
Verification

Lecture 25

Bernd Finkbeiner

Exam info

▸ Main exam: Oct 9, 2013, 9am

▸ Backup exam: Nov 25, 2013, 10am



Plan for today

▸ Timed model checking
▸ Regions
▸ Zones
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Zones

▸ Clock constraints are conjunctions of atomic constraints
▸ x ≺ c and x − y ≺ c for ≺ ∈ {<, ≤, =, ≥, >}
▸ restrict to TAwith only conjunctive clock constraints
▸ and (as before) assume no difference clock constraints

▸ A clock zone is the set of clock valuations that satisfy a clock
constraint

▸ a clock zone for g is the maximal set of clock valuations

satisfying g

▸ Clock zone of g: [[g ]] = { η ∈ Eval(C) ∣ η ⊧ g}
▸ use z, z′ and so on to range over zones

▸ The state zone of s = ⟨ℓ, η⟩ ∈ TS(TA) is ⟨ℓ, z⟩with η ∈ z
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Zones: intuition
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Successor and reset zones

▸ z′ is the successor (clock) zone of z, denoted z′ = z↑, if:
▸ z↑ = { η + d ∣ η ∈ z, d ∈ R>0 }

▸ z′ is the zone obtained from z by resetting clocks D, if:
▸ reset D in z = { reset D in η ∣ η ∈ z }
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Zone graph

For non-Zeno TA let:

ZG(TA, Φ) = (S,Act,→, I,AP′, L′) with

▸ S = Loc × Zone(C) and I = { ⟨ℓ, z0⟩ ∣ ℓ ∈ Loc0 }

▸ L′(⟨ℓ, z⟩) = L(ℓ) ∪ {g ∣ g ∈ z }

▸ → consists of two types of edges:
▸ Discrete transitions: ⟨ℓ, z⟩ α−−→ ⟨ℓ

′
, reset D in (z ∧ g) ∧ inv(ℓ

′
)⟩

if ℓ
g∶α ,D
↝ ℓ

′
, and

▸ Delay transitions: ⟨ℓ, z⟩ τ−−→ ⟨ℓ, z↑ ∧ inv(ℓ)⟩.
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Correctness

For timed automaton TA and any initial state ⟨ℓ, η0⟩:

▸ Soundness:

⟨ℓ, { η0 }
²

z0

⟩→∗ ⟨ℓ′, z′⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
in ZG(TA)

implies ⟨ℓ, η0⟩→
∗ ⟨ℓ′, η′⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
in TS(TA)

for allη′ ∈ z′

▸ Completeness:

⟨ℓ, η0⟩→
∗ ⟨ℓ′, η′⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
in TS(TA)

implies ⟨ℓ, { η0 }⟩→
∗ ⟨ℓ′, z′⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
in ZG(TA)

for somez′withη′ ∈
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Zone normalization

▸ To obtain a finite representation, the zones are normalized:

▸ For zone z, norm(z) = { η ∣ η ≅ η′, η′ ∈ z }
▸ where ≅ is the clock equivalence

▸ There can only be finitely many normalized zones

▸ ⟨ℓ, z⟩→norm ⟨ℓ
′, norm(z′)⟩ if ⟨ℓ, z⟩→ ⟨ℓ′, z′⟩
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Forward reachability algorithm

Passed ∶= ∅; // explored states so far

Wait ∶= { (ℓ0 , z0) }; // states to be explored

while Wait ≠ ∅ // still states to go

do select and remove (ℓ, z) fromWait;

if (ℓ = goal ∧ z ∩ zgoal ≠ ∅) then return ‘‘reachable’’! fi ;

if ¬(∃(ℓ, z′) ∈ Passed. z ⊆ z′) // no ‘‘super’’state explored yet

then add (ℓ, z) to Passed // (ℓ, z) is a new state

foreach (ℓ
′
, z′)with (ℓ, z)→norm (ℓ

′
, z′)

do add (ℓ
′
, z′) to Wait; // add symbolic successors

fi

od

return ‘‘not reachable’’!
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Representing zones

▸ Let 0 be a clock with constant value 0; let C0 = C ∪ {0}

▸ Any zone z ∈ Zone(C) can be written as:
▸ conjunction of constraints x− y < n or x− y ≤ n for n ∈ Z, x, y ∈ C0
▸ when x − y ⪯ n and x − y ⪯ m take only x − y ⪯min(n,m)
⇒ this yields at most ∣C0∣⋅∣C0∣ constraints

