effect of a lowerbound guard:

2

4

time

2 4 6 8 10

value
of x

x ≥ 2
{ x }

17

Guards versus location invariants

The effect of a lowerbound and upperbound guard:

2

4

time

2 4 6 8 10

value
of x 3

2 ≤ x ≤ 3
{ x }

18

Guards versus location invariants

The effect of a guard and an invariant:

2

4

time

2 4 6 8 10

value
of x

x ≥ 2
{ x }

x ≤ 3

3

19

Arbitrary clock differences

clock x

clock y

2

4

time

2 4 6 8 10

clock
value

y ≥ 2

{ y }

x ≥ 2
{ x }

20

Composing timed automata

Let TAi = (Loci ,Acti , Ci ,↝i , Loc0,i , invi ,AP, Li) and H an action-set

TA1 ∣∣H TA2 = (Loc,Act1 ∪ Act2, C,↝, Loc0, inv,AP, L) where:

▸ Loc = Loc1 × Loc2 and Loc0 = Loc0,1 × Loc0,2 and C = C1 ∪ C2

▸ inv(⟨ℓ1, ℓ2⟩) = inv1(ℓ1) ∧ inv2(ℓ2) and
L(⟨ℓ1, ℓ2⟩) = L1(ℓ1) ∪ L2(ℓ2)

▸ ↝ is defined by the inference rules:

for α ∈ H ℓ1
g1∶α ,D1↝1 ℓ

′

1 ∧ ℓ2
g2∶α ,D2↝2 ℓ

′

2

⟨ℓ1 , ℓ2⟩ g1∧g2∶α ,D1∪D2↝ ⟨ℓ′1 , ℓ′2⟩

for α /∈ H: ℓ1
g∶α ,D↝1 ℓ

′

1

⟨ℓ1 , ℓ2⟩ g∶α ,D↝ ⟨ℓ′1 , ℓ2⟩
and

ℓ2
g∶α ,D↝2 ℓ

′

2

⟨ℓ1 , ℓ2⟩ g∶α ,D↝ ⟨ℓ1 , ℓ′2⟩
21

Clock valuations

▸ A clock valuation v for set C of clocks is a function v ∶ C Ð→ R≥0

▸ assigning to each clock x ∈ C its current value v(x)
▸ Clock valuation v+d for d ∈ R≥0 is defined by:

▸ (v+d)(x) = v(x) + d for all clocks x ∈ C
▸ Clock valuation reset x in v for clock x is defined by:

(reset x in v)(y) = { v(y) if y ≠ x

0 if y = x.

▸ reset x in (reset y in v) is abbreviated by reset x, y in v

22

Timed automaton semantics

For timed automaton TA = (Loc,Act, C,↝, Loc0, inv,AP, L):
Transition system TS(TA) = (S,Act′,→, I,AP′, L′)where:
▸ S = Loc × val(C), state s = ⟨ℓ, v⟩ for location ℓ and clock

valuation v

▸ Act′ = Act ∪ R≥0, (discrete) actions and time passage actions

▸ I = { ⟨ℓ0, v0⟩ ∣ ℓ0 ∈ Loc0 ∧ v0(x) = 0 for all x ∈ C }
▸ AP′ = AP ∪ ACC(C)
▸ L′(⟨ℓ, v⟩) = L(ℓ) ∪ {g ∈ ACC(C) ∣ v ⊧ g}
▸ → is the transition relation defined on the next slide

23

Timed automaton semantics

The transition relation −→ is defined by the following two rules:

▸ Discrete transition: ⟨ℓ, v⟩ d−−→ ⟨ℓ′, v′⟩ if all following conditions
hold:

▸ there is an edge labeled (g ∶ α,D) from location ℓ to ℓ
′

such that:
▸ g is satisfied by v, i.e., v ⊧ g
▸ v′ = v with all clocks in D reset to 0, i.e., v′ = reset D in v
▸ v′ fulfills the invariant of location ℓ

