
Verification

Lecture 27

Bernd Finkbeiner



Plan for today

▸ Deductive verification: basic mechanics
▸ Partial correctness
▸ Total correctness

2



REVIEW: Partial Correctness

A function is partially correct if

▸ when the function’s precondition is satisfied on entry,

▸ its postcondition is satisfied when the function returns (if it

ever does).

Inductive assertion method

▸ Each function and its annotion are reduced to a finite set of

verification conditions (VCs)

▸ VCs are formulas of first-order logic

▸ If all VCs are valid, then the function is partially correct.

3



REVIEW: Verification condition

▸ wp(F, assume c) ⇔ c → F

▸ wp(F[v], v ∶= e)⇔ F[e]
▸ wp(F, S1; S2; . . . ; Sn−1; Sn)⇔ wp(wp(F, Sn), S1; S2; . . . Sn−1)

The verification condition of basic path

� F

S1;

. . .

Sn;

� G

is

F → wp(G, S1; . . . ; Sn).

Traditionally, this verification condition is denoted by the

Hoare triple {F} S1; . . . ; Sn {G}. 4



Total correctness

▸ Total correctness: If the input satisfies the precondition, the

function eventually halts and produces output that satisfies

the postcondition.

▸ Termination: The function halts on every input satisfying the

precondition.

▸ Total correctness = partial correctness + termination

Termination proofs: Find a ranking function δ, mapping program

states to a set with a well-founded relation ≺, such that δ decreases

along every basic path.

5



Well-founded relations

A binary predicate ≺ over a set S is a well-founded relation iff there

does not exist an infinite decreasing sequence

s1 ≻ s2 ≻ s3 ≻ . . .

where si ∈ S. (Notation: s ≻ t iff t ≺ s.)

Examples:

▸ < is well-founded over the natural numbers.

▸ < is not well-founded over the rationals in [0, 1].

1 >
1

2
>
1

3
>
1

4
> . . .

is an infinite decreasing sequence

▸ < is not well-founded over the integers.

▸ The strict sublist relation is well-founded over the set of all lists.
6



Lexicographic relations

Given pairs (Si , ≺i) of sets Si and well-founded relations ≺i

(S1, ≺1), . . . , (Sm, ≺m)

construct

S = S1 × . . . × Sm,
i.e., the set ofm-tuples (s1, . . . , sm)where each si ∈ Si.
Define lexicographic relation ≺ over S as

(s1, . . . , sm) ≺ (t1, . . . , tm) ⇔
m

⋁
i=1

⎛
⎝si ≺ ti ∧

i−1

⋀
j=1

sj = tj
⎞
⎠

for si , ti ∈ Si.

If (S1, ≺1), . . . , (Sm, ≺m) are well-founded, so is (S, ≺).

7



Proving termination

▸ Choose setW with well-founded relation ≺.

Usually the set of n-tuples of natural numbers with the

lexicographic relation.

▸ Find ranking function δ mapping program states toW such

that δ decreases according to ≺ along every basic path.

Since is well-founded, there cannot exist an infinite sequence of

program states. The programmust terminate.

8



Verification conditions

For every basic path

� L1 ∶ F
↓ δ[x⃗]
S1
⋮
Sn
↓ κ[x⃗]
� Lj ∶ G

we prove the verification condition

F → wp(κ[x⃗] ≺ δ[x⃗o], S1; . . . ; Sn){x⃗0 ↦ x⃗}

9



Example: Bubble sort
�pre ⊺
�post ⊺
int[℄ BubbleSort(int[℄ a0) {
int[℄ a ∶= a0;
for � L1 ∶ i + 1 ≥ 0
↓ (i + 1, i + 1)
(int i ∶= ∣a∣ − 1; i > 0; i ∶= i − 1) {
for � L2 ∶ i + 1 ≥ 0 ∧ i − j ≥ 0
↓ (i + 1, i − j)
(int j ∶= 0; j < i; j ∶= j + 1) {
if (a[j] > a[j + 1]) {

int t ∶= a[j];
a[j] ∶= a[j + 1];
a[j + 1] ∶= t;

}
}

}
return a;

10



Example: Ackermann function

@pre x ≥ 0 ∧ y ≥ 0
@post rv ≥ 0
↓ (x, y)
int A
k(int x, int y) {
if (x = 0) {
return y + 1;
}
else if (y = 0) {
return A
k(x − 1, 1);
}
else {
int z := A
k(x, y − 1);
return A
k(x − 1, z);
}
}

