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Plan for today

» Deductive verification

» First-order theories
» Quantifier Elimination



Review: First-Order Theories

First-order theory T defined by
» Signature X - set of constant, function, and predicate symbols
» Set of axioms At - set of closed (no free variables) Z-formulae

>-formula constructed of constants, functions, and predicate
symbols from %, and variables, logical connectives, and quantifiers

The symbols of X are just symbols without prior meaning — the
axioms of T provide their meaning

A X-formula F is valid in theory T (T-valid, also T = F),
if every interpretation / that satisfies the axioms of T,
i.e.l = AforeveryA € Ar (T-interpretation)
also satisfies F,
el = F



A Z-formula F is satisfiable in T (T-satisfiable), if there is a
T-interpretation (i.e. satisfies all the axioms of T) that satisfies F

Two formulae F; and F; are equivalent in T (T-equivalent), if
T E F1 > Fz,
i.e. if for every T-interpretation |,/ = Fiffl = F,

A fragment of theory T is a syntactically-restricted subset of
formulae of the theory.

Example: quantifier-free segment of theory T is the set of
quantifier-free formulae in T.

Atheory T is decidable if T = F (T-validity) is decidable for every
>-formula F,

i.e., there is an algorithm that always terminate with “yes’,

if F is T-valid, and “no’, if F is T-invalid.
A fragment of T is decidable if T = Fis decidable for every
Y-formula F in the fragment.



Theory of Equality T¢

Signature

>_:{=ab,c-f,g,h,-,p,qr -}

consists of

» =, abinary predicate, interpreted by axioms.
» all constant, function, and predicate symbols.

Axioms of T¢
1. Vx.x=x (reflexivity)
2. VX, y.x=y > y=x (symmetry)
3. VX, ¥,z X=y ANy=2 - X=2 (transitivity)
4. for each positive integer n and n-ary function symbol f,

X1y Xy Yis e Y0 NiXi=Yi = FOa,.. . xn) =fOh, ... n)
(congruence)

. for each positive integer n and n-ary predicate symbol p,

VX5 oo s X Yoo Yn- NiXi=Yi = (p(as...%0) < pO3as- .5 ¥n))
(equivalence)

Congruence and Equivalence are axiom schemata. For example,
Congruence for binary function f, forn = 2:

VX, X, Y1, Y2 X1 =1 A Xo =y2 = H(%,%2) = (11, y2) 5



Te is undecidable.

The quantifier-free fragment of T¢ is decidable.
Very efficient algorithm.




Natural Numbers and Integers

Natural numbers N ={0,1,2,---}
Integers Z={--2,-1,0,1,2,-}

Three variations:
» Peano arithmetic Tpa: natural numbers with addition and
multiplication
» Presburger arithmetic Ty: natural numbers with addition

» Theory of integers Ty: integers with +, —, >



1. Peano Arithmetic Tpy (first-order arithmetic)

ZPA: {O) 1) +5 5 =}

The axioms:
1. Vx.=(x+1=0) (zero)
2.9,y x+1=y+1 > x=y (successor)
3. F[O] A (Vx.F[x] - F[x+1]) — Vx.F[x] (induction)
4, Vx.x+0=x (plus zero)
5 96,y.x+(y+1)=(x+y) +1 (plus successor)
6. Vx.x-0=0 (times zero)
7. 9%y.x-(y+1)=x-y+x (times successor)

Line 3 is an axiom schema.
Example: 3x + 5 = 2y can be written using Zpa as

X+X+X+1+1+1+1+1=y+y



We have > and > since
3x+5>2y writeas 3z.z#0 A3x+5=2y+z
3x+5>2y writeas 3Jz.3x+5=2y+z

Example:

» Pythagorean Theorem is Tpa-valid
Iy, zxx0AYy+0AZz+0 A XX+Yyy=2Z

» Fermat’s Last Theorem is Tpa-invalid (Andrew Wiles, 1994)
In.n>2 - Iy, zx+0Ay+0Az£0AX"+y" =2"

Remark (Godel’s first incompleteness theorem)

Peano arithmetic Tps does not capture true arithmetic:

There exist closed Xps-formulae representing valid propositions of
number theory that are not Tps-valid.

The reason: Tpa actually admits nonstandard interpretations

Satisfiability and validity in Tpy is undecidable.
Restricted theory — no multiplication




2. Presburger Arithmetic Ty

En: {0, 1, +, =} no multiplication!
Axioms Ty:
1. Vx.-(x+1=0) (zero)
2. 9,y.x+1=y+1 > x=y (successor)
3. F[O] A (Vx.F[x] - F[x+1]) — Vx.F[x] (induction)
4, Vx.x+0=x (plus zero)
5. 96y.x+(y+1)=(x+y)+1 (plus successor)

3is an axiom schema.

Tn-satisfiability and Ty-validity are decidable
(Presburger, 1929)




3. Theory of Integers T,

%7:4{...,-2,-1,0,1,2, ...,-3,-2,2,3, ..., +, -, =, >}
where
.,—2,-1,0,1, 2, ...are constants

> ...,-3,-2,2,, 3, ...are unary functions
(intended 2 - x is 2x)

> +)_)=)>

Tz and Ty have the same expressiveness

e Every Tz-formula can be reduced to Xy-formula.

Example: Consider the Tz-formula
Fo: Vw,x.3y,z.x+2y-z-13>-3w+5

Introduce two variables, v, and v, (range over the nonnegative
integers) for each variable v (range over the integers) of Fy



VWp, Wns Xp, Xn. 3Yps Yn»> Zps> Zn.