′

, i.e., v′ ⊧ inv(ℓ′)
▸ Delay transition: ⟨ℓ, v⟩ α−−→ ⟨ℓ, v+d⟩ for positive real d

▸ if for any 0 ≤ d′ ≤ d the invariant of ℓ holds for v+d′, i.e.
v+d′ ⊧ inv(ℓ)

24

Time divergence

▸ Let for any t < d, for fixed d ∈ R>0, clock valuation η+t ⊧ inv(ℓ)
▸ A possible execution fragment starting from the location ℓ is:

⟨ℓ, η⟩ d1−−−→ ⟨ℓ, η+d1⟩ d2−−−→ ⟨ℓ, η+d1+d2⟩ d3−−−→ ⟨ℓ, η+d1+d2+d3⟩ d4−−−→ . . .

▸ where di > 0 and the infinite sequence d1 + d2 + . . . converges

towards d
▸ such path fragments are called time-convergent⇒ time advances only up to a certain value

▸ Time-convergent execution fragments are unrealistic and
ignored

▸ much like unfair paths (as we will see later on)

25

Time divergence

▸ Infinite path fragment π is time-divergent if ExecTime(π) = ∞
▸ The function ExecTime ∶ Act ∪R>0 → R≥0 is defined as:

ExecTime(τ) = { 0 if τ ∈ Act
d if τ = d ∈ R>0

▸ For infinite execution fragment ρ = s0
τ1−−→ s1

τ2−−→ s2 . . . in TS(TA)
let:

ExecTime(ρ) = ∞∑
i=0

ExecTime(τi)
▸ for path fragment π in TS(TA) induced by ρ:

ExecTime(π) = ExecTime(ρ)
▸ For state s in TS(TA):

Pathsdiv(s) = { π ∈ Paths(s) ∣ π is time-divergent}
26

Example: light switch

off on

x ≤ 2
{x}

x ≥ 1

The path π in TS(Switch) in which on- and of-periods of one minute

alternate:

π = ⟨off , 0⟩ ⟨off , 1⟩ ⟨on, 0⟩ ⟨on, 1⟩ ⟨off , 1⟩ ⟨off , 2⟩ ⟨on, 0⟩ ⟨on, 1⟩ ⟨off , 1⟩ . . .
is time-divergent as ExecTime(π) = 1 + 1 + 1 + . . . = ∞.

The path:

π′ = ⟨off , 0⟩ ⟨off , 1/2⟩ ⟨off , 3/4⟩ ⟨off , 7/8⟩ ⟨off , 15/16⟩ . . .
is time-convergent, since ExecTime(π′) = ∑

i≥1
(1
2
)i = 1 < ∞

27

Timelock

▸ State s ∈ TS(TA) contains a timelock if Pathsdiv(s) = ∅
▸ there is no behavior in swhere time can progress ad infinitum
▸ clearly: any terminal state contains a timelock (but also

non-terminal states may contain a timelock)
▸ terminal location does not necessarily yield a state with

timelock (e.g., inv = true)

▸ TA is timelock-free if no state in Reach(TS(TA)) contains a
timelock

▸ Timelocks are considered as modeling flaws that should be

avoided

28

Zenoness

▸ A TA that performs infinitely many actions in finite time is Zeno

▸ Path π in TS(TA) is Zeno if:
▸ it is time-convergent, and
▸ infinitely many actions α ∈ Act are executed along π

▸ TA is non-Zeno if there does not exist an initial Zeno path in
TS(TA)

▸ any π in TS(TA) is time-divergent or
▸ is time-convergent with nearly all (i.e., all except for finitely

many) transitions being delay transitions

▸ Zeno paths are considered as modeling flaws that should be

avoided

29

A sufficient criterion for Non-Zenoness

Let TAwith set C of clocks such that for every control cycle:

ℓ0
g1∶α1 ,C1
↝ ℓ1

g2∶α2 ,C2
↝ . . .

