Verification

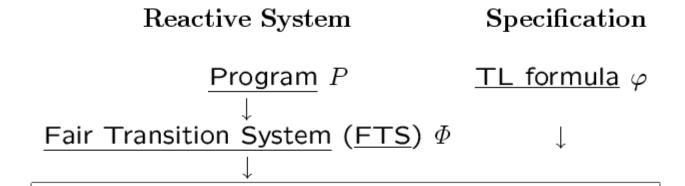
Lecture 34

Andrey Kupriyanov, Martin Zimmermann

Plan for today

- Deductive verification
 - The SLAB Model Checker

Deductive verification of reactive systems



Verification

Proof $Seq(\Phi) \subseteq Seq(\varphi)$ i.e., all sequences of Φ are models of φ

Counterexample sequence σ of Φ , s.t. $\sigma \notin \text{Seq}(\varphi)$

Symbolic Transition Systems

- A (finite) set of variables $V \subseteq \mathcal{V}$ System variables: data variables + control variables
- Initial condition θ first-order assertion over V that characterizes all initial states
- A (finite) set of transitions \mathcal{T} For each $\tau \in : \tau: \Sigma \mapsto 2^{\Sigma}$

 τ is represented by the transition relation $\rho(\tau)$ (next-state relation)

Inductive Assertions

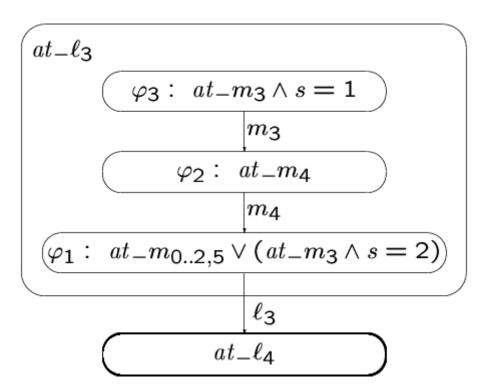
```
For assertion q, B1. \qquad P \Vdash \Theta \to q B2. \qquad P \Vdash \{q\} \ \mathcal{T} \ \{q\} P \models \Box q B-INV
```

- ullet q is inductive if B1 and B2 are (state) valid
- ullet By rule ${ t B-INV},$ every inductive assertion q is P-invariant
- The converse is not true

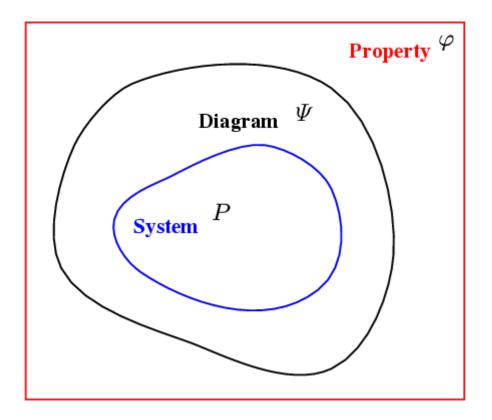
Verification Diagrams

Verification diagrams allow a graphical representation of a proof of a temporal property.

Example:



Idea



 $\mathcal{L}(P)\subseteq\mathcal{L}(\Psi)$ proved by verification conditions.

 $\mathcal{L}(\varPsi) {\subseteq} \mathcal{L}(\varphi)$ follows from well-formedness of diagram

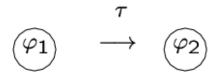
P-Valid Verification Diagrams

Directed labeled graph with

Verification conditions

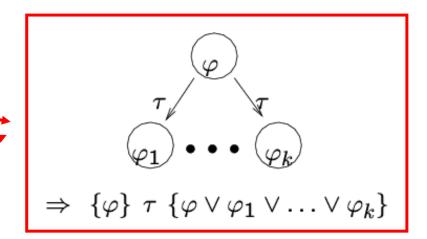
Nodes – labeled by assertions

Edges – labeled by names of transitions



<u>Terminal Node</u> ("goal") – no edges depart from it

<u>Definition</u>: VD is \underline{P} -valid iff all VCs associated with nodes in the diagram are \underline{P} -state valid



Invariance Diagrams

VDs with no terminal nodes (cycles OK)

Claim (invariance diagram):

A P-valid INVARIANCE diagram establishes that

$$\bigvee_{j=1}^{m} \varphi_j \quad \Rightarrow \quad \Box(\bigvee_{j=1}^{m} \varphi_j)$$

is P-valid.

If, in addition,

$$(I1) \bigvee_{j=1}^{m} \varphi_j \rightarrow q$$

$$(I2) \quad \Theta \rightarrow \bigvee_{j=1}^{m} \varphi_{j}$$

are P-state valid, then

 $\square q$ is P-valid

local y_1, y_2 : boolean where $y_1 = F$, $y_2 = F$: integer where s = 1

 ℓ_0 : loop forever do

 ℓ_1 : noncritical

 m_0 : loop forever do

 $\lceil m_1 : noncritical \rceil$

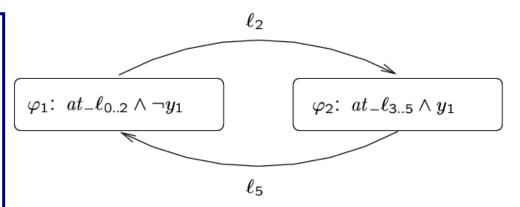
 $m_2: (y_2, s) := (T, 2)$

 m_3 : await $(\neg y_1) \lor (s=1)$

 m_4 : critical

 $m_5: y_2:=F$

 INVARIANCE diagram valid for program MUX-PET1



• Also.