▸ Example:

x − 0 < 20 ∧ y − 0 ≤ 20 ∧ y − x ≤ 10 ∧ x − y ≤ −10 ∧ 0 − z < 5

▸ Store each such constraint in a matrix
▸ this yields a difference bound matrix

Notation: ⪯ stands for < or ≤.
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Difference bound matrices

▸ Zone z over C is represented by DBM Z of cardinality
(∣C∣+1)⋅(∣C∣+1)

▸ for C = x1 , . . . , xn, let C0 = { x0 , x1 , . . . , xn }with x0 = 0

▸ Z(i, j) = (c, ⪯) if and only if xi − xj ⪯ c

▸ Definition of Z for zone z:
▸ for xi − xj ⪯ c let Z(i, j) = (c, ⪯)
▸ if xi − xj is unbounded in z, set Z(i, j) =∞
▸ Z(0, i) = (≤, 0) and Z(i, i) = (≤, 0)

▸ Operations on bounds:
▸ (c, ⪯) <∞, (c, <) < (c, ≤), and (c, ⪯) < (c′ , ⪯) if c < c′

▸ c +∞ =∞, (c, ≤) + (c′ , ≤) = (c+c′ , ≤) and
(c, <) + (c′ , ⪯) = (c+c′ , <)
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Canonical DBMs

▸ A zone z is in canonical form if and only if:
▸ no constraint in z can be strengthened without reducing

[[ z ]] = { η ∣ η ∈ z }

▸ For each zone z: ∃ a unique and equivalent zone in canonical

form

▸ Represent zone z by a weighted digraph G = (V , E,w)where
▸ V = C0 is the set of vertices
▸ (xi , xj) ∈ E whenever xj − xi ⪯ c is a constraint in z
▸ w(xi , xj) = (⪯, c)whenever xj − xi ⪯ c is a constraint in z

▸ Zone z is in canonical form if and only if DBM Z satisfies:
▸ Z(i, j) ≤ Z(i, k) + Z(k, j) for any xi , xj , xk ∈ C0

▸ Compute canonical zone?
▸ use Floyd-Warshall’s all-pairs SP algorithm (timeO(∣C0∣

3))
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Minimal constraint systems

▸ A zone may contain redundant constraints
▸ e.g., in x−y < 2, y−z < 5, and x−z < 7, constraint x−z < 7 is

redundant
▸ Reduce memory usage: consider minimal constraint systems

▸ e.g., x−y ≤ 0, y − z ≤ 0, z − x ≤ 0, x−0 ≤ 3, and 0−x < −2
▸ is a minimal representation of a zone in canonical form with 12

constraints
▸ For each zone: ∃ a unique and equivalent minimal constraint

system

▸ Determining minimal representations of canonical zones:

▸ xi
(n,⪯)
−−−−−→ xj is redundant if an alternative path from xi to xj has

weight at most (n, ⪯)
▸ it suffices to consider alternative paths of length two

zero cycles require a special treatment
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Main operations on DBMs (1)

▸ Nonemptiness: is [[Z ]] ≠ ∅?
▸ search for negative cycles in the graph representation of Z, or
▸ mark Zwhen some upper bound is set to value < its lower
bound

▸ Inclusion test: is [[Z ]] ⊆ [[Z′ ]]?
▸ for DBMs in canonical form, test whether Z(i, j) ≤ Z

′(i, j), for all
i, j ∈ C0

▸ Delay: determine Z↑

▸ remove the upper bounds on any clock, i.e.,
▸ Z

↑(i, 0) =∞ and Z
↑(i, j) = Z(i, j) for j ≠ 0
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Main operations on DBMs (2)

▸ Conjunction: z & (xi − xj ⪯ n)
▸ if (n, ⪯) < Z(i, j) then Z(i, j) ∶= (n, ⪯) else do nothing
▸ put Z back into canonical form (in timeO(∣C0∣

2) using that only

Z(i, j) changed)

▸ Clock reset: xi ∶= 0
▸ Z(i, j) ∶= Z(0, j) and Z(j, i) ∶= Z(j, 0)

▸ Normalization
▸ remove all bounds x−y ⪯ m for which (m, ⪯) > (cx , ≤), and
▸ set all bounds x−y ⪯ mwith (m, ⪯) < (−cy , <) to (−cy , <)
▸ put the DBM back into canonical form (Floyd-Warshall)
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