Verification

Lecture 32

Martin Zimmermann

COlm  UNIVERSITAT
"H"IHIIMI DES
JI SAARLANDES



Plan for today

» Deductive verification

» Congruence closure DAG method
» Recursive Data Structures



F: Si=t A ASpm=1ny ASmiEFltma A o A Sp# i

generate congruence closure  search for contradiction

The algorithm performs the following steps:
1. Construct the congruence closure ~ of

{S] = t’],...,Sm = tm}
over the subterm set S¢. Then
~ES = A NSy =ty

2. Ifforanyie {m+1,...,n},s; ~ tj, return unsatisfiable.
3. Otherwise, ~& F, so return satisfiable.

How do we actually construct the congruence closure in Step 17



Initially, begin with the finest congruence relation ~¢ given by the
partition

{{s} : seSF}.
That is, let each term of S¢ be its own congruence class.

Then, foreachi € {1,...,m}, impose s; = t; by merging the
congruence classes

[Si]wq and [ti]NH

to form a new congruence relation ~;. To accomplish this merging,
» form the union of [s;]., , and [t;].,,
» propagate any new congruences that arise within this union.

The new relation ~; is a congruence relation in which s; ~ t;.



Directed Acyclic Graph (DAG)

For Xg-formula F, graph-based data structure for representing the
subterms of S¢ (and congruence relation between them).

f(f(a,b),b)

G f(a,b)
ap 0

Efficient way for computing the congruence closure algorithm.



Te-Satisfiability (Summary of idea)

f(a,b) =a A f(f(a,b),b) +a

Initial DAG f(a,b)=a = f(a,b) ~a,b~b =
merge f(a,b) a f(f(a,b),b) ~f(a,b)
merge f(f(a,b),b)
f(a,b)
_ _explicit equation .... by congruence

find f(f(a,b),b) =a=finda

f(f(a,b),b) a } = Unsatisfiable



DAG representation
type node = {

id

fn

args

mutable find

mutable ccpar

}

id

node’s unique identification number
string

constant or function name

id list

list of function arguments

id

the representative of the congruence class
id set

if the node is the representative for its
congruence class, then its ccpar
(congruence closure parents) are all
parents of nodes in its congruence class

ccpar is initialized with the set containing the parents of the node (if it

has any), find with the id of the node.
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DAG Representation of node 2

type node = {
id
fn
args
mutable find
mutable ccpar




DAG Representation of node 3

type node = {
id : id
fn : string
args : idlist
mutable find : id
mutable ccpar : idset
}

0
/



The Implementation

find function
returns the representative of node’s congruence class

let recfindi=
letn = nodeiin
if n.find =ithenielsefind n.find

Example: find2=3
find3 =3
3is the representative of 2.



union function

let unionijip =
let n; = node (find iy) in
let n; = node (find ;) in
n.find < ny.find;
Nny.ccpar < Ny.ccpar U Np.ccpar;
m.ccpar <

n, is the representative of the union class



Example

union 12 m=1
1.find < 3
3.ccpar < {1,2}
l.ccpar < @

n2=3



ccpar function

Returns parents of all nodes in i's congruence class

let ccpari =
(node (find i)).ccpar

congruent predicate
Test whether iy and i; are congruent

let congruentij i =
let ny = nodei; in
letn, = nodei; in
ni.fn=ny.fn
A |m.args| = |ny.args|
AVie{1,...,|m.args|}. find ny.args|i] = find ny.args|i]



Example:

Are 1and 2 congruent?

fn fields — both f

# of arguments — same

left arguments f(a, b) and a — both congruent to 3
rightargumentsbandb  — both 4 (congruent)

Therefore 1and 2 are congruent.



merge function

let rec mergeij iy =
if find i # find i; then begin
let P;, = ccparijin
let P, = ccpari; in
union iy ip;
foreachty, t; € P, x P, do
if findt; # findt, A congruentt; t;
then merge t) t,
done
end

P;, and P;, store the current values of ccpar iy and ccpar is.



Decision Procedure: Tg-satisfiability

Given Xg-formula

Fisiy=ti A ASp=1tm A Sma #Ftmer A - A Sp £ty

with subterm set S¢, perform the following steps:

1.

Construct the initial DAG for the subterm set Sg.

2. Forie{1,...,m}, merges; t;.
3.
4. Otherwise (if find s; = find t; forallie {m +1,...,n}) return

If find s; = find t; for somei e {m+1,...,n}, return unsatisfiable.

satisfiable.



Theorem (Sound and Complete)

Quantifier-free conjunctive Xg-formula F is Tg-satisfiable iff the
congruence closure algorithm returns satisfiable.



Recursive Data Structures



Recursive Data Structures

Quantifier-free Theory of Lists Tcons

Zcons ¢ {cons, car, cdr, atom, =}

e constructor cons :cons(a, b) list constructed by
prependingato b

e left projector car :car(cons(a,b)) =a
e right projector cdr : cdr(cons(a, b)) = b
e atom :unary predicate



Axioms of Tcons

» reflexivity, symmetry, transitivity

» congruence axioms:
VX],Xz,y1,y2.X1 =X2 ANY1=Yr2 —> COﬂS(X1,y1) = COﬂS(Xz,yz)

Vx,y.x=y — car(x) = car(y)
Vx,y.x=y — cdr(x) = cdr(y)

» equivalence axiom:

Vx,y.x =y — (atom(x) < atom(y))

(A1) Vx,y. car(cons(x,y)) = x (left projection)
(A2) Vx,y.cdr(cons(x,y)) =y (right projection)
(A3) Vx. -atom(x) — cons(car(x),cdr(x)) =x  (construction)
(A4) Vx,y. ~atom(cons(x,y)) (atom)
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Simplifications

» Consider only quantifier-free conjunctive X ons-formulae.
Convert non-conjunctive formula to DNF and check each
disjunct.

» —atom(u;) literals are removed:

replace  -atom(u;) with u;=cons(u},u?)

by the (construction) axiom.

» Because of similarity to Xg, we sometimes combine Xcons U 2.

21



Algorithm: Tons-Satisfiability (the idea)

F: Si=t A A Sy =tm

generate congruence closure
AN Smil Ftma1 A o A Sp E Ty

search for contradiction
A atom(up) A -+ A atom(u))

search for contradiction
where s;, t;, and u; are Tcons-terms
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Algorithm: Tons-Satisfiability

1. Construct the initial DAG for S¢
2. for each node n with n.fn = cons

» add car(n) and merge car(n) n.args|1
» add cdr(n) and merge cdr(n) n.args[2]

by axioms (A1), (A2)
3. for1<i<m, merges;t;

—

4. form +1<i < n,iffinds; = find t;, return unsatisfiable

5. for1<i</,ifdv.findv =findu; A v.fn = cons,
return unsatisfiable

6. Otherwise, return satisfiable
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Example:
Given (Zcons U Zg )-formula
car(x) = car(y) A cdr(x) = cdr(y)
A —atom(x) A —atom(y) A f(x) =f(y)
where the function symbol f is in Zg

car(x) = car(y)
cdr(x) = cdr(y)
F':  x=cons(u,v)
y = cons(uy, v3)
f(x) = f(y)

Recall the projection axioms:
(A1) Vx,y.car(cons(x,y)) = x
(A2) Vx,y.cdr(cons(x,y)) =y

> > > >

(1)
)
(3)
(4)
(5)
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Example(cont): congruence

Fis unsatisfiable
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