(I2)
$$\underbrace{at_{-}\ell_{0} \wedge \neg y_{1} \wedge \cdots}_{\Theta} \rightarrow \underbrace{at_{-}\ell_{0...2} \wedge \neg y_{1}}_{\varphi_{1}} \vee \underbrace{\cdots}_{\varphi_{2}}$$

$$(I1) \underbrace{at_{-}\ell_{0..2} \wedge \neg y_{1}}_{\varphi_{1}} \rightarrow \underbrace{y_{1} \leftrightarrow at_{-}\ell_{3..5}}_{q}$$

$$\underbrace{at_{-}\ell_{3..5} \wedge y_{1}}_{\varphi_{2}} \rightarrow \underbrace{y_{1} \leftrightarrow at_{-}\ell_{3..6}}_{q}$$

Therefore

$$\Box(y_1 \leftrightarrow at_{-}\ell_{3..5})$$

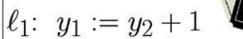
Abstraction

local y_1, y_2 : integer

where $y_1 = y_2 = 0$

loop forever do

 $[\ell_0$: noncritical



 $|\ell_2$: **await** $(y_2 = 0 \lor y_1 \le y_2)$

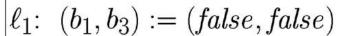
 ℓ_3 : critical

 $|\ell_4: y_1 := 0$

local b_1, b_2, b_3 : boolean where b_1, b_2, b_3

loop forever do

 $[\ell_0$: noncritical

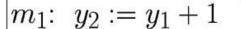


 $|\ell_2$: **await** $(b_2 \lor b_3)$

 ℓ_3 : critical

 $[\ell_4: (b_1, b_3) := (true, true)]$

 m_0 : noncritical



 m_2 : **await** $(y_1 = 0 \lor y_2 < y_1)$

 m_3 : critical

 $|m_4: y_2:=0$

loop forever do

 $[m_0$: noncritical

 $|m_1: (b_2, b_3) := (false, true)|$

 $|m_2$: await $(b_1 \lor \neg b_3)$

 m_3 : critical

 $|m_4: (b_2, b_3) := (true, b_1)$

REVIEW: Simulation order

Let $TS_i = (S_i, Act_i, \rightarrow_i, I_i, AP, L_i)$, i=1, 2, be two transition systems over AP.

A <u>simulation</u> for (TS_1, TS_2) is a binary relation $\mathcal{R} \subseteq S_1 \times S_2$ such that:

- 1. $\forall q_1 \in I_1 \exists q_2 \in I_2. (q_1, q_2) \in \mathcal{R}$
- 2. for all $(q_1, q_2) \in \mathcal{R}$ it holds:
 - 2.1 $L_1(q_1) = L_2(q_2)$
 - 2.2 if $q_1' \in Post(q_1)$ then there exists $q_2' \in Post(q_2)$ with $(q_1', q_2') \in \mathcal{R}$

REVIEW: Simulation order and ∀CTL*

Let TS be a finite transition system (without terminal states) and q, q' states in TS.

The following statements are equivalent:

(1)
$$q \leq_{TS} q'$$

- (2) for all $\forall \mathsf{CTL}^*$ -formulas $\Phi : q' \models \Phi$ implies $q \models \Phi$
- (3) for all \forall CTL-formulas Φ : $q' \models \Phi$ implies $q \models \Phi$

Predicate Abstraction

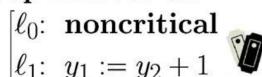
Abstraction is determined by a set of predicates,

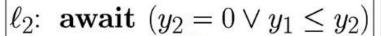
$$P=\{\phi_1, \phi_2, \dots \phi_N\}$$

- Abstract state space: subsets of P
- Abstraction function $f(q) = \{\phi_i | q = \phi_i\}$

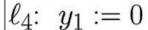
local y_1, y_2 : integer where $y_1 = y_2 = 0$

loop forever do



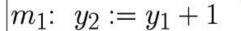


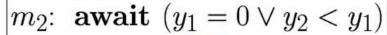
 ℓ_3 : critical



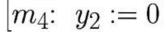
loop forever do

 $[m_0$: noncritical





 m_3 : critical



Predicates:

guards of transitions

$$P = \{b_1, b_2, b_3\} +$$
 control predicates

with

$$b_1$$
: y1 = 0

$$b_2$$
: y2 = 0

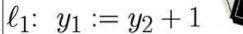
$$b_3$$
: y1 \leq y2

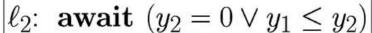
local y_1, y_2 : integer

where
$$y_1 = y_2 = 0$$

loop forever do

$$[\ell_0$$
: noncritical





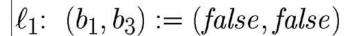
 ℓ_3 : critical

 $|\ell_4: y_1 := 0$

local b_1, b_2, b_3 : boolean where b_1, b_2, b_3

loop forever do

 $[\ell_0$: noncritical



 $|\ell_2$: **await** $(b_2 \lor b_3)$

 ℓ_3 : critical

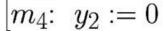
 $\lfloor \ell_4$: $(b_1, b_3) := (true, true)$

