Verification

Lecture 27

Bernd Finkbeiner

COlm UNIVERSITAT
"“"Illl"“" DES

I sAARLANDES

Plan for today

» Deductive verification: basic mechanics

» Partial correctness
» Total correctness

REVIEW: Partial Correctness

A function is partially correct if
» when the function’s precondition is satisfied on entry,

» its postcondition is satisfied when the function returns (if it
ever does).

Inductive assertion method

» Each function and its annotion are reduced to a finite set of
verification conditions (VCs)

» VCs are formulas of first-order logic
» If all VCs are valid, then the function is partially correct.

REVIEW: Verification condition

» wp(F, assumec) < c—F
» wp(F[v],v:=e) < F[e]
> Wp(F,S1;52; .. -;Sn—1;5n) = Wp(Wp(F,Sn),S1;52; .. .Sn_1)

The verification condition of basic path

QF
S1;
Sni
QG

is

Traditionally, this verification condition is denoted by the
Hoare triple {F} Sy;...;Sn {G}.

Total correctness

» Total correctness: If the input satisfies the precondition, the
function eventually halts and produces output that satisfies
the postcondition.

» Termination: The function halts on every input satisfying the
precondition.

» Total correctness = partial correctness + termination

Termination proofs: Find a ranking function &, mapping program
states to a set with a well-founded relation <, such that § decreases
along every basic path.

Well-founded relations

A binary predicate < over a set S is a well-founded relation iff there
does not exist an infinite decreasing sequence

S1 >SS >S3> ...
where s; € S. (Notation: s > tiff t < s.)

Examples:
» <is well-founded over the natural numbers.
» <is not well-founded over the rationals in [0, 1].

1T 1 1
1>=>=>-=>...
2 3 4
is an infinite decreasing sequence
» <is not well-founded over the integers.

» The strict sublist relation is well-founded over the set of all lists.
6

Lexicographic relations

Given pairs (S;, <;) of sets S; and well-founded relations <;

(S1a<1)a--->(5m,<m)

construct
S=51%x...x5n,

i.e, the set of m-tuples (s1,...,5m) where each s; € S;.
Define lexicographic relation < over S as

m i-1
(S],...,Sm)<(t1,...,tm) <~ \/(Si<t,'/\/\5j:tj)

i=1 j=1

fors;, t; € S;.

If (51,<1)5...,(Sm,<m) are well-founded, so is (S, <).

Proving termination

» Choose set W with well-founded relation <.

Usually the set of n-tuples of natural numbers with the
lexicographic relation.

» Find ranking function § mapping program states to W such
that & decreases according to < along every basic path.

Since is well-founded, there cannot exist an infinite sequence of
program states. The program must terminate.

Verification conditions

For every basic path

o L1 :F
1 8[x]
51
Sn
L x[X]
Q Lj : G

we prove the verification condition

F - wp(k[X] < 8[Xo0],S1;...:5n){X0 — X}

Example: Bubble sort
Opre T
Gpost T
int[] BubbleSort(int[] adg) {
int[] a:=ap;
for @ L1:i+1>0
L@i+1,i+1)
(int i:=la|-1;i>0;i:=i—-1) {
for @ Ly:i+1>0Ai—-j2>0
V(i+1,i—j)
(int j:=0;j<i;j:=j+1) {
if @a[j]>alj+1) {
int t:=a[j];
aljl=alj+1];
alj+1]:=t;
}
}
}

return a;

Example: Ackermann function

Oprex>0 A y>0
@postrv >0
L (xy)
int Ack(int x, inty) {
if (x=0) {
returny + 1;
}
elseif (y=0) {
return Ack(x - 1,1);
}
else {
int z:=Ack(x,y — 1);
return Ack(x - 1,2);
¥
}

Ackermann function
Verification conditions for the three basic paths
T.x>20Ay>20Ax+0Ay=0= (x-1,1) <2 (x,y)
2.x20Ay20Ax£0Ay+0 = (x,y—1)<2(xy)
3.X20Ay20AXxE0AYy#0Avi 20 = (x-1,v1) <2 (X, Y)
Compute

wp((x = 1,2) <2 (X0, ¥0)
, assume X # 0; assume y # 0; assume v; > 0; z:=v;)

< wp((x—1,v1) <2 (X0,¥0)
, assume X # 0; assume y # 0; assume v; > 0)
< x+0Ay£0A v >0 > (x=1,v1) <2 (X0, ¥0)

Renaming xp and yo to x and y, respectively, gives
Xx#0Ayx0Avi20 - (x-1,v1) <2 (x,Yy).

Noting that path (3) begins by asserting x > 0 A y > 0, we finally
have

X20Ay20Ax£0Ay+0Avi20 = (x-1,v1) <2 (X%,Y) .,

Simple heuristics for developing annotations

Basic facts in loop invariants
Loop of LinearSearch:

for @ L:T
(int i=1; i<u; i=i+1) {
if (a[i]=e) return true;

}

Because of the initialization of i, the loop guard, and because i is
only modified in the loop update, we know thatat L,/ <i<u+ 1.

for @ L:/<i<u+1
(int i:=1; i<u; i:=i+1) {
if (a[i]=e) return true;

}

Note that on the final iteration, the loop guard is not true.

Basic facts in loop invariants

Loops of BubbleSort:
for @ Ly:-1<i<]|d|
(int i:=la|-1;i>0;i:=i-1) {
for @ [,:0<i<|aA0<j<i
(int j:=0;j<i;j:=j+1) {
if (afj]>alj+1] {
int t:=a[j];
aljl=alj+1];
alj+1]:=t;
}
}
}

The precondition method

1. ldentify a fact F that is known at a location L in the function but
that is not supported by annotations earlier in the function.

OL:F

2. Repeat:

» Compute the weakest precondition of F backward through the
function, ending at loop invariants or at the beginning of the
function.

» At each new annotation location L', generalize the new facts to
new formula F'.

oL :F

Example: Linear search

@post rv« 3Ji. I<i<unali]=e
for @ L:/<i<u+1

(int i:=1; i<u; i:=i+1) {

if (a[i]=e) return true;

}

return false;

(4 @ L:F:l<i<u+1
S :assumei>u
Sy :rv = false
Gpost Fr:rv < 3i. I<i<unali]=e

The VC {F1} S1; S, {F2} is not valid!

Example: Linear search

(4 Q@L:Fi:l<i<u+1
S :assumei>u
Sy :rv = false
@post Fr:rv e 3Ji. I<j<unalj]=e

We propagate F, back to the loop invariant:

wp(F2,51;52)
< wp(wp(Fy,rv:=false), assumei > U)
< i>u-Vjil<j<u—alj]+e

With some intuition...

G :Vjl<j<i—aljlze

Summary

» Specification of sequential programs via function
preconditions and function postconditions. Other annotations:
loop invariants, assertions.

» Partial correctness is proven with an inductive argument.
Additional annotations strengthen the inductive argument.
Key notions: basic paths, program state, verification
conditions, inductive invariants.

» Termination is proven by mapping the program states to a
domain with a well-founded relation via a ranking function.
Typically, additional annotations are needed.

— basic mechanics of deductive verification.

