Verification

Lecture 31

Martin Zimmermann

COlm UNIVERSITAT
"H"IHIIMI DES
JI SAARLANDES

Plan for today

» Deductive verification

» Congruence closure
» DAG method

Review: The Theory of Equality T¢

:{=,a,b,¢,....f, g, h,p,q 71 ...}
uninterpreted symbols:
e constants a,b,c,...
e functions f,g,h,...
e predicates p,q,r,...

Example:
x=y A f(x)#f(y) Te-unsatisfiable
f(x)=f(y) nxzy Te-satisfiable
f(f(f(a))) =a A F(F(F(F((a))))) =a A f(a) #a

Te-unsatisfiable

Axioms of T

1. Vx.x=x (reflexivity)
2. Y,y.Xx=y - y=x (symmetry)
3. VX,y,ZX=y AYy=Z > X=2Z (transitivity)

define = to be an equivalence relation.
Axiom schema
4. for each positive integer n and n-ary function symbol f,
VXt X Yo oo Yne NiXi = Yi

= f(xq,....%0) =f(Y1, -, ¥n) (congruence)
For example,
Vx,y.x=y — f(x) =f(y)

Then

x=9g(y,z) — f(x) =f(g(y,2))
is Tg-valid.

Axiom schema

5. for each positive integer n and n-ary predicate symbol p,
VX1)~ X Y- Yn. /\Xi =Yi —
i
(p(X15-..5X%n) < pY1s---3Yn)) (equivalence)

Thus,
x=y = (p(x) < p(y))

is Tg-valid.

We discuss Tg-formulae without predicates
For example, for Zg-formula

F: p(x) A q(x,y) A q(y.z) - -q(x,2)

introduce fresh constant e, and fresh functions f, and fg, and
transform F to

G: fo(x) =0 A fo(x,y) =0 A fa(y,2) =0 — fo(x,2) % ®.

Equivalence and Congruence Relations: Basics

Binary relation R over set S
e is an equivalence relation if

» reflexive: Vs € S. sRs;

» symmetric: Vs1,5, € S. s1Rsy; — SaRsy;

» transitive: Vs;, 52,53 € S. 51RS2 A SoRs3 — s1Rss.
Example:
Define the binary relation =, over the set Z of integers

mz=;n iff (mmod2)=(nmod2)

That is, m, n € Z are related iff they are both even or both odd.
=, is an equivalence relation

e is a congruence relation if in addition

n
Vs, t. /\ siRt; — f(g)Rf(f) .
i=1

Classes

equivalence .
or { 9 }relatlon R over set S,

congruence
ival
The { equivaience } class of s € Sunder Ris
congruence
[s]a €' {s' €S : sRS'}.
Example:

The equivalence class of 3 under =, over Z is

[3]z, ={n€Z : nisodd} .

Partitions
A partition P of S is a set of subsets of S that is
» total (U S') =S
S'eP
> disjoint VS],SZ eP. 51 N 52 =g

Quotient
equivalence

The quotient S/R of S by { congruence

}relation Ris the set of

equivalence
congruence

}classes
S/R = {[s]g : s€S}.
It is a partition

Example: The quotient Z/ =; is a partition of Z. The set of
equivalence classes

{{ne€Z : nisodd}, {neZ : niseven}}

Note duality between relations and classes

Refinements

Two binary relations R; and R, over set S.
Ry is refinement of Ry, Ry < Ry, if

VS],SZ €S. S]R]Sz - S]RzSz .
R; refines R,.

Examples:
» ForS={a,b},
R1 : {GR]b} Rz : {Gsz, szb}
Then Ry < R,
» ForsetsS,
Ry induced by the partition P : {{s}
R, induced by the partition P, : {S}
Then R1 < Rz.
» ForsetZ
Ri: {xRyy : xmod2=ymod?2}
Ry : {xRyy : xmod 4 =y mod4}
Then Ry < R;.

:5eS}

Closures

Given binary relation R over S.
The equivalence closure RE of R is the equivalence relation s.t.
» Rrefines RE, i.e. R < RE;
» for all other equivalence relations R’ s.t. R < R/,
either R’ = RE or RE < R’
That is, R is the “smallest” equivalence relation that “covers” R.
Example: If S = {a,b,c,d} and R = {aRb, bRc, dRd}, then

e aRb,bRc,dRd € RE since R ¢ RE;
e aRa,bRb,cRc € RE by reflexivity;

e bRa, cRb € RE by symmetry;

eadRc e RE by transitivity;

e cRa € RE by symmetry.
Hence,

RE = {aRb, bRa, aRa, bRb, bRc, cRb, cRc, aRc, cRa, dRd'} .

Similarly, the congruence closure RC of R is the “smallest”
congruence relation that “covers” R.

Congruence Closure Algorithm
Given Xg-formula
F:si=ti A - ASpy=tm A Smi1 Ftme1 A - A Sp 1y
decide if F is Zg-satisfiable.
Definition: For Xg-formula F,
the subterm set S of F is the set that contains precisely
the subterms of F.

Example: The subterm set of

F: f(a,b)=a A f(f(a,b),b) +a

Sr=A{a, b, f(a,b), f(f(a,b),b)} .

The Algorithm
Given Xg-formula F
Fisi=ti Ao A Sm=tm A Smu1 #Ftmur A - A Sp £ty

with subterm set Sg, F is Tg-satisfiable iff there exists a congruence
relation ~ over Sf such that

» foreachie {1,...,m},s;~ t;;
» foreachie {m+1,...,n},s; ¢ t..

Such congruence relation ~ defines Tg-interpretation / : (D), &) of F.
D consists of |Sg/ ~ | elements, one for each congruence class of S¢
under ~.

Instead of writing | £ F for this Tg-interpretation, we abbreviate
~E F

The goal of the algorithm is to construct the congruence relation of

Sk, or to prove that no congruence relation exists.
13

F: Si=t A ASpm=1ny ASmiEFltma A o A Sp# i

generate congruence closure search for contradiction

The algorithm performs the following steps:
1. Construct the congruence closure ~ of

{S] = t’],...,Sm = tm}
over the subterm set S¢. Then
~ES = A NSy =ty

2. Ifforanyie {m+1,...,n},s; ~ tj, return unsatisfiable.
3. Otherwise, ~& F, so return satisfiable.

How do we actually construct the congruence closure in Step 17

Initially, begin with the finest congruence relation ~¢ given by the
partition

{{s} : seSF}.
That is, let each term of S¢ be its own congruence class.

Then, foreachi € {1,...,m}, impose s; = t; by merging the
congruence classes

[Si]wq and [ti]NH

to form a new congruence relation ~;. To accomplish this merging,
» form the union of [s;]., , and [t;].,,
» propagate any new congruences that arise within this union.

The new relation ~; is a congruence relation in which s; ~ t;.