$$m_0$$
: noncritical

$$|m_1: y_2:=y_1+1$$

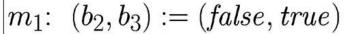
$$|m_2$$
: **await** $(y_1 = 0 \lor y_2 < y_1)$

 m_3 : critical



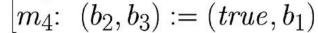
loop forever do

 $[m_0: \mathbf{noncritical}]$



 $|m_2$: **await** $(b_1 \lor \neg b_3)$

 m_3 : critical



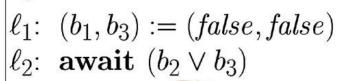
This abstraction allows us to prove

- mutual exclusion
- bounded overtaking using a model checker, since it is a finite-state program.

local b_1, b_2, b_3 : boolean where b_1, b_2, b_3

loop forever do

 ℓ_0 : noncritical



 ℓ_3 : **critical** ℓ_4 : $(b_1, b_3) := (true, true)$

loop forever do

 $|m_0$: noncritical

 $|m_1: (b_2, b_3) := (false, true)|$

 $|m_2$: **await** $(b_1 \lor \neg b_3)$

 m_3 : **critical** m_4 : $(b_2, b_3) := (true, b_1)$

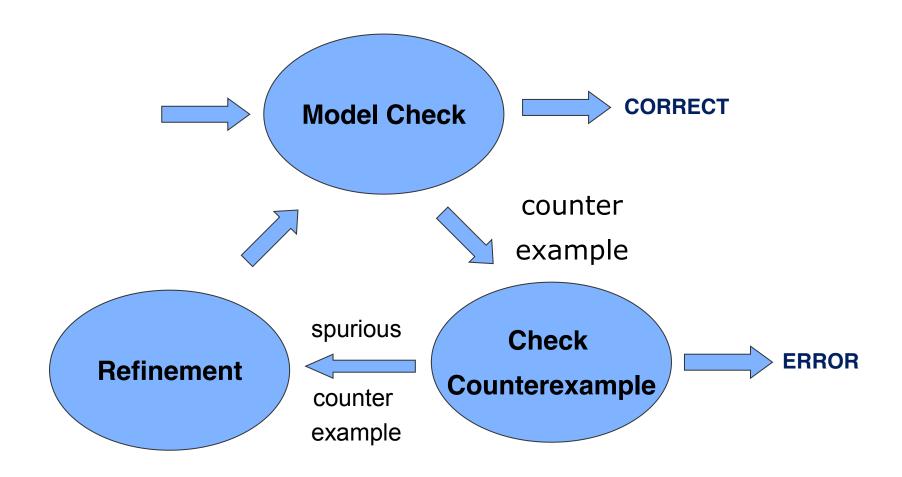
How To Determine the Basis?

A good starting set:

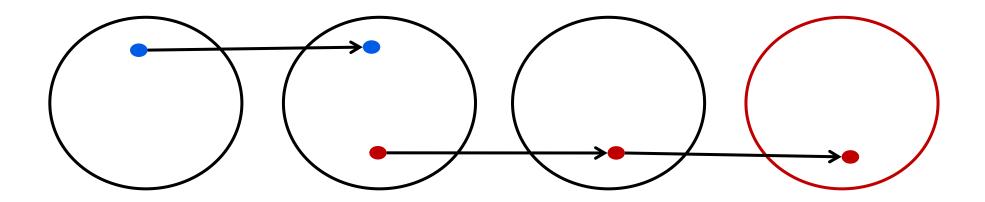
- The atomic assertions appearing in the guards of the transitions (→ enabling conditions can be represented exactly, and thus fairness carries over)
- The atomic assertions appearing in the property to be proven
 (→ the property abstraction is exact)

Analysis of counterexamples may lead to refinement of the abstraction by adding more assertions to the basis.

Counter Example Guided Abstraction Refinement (CEGAR)



Spurious counter examples



Checking abstract error paths

Let *E* be an assertion indicating an error state.

An abstract counter example $x_0 x_1 \dots x_k$ is **concretizable** if there exists a sequence of concrete states $s_0 s_1 \dots s_k$ such that

- 1. For each $0 \le i \le k$, $f(s_i) = x_k$.
- 2. $s_0 = \Theta$ and $s_k = E$
- 3. For each $0 \le i < k$, $(s_i, s_{i+1}) \models \rho$

Checking abstract error paths

- 1. For each $0 \le i \le k$, $f(s_i) = x_k$.
- 2. $s_0 = \Theta$ and $s_k = E$
- 3. For each $0 \le i < k$, $(s_i, s_{i+1}) \models \rho$

represented as a formula:

$$\Theta(V^0) \wedge \bigwedge \bigwedge \phi(V^i) \wedge \bigwedge \rho(V^i, V^{i+1}) \wedge E(V^k)$$
 $i=0..k \phi \in X_i \qquad i=0..k-1$

Craig Interpolation

For a given pair of formulas $\varphi(X)$ and $\psi(Y)$ such that $\varphi \wedge \psi$ is unsatisfiable,

a Craig interpolant $\Delta(X \cap Y)$ is a formula over the common variables such that

 ϕ implies Δ and $\Delta \wedge \psi$ is unsatisfiable.