11



Ackermann function
Verification conditions for the three basic paths

1. x ≥ 0 ∧ y ≥ 0 ∧ x ≠ 0 ∧ y = 0 ⇒ (x − 1, 1) <2 (x, y)
2. x ≥ 0 ∧ y ≥ 0 ∧ x ≠ 0 ∧ y ≠ 0 ⇒ (x, y − 1) <2 (x, y)
3. x ≥ 0 ∧ y ≥ 0 ∧ x ≠ 0 ∧ y ≠ 0 ∧ v1 ≥ 0 ⇒ (x − 1, v1) <2 (x, y)

Compute

wp((x − 1, z) <2 (x0, y0)
, assume x ≠ 0; assume y ≠ 0; assume v1 ≥ 0; z := v1)

⇔ wp((x − 1, v1) <2 (x0, y0)
, assume x ≠ 0; assume y ≠ 0; assume v1 ≥ 0)

⇔ x ≠ 0 ∧ y ≠ 0 ∧ v1 ≥ 0 → (x − 1, v1) <2 (x0, y0)
Renaming x0 and y0 to x and y, respectively, gives

x ≠ 0 ∧ y ≠ 0 ∧ v1 ≥ 0 → (x − 1, v1) <2 (x, y) .
Noting that path (3) begins by asserting x ≥ 0 ∧ y ≥ 0, we finally
have

x ≥ 0 ∧ y ≥ 0 ∧ x ≠ 0 ∧ y ≠ 0 ∧ v1 ≥ 0 ⇒ (x − 1, v1) <2 (x, y) . 12



Simple heuristics for developing annotations

Basic facts in loop invariants

Loop of LinearSearch:

for � L ∶ ⊺
(int i ∶= l; i ≤ u; i ∶= i + 1) {
if (a[i] = e) return true;

}

Because of the initialization of i, the loop guard, and because i is

only modified in the loop update, we know that at L, l ≤ i ≤ u + 1.

for � L ∶ l ≤ i ≤ u + 1
(int i ∶= l; i ≤ u; i ∶= i + 1) {
if (a[i] = e) return true;

}

Note that on the final iteration, the loop guard is not true.
13



Basic facts in loop invariants

Loops of BubbleSort:

for � L1 ∶ −1 ≤ i < ∣a∣
(int i ∶= ∣a∣ − 1; i > 0; i ∶= i − 1) {
for � L2 ∶ 0 ≤ i < ∣a∣ ∧ 0 ≤ j ≤ i

(int j ∶= 0; j < i; j ∶= j + 1) {
if (a[j] > a[j + 1]) {

int t ∶= a[j];
a[j] ∶= a[j + 1];
a[j + 1] ∶= t;

}
}

}

14



The precondition method

1. Identify a fact F that is known at a location L in the function but

that is not supported by annotations earlier in the function.

@L ∶ F
2. Repeat:

▸ Compute the weakest precondition of F backward through the

function, ending at loop invariants or at the beginning of the

function.
▸ At each new annotation location L′, generalize the new facts to

new formula F′.

@L′ ∶ F′

15



Example: Linear search

�post rv↔ ∃i. l ≤ i ≤ u ∧ a[i] = e
for � L ∶ l ≤ i ≤ u + 1

(int i ∶= l; i ≤ u; i ∶= i + 1) {
if (a[i] = e) return true;

}
return false;

(4) � L ∶ F1 ∶ l ≤ i ≤ u + 1
S1 ∶ assume i > u
S2 ∶ rv ∶= false
�post F2 ∶ rv↔ ∃i. l ≤ i ≤ u ∧ a[i] = e

The VC {F1} S1; S2 {F2} is not valid!

16



Example: Linear search

(4) � L ∶ F1 ∶ l ≤ i ≤ u + 1
S1 ∶ assume i > u
S2 ∶ rv ∶= false
�post F2 ∶ rv↔ ∃i. l ≤ j ≤ u ∧ a[j] = e

We propagate F2 back to the loop invariant:

wp(F2, S1; S2)
⇔ wp(wp(F2, rv ∶= false), assume i > u)
⇔ i > u→ ∀j. l ≤ j ≤ u→ a[j] ≠ e

With some intuition...

G′ ∶ ∀j. l ≤ j < i → a[j] ≠ e

17



Summary

▸ Specification of sequential programs via function

preconditions and function postconditions. Other annotations:

loop invariants, assertions.

▸ Partial correctness is proven with an inductive argument.

Additional annotations strengthen the inductive argument.

Key notions: basic paths, program state, verification

conditions, inductive invariants.

▸ Termination is proven by mapping the program states to a

domain with a well-founded relation via a ranking function.

Typically, additional annotations are needed.

→ basic mechanics of deductive verification.

18