F13
(Xp=Xn) +2(Yp —¥n) — (2o —2n) = 13> -3(Wp —Wy) +5

Eliminate — by moving to the other side of >

E . VWp, Wns Xp, Xn. 3Yps Yn»> Zps Zn.
2 .
Xp +2Yp +2Zn +3Wp > Xp +2Yn +2Zp +13+3W, +5

Eliminate >

VWp, Wns Xps Xn. 3Yps Yns> Zp> Zn. U.
-(u=0) A
Xp+Yp+Yp+2Zn+Wp+Wpy+Wp

=Xn+Yn+Yn+Zp+Wp+Wy+Wy+u
HF+T+1+T+T+1+1+1+1
HF+T+1+T+T+1+1+1+1.

F3I

which is a Ty-formula equivalent to Fy. 2



e Every Ty-formula can be reduced to £z-formula.

Example: To decide the Ty-validity of the Ty-formula
Vx.dy.x=y+1
decide the Tz-validity of the Tz-formula
Vx.x20 - Jy.y>20 A x=y+1,

where t; > t; expandstoti=t, v 1>t

Ty-satisfiability and Ty-validity is decidable




Rationals and Reals

>={0,1, +, -, - = >}

> >

» Theory of Reals T (with multiplication)

=2 = x:i\/i

» Theory of Rationals Tg (no multiplication)

7
2X=7 = X==
— 2

X+X

Note: Strict inequality OK

Vx,y.3z.x+y>z
rewrite as

Vx,y.3z. ~(x+y=2) A X+y>2z



1. Theory of Reals Tg

ZR: {0) 1) +, = S 2}
with multiplication.

Example:

is Tr-valid.

Va,b,c. b’ —4ac>0 < Ix.ax’ +bx+c=0

Tr is decidable (Tarski, 1930)
High time complexity




2. Theory of Rationals Tg

Zo: {0, 1, + -, = >}
without multiplication.

Rational coefficients are simple to expressin Tg

Example: Rewrite
1 2
—X+=-y>4
2 3y

as the Zg-formula
3x+4y >24

Tg is decidable
Quantifier-free fragment of T is efficiently decidable




Recursive Data Structures (RDS)
1. RDS theory of LISP-like lists, Tcons

Zcons ¢ {cons, car, cdr, atom, =}

where
cons(a, b) - list constructed by concatenating a and b
car(x) - left projector of x: car(cons(a, b)) = a

cdr(x)  —right projector of x: cdr(cons(a, b)) = b
atom(x) - trueiff x is a single-element list

Axioms:
1. The axioms of reflexivity, symmetry, and transitivity of =
2. Congruence axioms

VX],Xz,y1,y2.X1 =X2 ANY1=)Y2 —> COHS(X],}l]) = COﬂS(Xz,yz)
Vx,y.x=y — car(x) = car(y)
Vx,y.x=y — cdr(x) = cdr(y)



N S uoA

Congruence axiom for atom

Vx,y.x=y — (atom(x) < atom(y))

Vx,y.car(cons(x,y)) = x (left projection)
Vx,y.cdr(cons(x,y)) =y (right projection)
Vx. -atom(x) — cons(car(x),cdr(x)) =x (construction)
Vx,y. -atom(cons(x,y)) (atom)

Tcons is undecidable
Quantifier-free fragment of Tcons is efficiently decidable




2. Lists + equality

Teons = Te U Teons

Signature: 2E U Zcons

(this includes uninterpreted constants, functions, and predicates)

Axioms: union of the axioms of Tg and Tons

Toons 1S undecidable
Quantifier-free fragment of T, is efficiently decidable




Theory of Arrays

1. Theory of Arrays Tx

Signature
Za: {L)(<a0) =)
where
» a[i] binary function -
read array a at index i (“read(a,i)”)

» a(i< v) ternary function -
write value v to index i of array a (“write(a,i,e)")

Axioms
1. the axioms of (reflexivity), (symmetry), and (transitivity) of Tg

2. Va,i,j.i=j - a[i] =al[j] (array congruence)
3. Va,v,i,j.i=j — a(i<v)[jl=v (read-over-write 1)
4. Ya,v,i,j.i+j — a(i< v)[j] =alj] (read-over-write 2)

20



Note: = is only defined for array elements
F:alil]=e - ali<e)=a
not Ta-valid, but
F':a[i]=e - Vj.a(i< e)[j] =a[j],

is Ta-valid.

Ta is undecidable
Quantifier-free fragment of T, is decidable

21



2. Theory of Arrays T, (with extensionality)

Signature and axioms of T, are the same as T, with one additional
axiom
Va,b. (Vi.a[i] =b[i]) <& a=b (extensionality)
Example:
F:ali]=e - a(i<e)=a

is Tx-valid.

T, is undecidable
Quantifier-free fragment of T, is decidable

22



Decidability of first-order theories

| Theory | full | QFF |
Te Equality no
Tea Peano arithmetic no | no
TN Presburger arithmetic
Tz integers
Tr reals
To rationals
Tcons  lists no
Ta arrays no
Tx arrays with extensionality | no




Quantifier Elimination
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Quantifier Elimination (QE)

Algorithm for elimination of all quantifiers of formula F until
quantifier-free formula G that is equivalent to F remains

Note: Could be enough to require that F is equisatisfiable to F’,
that is F is satisfiable iff F is satisfiable

A theory T admits quantifier elimination if there is an algorithm that

given X-formula F returns a quantifier-free 2-formula G that is
T-equivalent to F.

25



Example

» For Xg-formula
F: 3x.2x =y,
quantifier-free Tg-equivalent Xg-formulais
G:T

» For 24-formula

F: 3x.2x =y,
there is no quantifier-free T-equivalent Xz -formula.

» Let T be Ty with divisibility predicates |.
For Z5-formula
F: Ix.2x =y,
a quantifier-free T5-equivalent Z--formula is
G:2|y.
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