Craig interpolants can be automatically generated for many first-order theories.

Path cutting

Split formula

$$\Theta(V^0) \wedge \bigwedge \bigwedge \varphi(V^i) \wedge \bigwedge \rho(V^i, V^{i+1}) \wedge E(V^k)$$
 $i=0..k \quad \phi \in X_i \quad i=0..k-1$

into two parts:

$$\phi_1 = \Theta(V^0) \land \bigwedge \bigwedge \phi(V^i) \land \bigwedge \rho(V^i, V^{i+1})$$

$$i=0..j-1 \quad \phi \in X_i \qquad i=0..j-2$$

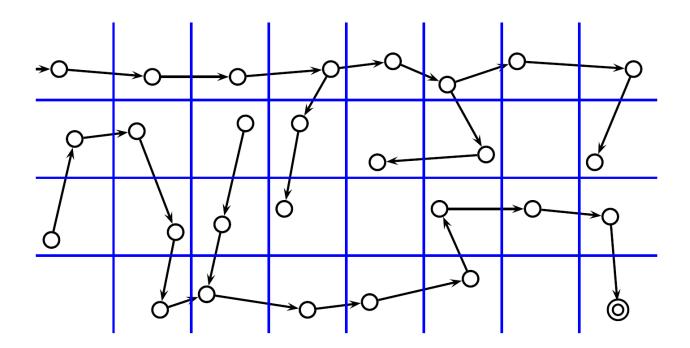
$$\phi_2 = \bigwedge \bigwedge \phi (V^i) \wedge \bigwedge \rho(V^i, V^{i+1}) \wedge E(V^k)$$

$$i=j..k \quad \phi \in X_i \qquad i=j-1..k-1$$

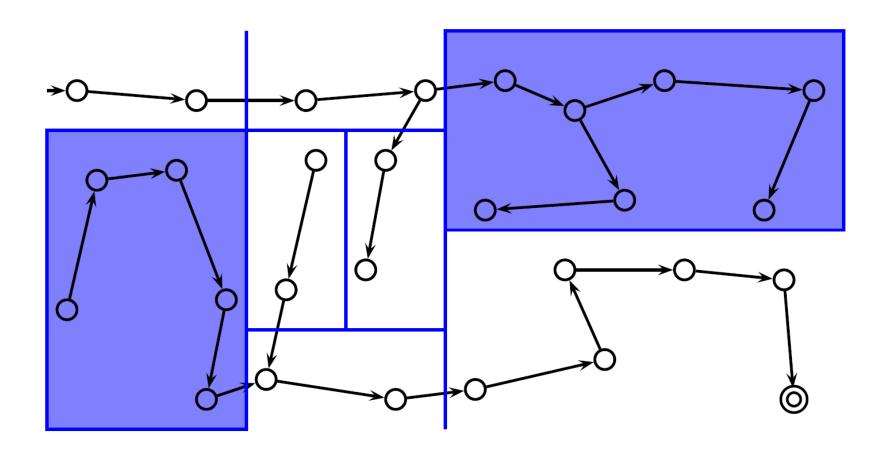
Use interpolant of ϕ_1 and ϕ_2 as new predicate.

Problem: abstract state space explosion

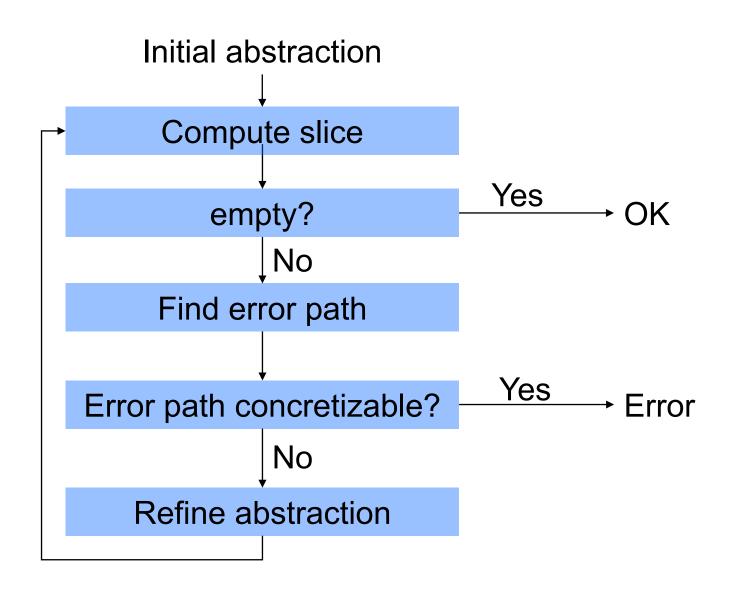
Abstract state space grows exponentially with number of predicates



Slicing Abstractions

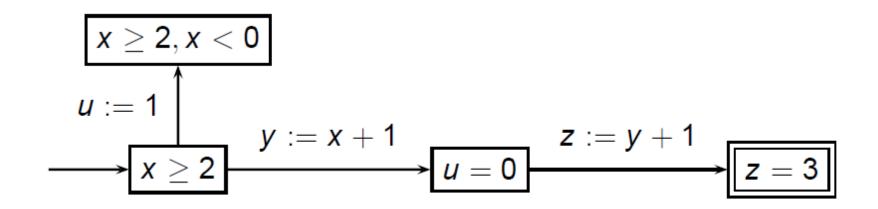


Slicing Abstractions (SLAB)