gn∶αn ,Cn
↝ ℓn

there exists a clock x ∈ C such that:

1. x ∈ Ci for some 0 < i ≤ n, and

2. there exists a constant c ∈ N>0 such that for all clock

evaluations η:

η(x) < c implies (η /⊧ gj or η /⊧ inv(ℓj)), for some 0 < j ≤ n

Then: TA is non-Zeno

30

Timelock, time-divergence and Zenoness

▸ A timed automaton is only considered an adequate model of a
time-critical system if it is:

non-Zeno and timelock-free

▸ Time-convergent paths will be explicitly excluded from the

analysis.

31

Timed CTL

Syntax of TCTL state-formulas over AP and set C:

Φ ∶∶= true ∣ a ∣ g ∣ Φ ∧ Φ ∣ ¬Φ ∣ Eφ ∣ Aφ

where a ∈ AP, g ∈ ACC(C) and φ is a path-formula defined by:

φ ∶∶= ΦUJΦ

where J ⊆ R≥0 is an interval whose bounds are naturals

Forms of J: [n,m], (n,m], [n,m) or (n,m) for n,m ∈ N and n ≤ m

for right-open intervals,m = ∞ is also allowed

32

Some abbreviations

▸ F J
Φ = trueUJΦ

▸ EG J
Φ = ¬AF J ¬Φ and AG J

Φ = ¬E F J ¬Φ
▸ F Φ = F [0,∞)Φ and G Φ = G [0,∞)Φ

33

Semantics of TCTL

For state s = ⟨ℓ, η⟩ in TS(TA) the satisfaction relation ⊧ is defined by:

s ⊧ true

s ⊧ a iff a ∈ L(ℓ)
s ⊧ g iff η ⊧ g

s ⊧ ¬Φ iff not s ⊧ Φ

s ⊧ Φ ∧ Ψ iff (s ⊧ Φ) and (s ⊧ Ψ)
s ⊧ Eφ iff π ⊧ φ for some π ∈ Pathsdiv(s)
s ⊧ Aφ iff π ⊧ φ for all π ∈ Pathsdiv(s)
path quantification over time-divergent paths only

34

The ⇒ relation

▸ For infinite path fragments in TS(TA) performing∞many

actions let:

s0
d0
⇒ s1

d1
⇒ s2

d2
⇒ . . . with d0, d1, d2 . . . ≥ 0

denote the equivalence class containing all infinite path

fragments induced by execution fragments of the form:

s0
d10
→ . . .

d
k0
0
→´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

time passage of
d0 time-units

s0+d0 α1
Ð→ s1

d11
→ . . .

d
k1
1
→´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

time passage of
d1 time-units

s1+d1 α2
Ð→ s2

d12
→ . . .

d
k2
2
→´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

time passage of
d2 time-units

s2+d2 α3
Ð→ . .

where ki ∈ IN, di ∈ R≥0 and αi ∈ Act such that∑ki
j=1 d

j
i = di.

Notation: si+d = ⟨ℓi , ηi+d⟩where si = ⟨ℓi , ηi⟩.
▸ For infinite path fragments in TS(TA) performing finitely many

actions:

s0
d0
⇒ s1

d1
⇒ s2

d2
⇒ . . .

dn−1
⇒ sn

1
⇒ sn+1

1
⇒ sn+2

1
⇒ . . .

35

Semantics of TCTL

For time-divergent path π ∈ s0 d0
⇒ s1

d1
⇒ . . .:

π ⊧ ΦUJ Ψ

iff

∃ i ≥ 0. si+d ⊧ Ψ for some d ∈ [0, di]with ∑i−1
k=0 dk + d ∈ J

and

∀j ≤ i. sj+d′ ⊧ Φ ∨Ψ for every d′ ∈ [0, dj]with ∑j−1
k=0

dk + d′ ≤ ∑i−1
k=0 dk + d

36

