Verification

Lecture 22

Bernd Finkbeiner

COlm UNIVERSITAT
"“"Illl"“" DES

I sAARLANDES

Plan for today

» Timed model checking

REVIEW: Timed CTL

Syntax of TCTL state-formulas over AP and set C:
d):::true|a|g|CD/\CD‘ —-(D|E(p‘A(p
where a € AP, g € ACC(C) and ¢ is a path-formula defined by:
Q=0 U o

where J ¢ Ry is an interval whose bounds are naturals
Forms of J: [n,m], (n,m], [n,m) or (n,m) forn,m e Nandn <m

for right-open intervals, m = o is also allowed

REVIEW: Semantics of TCTL

For state s = (¢,) in TS(TA) the satisfaction relation i is defined by:

S E true

SEa iff
SEQ iff
sE - iff
SED A Y iff
seEg iff
sEAg iff

ael(?)

nEg

notsk= @

(sE®)and (s=Y¥)

n = ¢ for some 7 € Paths;, (s)

m &= ¢ for all 7w € Paths;,(s)

path quantification over time-divergent paths only

REVIEW: Semantics of TCTL

do d
For time-divergent path 7 € sg == s, SN

TEOU Y
iff

3i>0.s+d = ¥ for some d € [0,d;] with ¥} dx+d eJ
and
Vj<i.si+d £ @ v ¥ forevery d’ € [0,d;] with Z dk +d <Yildi+d

TCTL-semantics for timed automata

» Let TA be a timed automaton with clocks C and locations Loc
» For TCTL-state-formula @, the satisfaction set Sat(®) is defined

by:
Sat(®) = {selocxEval(C)|sE D}

» TA satisfies TCTL-formula @ iff ® holds in all initial states of TA:
TAE ® ifandonlyif V{ye€Llocy.(lo,n0) E @

where 770(x) =0forallx € C

Timed CTL versus CTL

» Due to ignoring time-convergent paths in TCTL semantics,

possibly:
TS(TA) Excn Ap but TS(TA) o Ag
| S — | —
TCTL semantics CTL semantics

» CTL semantics considers all paths, timed CTL only
time-divergent paths

» For® = AG(on — AFoff) and the light switch

TS(Switch) Ereq, @ whereas TS(TA) Hq @

» there are time-convergent paths on which location on is never
left

Characterizing timelock

v

TCTL semantics is also well-defined for TA with timelock
A state is timelock-free if and only if it satisfies E G true

» some time-divergent path satisfies Gtrue, i.e., there is > 1
time-divergent path

» note: for fair CTL, the states in which a fair path starts also
satisfy EGtrue

» TAis timelock-free iff Vs € Reach(TS(TA)): s £ EGtrue
Timelocks can thus be checked by model checking

v

v

TCTL model checking

v

TCTL model-checking problem: TA £ @ for non-Zeno TA

TA=® iff TS(TA)E @
———

| —

timed automaton infinite state graph

» |dea: consider a finite region graph RG(TA)
» Transform TCTL formula @ into an “equivalent” CTL-formula ®

» Then: TA e, @ iff RG(TA) Ecq @

——
finite state graph

Eliminating timing parameters: TCTL,,

» Eliminate all intervals J # [0, co) from TCTL formulas
» introduce a fresh clock, z say, that does not occur in TA
» seEF/®iffresetzins=F(zeJ A ©)

» Formally: for any state s of TS(TA) it holds:
sEEQUY iff s{z:=0} FE((DVY)U(ze))AY)

(R —
state in TS(TA @ z)

seEAOUY iff s{z:=0} FA((PVY¥)U(ze))rY)
—_——
state in TS(TA @ z)

» where TA @ zis TA (over C) extended with z ¢ C

Clock equivalence

Impose an equivalence, denoted 2, on the clock valuations such
that:

(A) Equivalent clock valuations satisfy the same clock constraints g
in TAand @:

nzy = (neg iff n'=g)

» no diagonal clock constraints are considered
» all the constraints in TA and @ are thus either of the form x < ¢
orx<c
(B) Time-divergent paths originating from equivalent states are
equivalent
» this property guarantees that equivalent states satisfy the same
path formulas

(C) The number of equivalence classes under 2 is finite

First observation

» 11 = x < c whenever 5(x) < ¢, or equivalently, | n(x)| < ¢
» |d] = max{ceIN|c<d}andfrac(d) = d-|d]
» 11 =x < cwhenever |5(x)| < cor [5(x)] = cand frac(n(x)) =0
= 1 = gonly depends on |7(x) |, and whether frac(n(x)) = 0
» Initial suggestion: clock valuations 7 and 7' are equivalent if:

ln(x)| = |#'(x)] and frac(n(x)) = 0iff frac(n'(x)) =0

» Note:itis crucial thatin x < cand x < ¢, cis a natural

Second observation

» Consider location ¢ with inv(¢) = true and only outgoing
transitions:

» one guarded with x > 2 (action a) and y > 1 (action f3)
Let states = (¢, 77) with 1 < 5(x) <2and 0 < 5(y) < 1
» a and f3 are disabled, only time may elapse
» Transition that is enabled next dependsonx—-1<yorx—12>y
» e.g, if frac(n(x)) > frac(y(y)), action « is enabled first

v

v

Suggestion for strengthening of initial proposal forall x,y € C
by:

frac(n(x)) < frac(y(y)) ifandonlyif frac(n'(x)) < frac(y'(y))

Final observation

» So far, clock equivalence yield a denumerable though not
finite quotient
» For TA = @ only the clock constraints in TA and @ are relevant

» let ¢, € IN the largest constant with which x is compared in TA
or®

= If n(x) > cx then the actual value of x is irrelevant

» constraints on = so far are only relevant for clock values of x (y)
up to ¢ (¢y)

Clock equivalence

Clock valuations 7, " € Eval(C) are equivalent, denoted 1 = 7/, if:
(1) foranyx € C: (5(x) > cx) A (5'(x) > ¢«) or
(n(x) <) A (' (%) < &)
(2) foranyx € C:if n(x), n'(x) < ¢x then:

[n0)) =17 ()] and frac(y(x)) = Qiff frac(’ (x)) = 0

(3) foranyx,y € C:if n(x),n'(x) < cxand 5(y), %' (y) < ¢y, then:

frac(n(x)) < frac(y(y)) iff frac(n'(x)) < frac(y'(y)).

szs' iff £=¢ and nxy

Regions

» The clock region of 4 € Eval(C), denoted [#], is defined by:
(1] = {n" eEval(C) [n=n"}
» The state region of s = (¢, 1) € TS(TA) is defined by:

[s] = (&Tn]) = {{s;n) 0" € [n]}

Number of regions

The number of clock regions is bounded from below and above by:

'+ [Tex < | Eval(©)f= | < [C)t* 21" % T](2¢c +2)
xeC — xeC
number of regions

where for the upper bound it is assumed that ¢, > 1 forany x € C

the number of state regions is |Loc| times larger