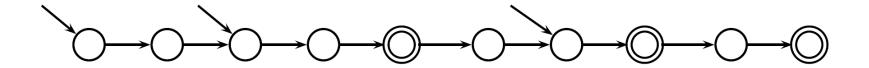
SLAB abstractions

- Finite graphs
- Nodes labeled with sets of literals
- Edges labeled with sets of transitions
- Initial node, error node

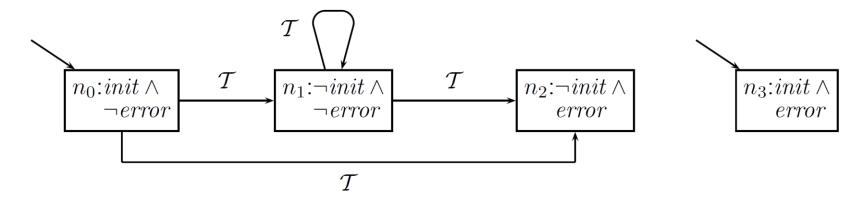


Initial abstraction

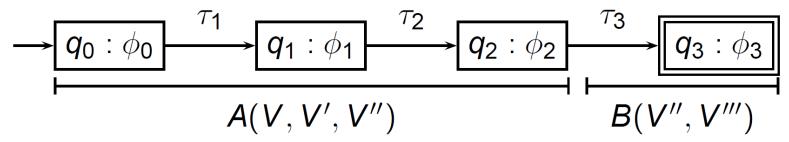
need only irreducible error paths



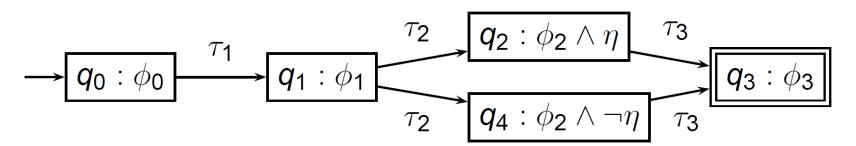
Initial abstraction:



Local refinement by node splitting



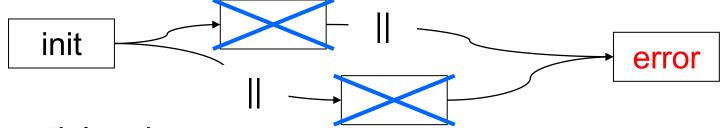
- $A \wedge B$ unsat, but A, B sat \leadsto Craig interpolant η :
 - $A \models \eta, B \models \neg \eta$
 - $Var(\eta) \subseteq Var(A) \cap Var(B)$, i.e. values at q_2
 - \rightsquigarrow split q_2 with $\eta, \neg \eta$:



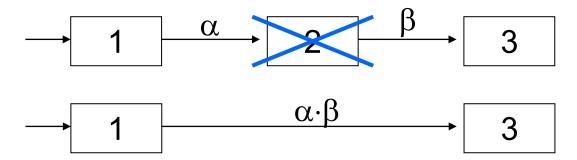
Slicing: Eliminating Nodes

Inconsistent nodes

Unreachable nodes

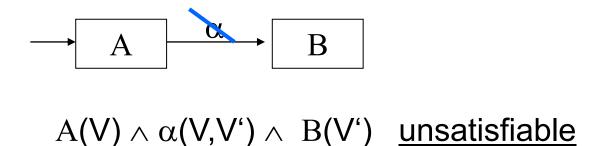


Sequential nodes

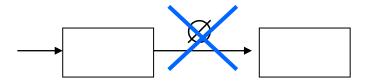


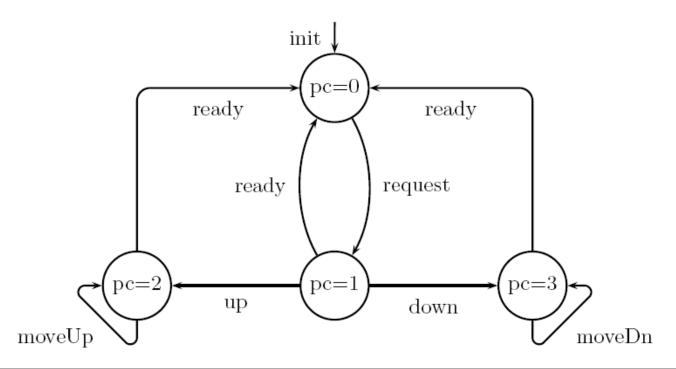
Slicing: Eliminating transitions

Inconsistent transitions



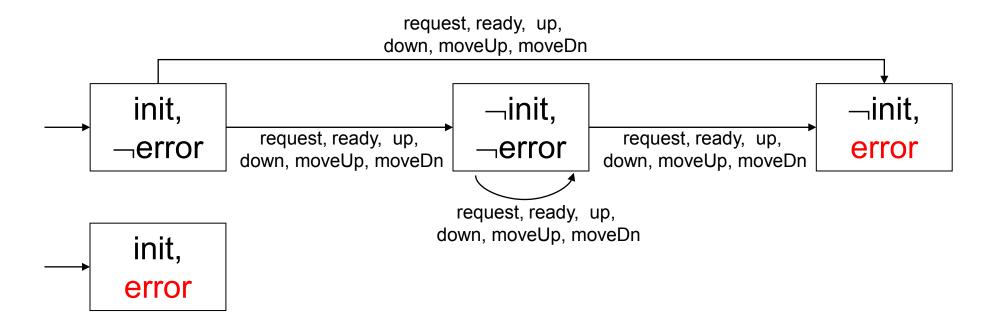
Empty Edges



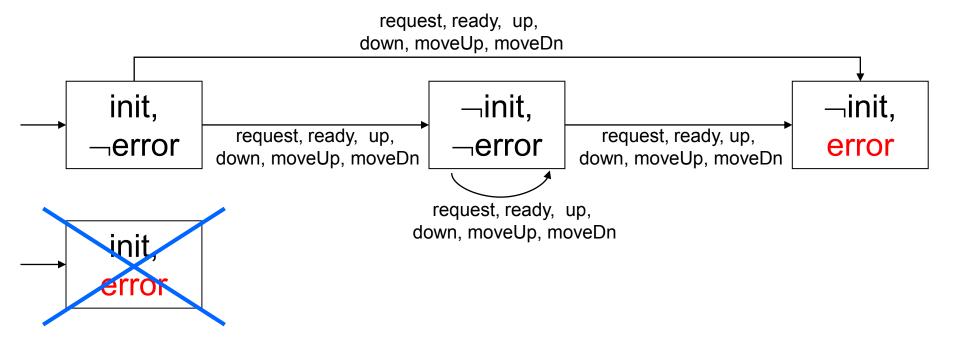


init	$pc=0 \land current \leq Max \land input \leq Max$
error	current>Max
request	$pc=0 \land pc'=1 \land current'=current \land req'=input \land input \leq Max$
ready	$pc \ge 1 \land req = current \land pc' = 0 \land current' = current \land req' = req \land input' \le Max$
up	$pc=1 \land req > current \land pc'=2 \land current'=current \land req'=req$
down	$pc=1 \land req < current \land pc'=3 \land current'=current \land req'=req$
moveUp	$pc=2 \land req > current \land pc'=2 \land current'=current + 1 \land req'=req$
moveDn	$pc=3 \land req < current \land pc'=3 \land current'=current - 1 \land req'=req$

Initial Abstraction

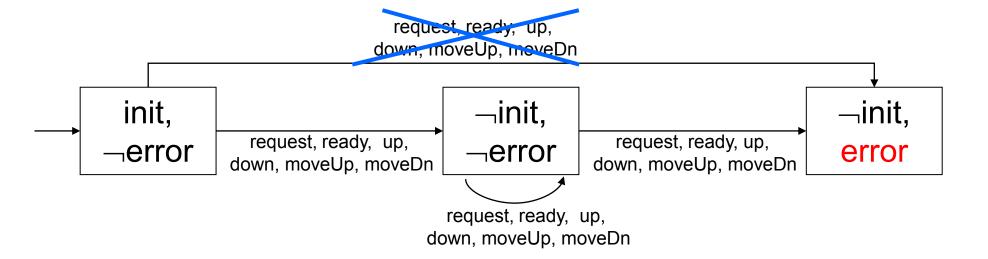


Slicing

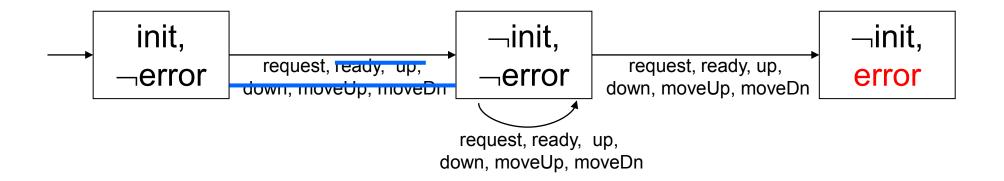


init	$pc=0 \land current \leq Max \land input \leq Max$
error	current > Max
request	$pc=0 \land pc'=1 \land current'=current \land req'=input \land input \leq Max$
ready	$pc \ge 1 \land req = current \land pc' = 0 \land current' = current \land req' = req \land input' \le Max$
up	$pc=1 \land req > current \land pc'=2 \land current'=current \land req'=req$
down	$pc=1 \land req < current \land pc'=3 \land current'=current \land req'=req$
moveUp	$pc=2 \land req > current \land pc'=2 \land current'=current + 1 \land req'=req$
moveDn	$pc=3 \land req < current \land pc'=3 \land current'=current - 1 \land req'=req$

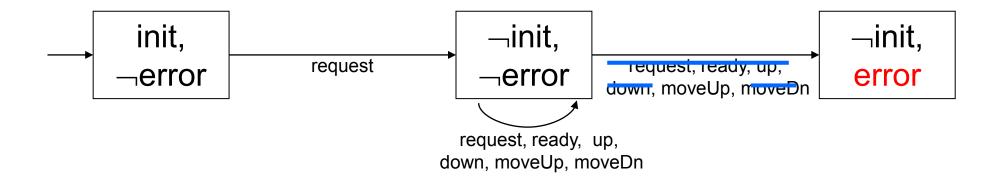
Slicing



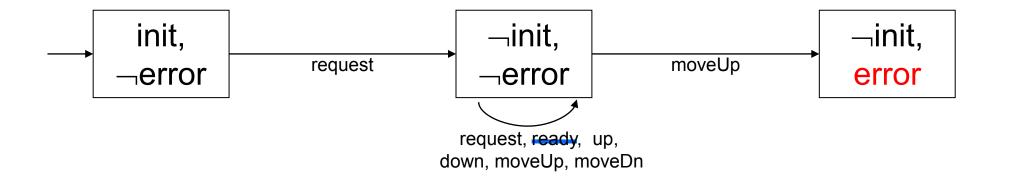
init	$pc=0 \land current \leq Max \land input \leq Max$
error	current > Max
_	$pc=0 \land pc'=1 \land current'=current \land req'=input \land input \leq Max$
ready	$pc \ge 1 \land req = current \land pc' = 0 \land current' = current \land req' = req \land input' \le Max$
up	$pc=1 \land req > current \land pc'=2 \land current'=current \land req'=req$
down	$pc=1 \land req < current \land pc'=3 \land current'=current \land req'=req$
moveUp	$pc=2 \land req > current \land pc'=2 \land current'=current + 1 \land req'=req$
moveDn	$pc=3 \land req < current \land pc'=3 \land current'=current - 1 \land req'=req$



init	$pc=0 \land current \leq Max \land input \leq Max$
error	current > Max
	$pc=0 \land pc'=1 \land current'=current \land req'=input \land input \leq Max$
ready	$pc \ge 1 \land req = current \land pc' = 0 \land current' = current \land req' = req \land input' \le Max$
up	$pc=1 \land req > current \land pc'=2 \land current'=current \land req'=req$
down	$pc=1 \land req < current \land pc'=3 \land current'=current \land req'=req$
moveUp	$pc=2 \land req > current \land pc'=2 \land current'=current + 1 \land req'=req$
moveDn	$pc=3 \land req < current \land pc'=3 \land current'=current - 1 \land req'=req$

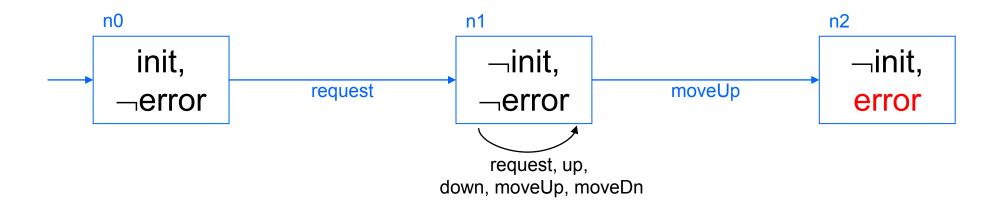


init	$pc=0 \land current \leq Max \land input \leq Max$
error	current > Max
_	$pc=0 \land pc'=1 \land current'=current \land req'=input \land input \leq Max$
ready	$pc \ge 1 \land req = current \land pc' = 0 \land current' = current \land req' = req \land input' \le Max$
up	$pc=1 \land req > current \land pc'=2 \land current'=current \land req'=req$
down	$pc=1 \land req < current \land pc'=3 \land current'=current \land req'=req$
moveUp	$pc=2 \land req > current \land pc'=2 \land current'=current + 1 \land req'=req$
moveDn	$pc=3 \land req < current \land pc'=3 \land current'=current - 1 \land req'=req$



init	$pc=0 \land \frac{current \leq Max}{current} \land input \leq Max$
error	current > Max
request	$pc=0 \land pc'=1 \land current'=current \land req'=input \land input \leq Max$
ready	$pc \ge 1 \land req = current \land pc' = 0 \land current' = current \land req' = req \land input' \le Max$
up	$pc=1 \land req > current \land pc'=2 \land current'=current \land req'=req$
down	$pc=1 \land req < current \land pc'=3 \land current'=current \land req'=req$
moveUp	$pc=2 \land req > current \land pc'=2 \land current'=current + 1 \land req'=req$
moveDn	$pc=3 \land req < current \land pc'=3 \land current'=current - 1 \land req'=req$

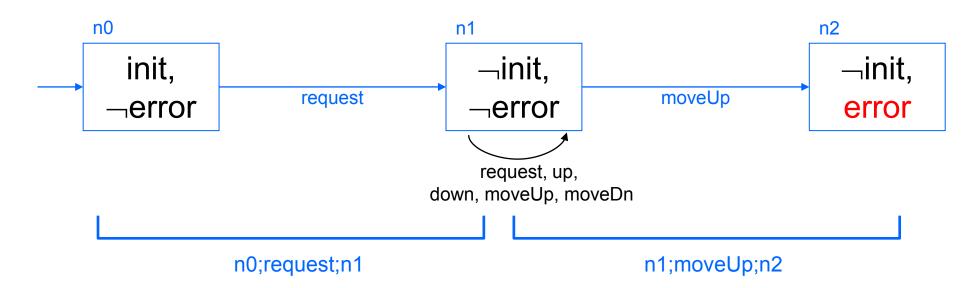
- 1. Error Path concretizable?
- 2. If yes: System incorrect
- 3. If no: Node split
 - Find minimal error path
 - Determine node to split
 - Determine splitting predicate



Error path concretizable?

```
\Phi(\text{n0;request;n1;moveUp;n2}) = \\ \text{n0(V}^0) \land \text{request}(\text{V}^0,\text{V}^1) \land \text{n1(V}^1) \land \text{moveUp}(\text{V}^1,\text{V}^2) \land \text{n2(V}^2)
```

is unsatisfiable \Rightarrow n0;request;n1;moveUp;n2 is not concretizable.

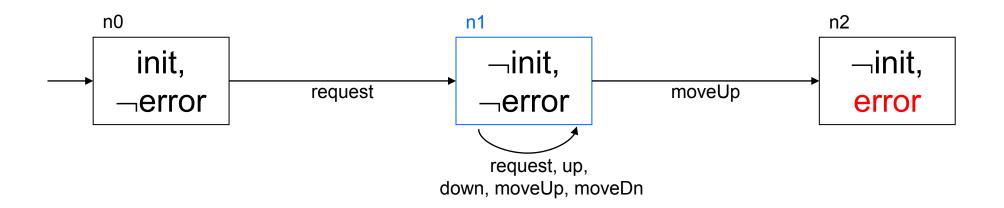


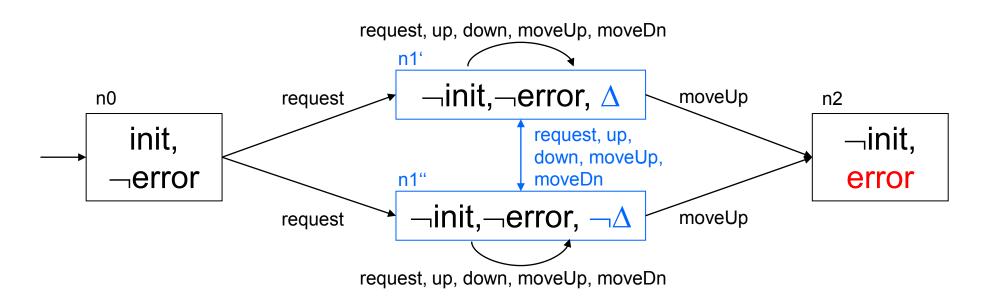
Error path minimal?

 $\Phi(n0; request; n1)$ is satisfiable. $\Phi(n1; moveUp; n2)$ is satisfiable.

- ⇒ n0;request;n1;moveUp;n2 is minimal.
- ⇒ Split node n1.

Node Split





Interpolation

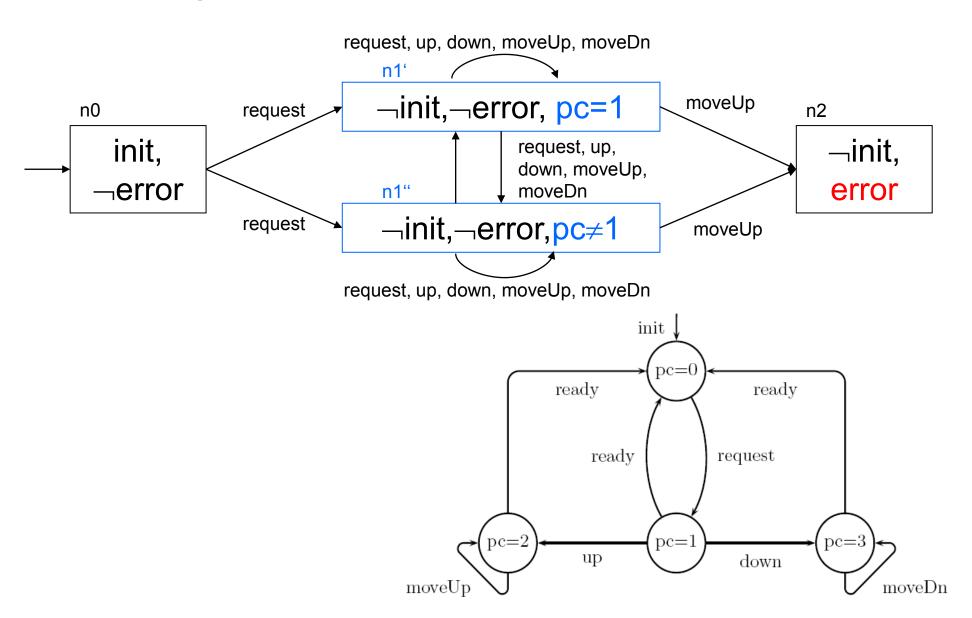
```
\begin{split} &\Phi(\textbf{n0}; \textbf{request}; \textbf{n1}) = \textbf{n0}(\textbf{V}^0) \land \textbf{request}(\textbf{V}^0, \textbf{V}^1) \land \textbf{n1}(\textbf{V}^1) \quad \underline{\textbf{satisfiable}} \\ &\Phi(\textbf{moveUp}; \textbf{n2}) = \textbf{moveUp}(\textbf{V}^1, \textbf{V}^2) \land \textbf{n1}(\textbf{V}^2) \quad \underline{\textbf{satisfiable}} \\ &\Phi(\textbf{n0}; \textbf{request}; \textbf{n1}; \textbf{moveUp}; \textbf{n2}) = \Phi(\textbf{n0}; \textbf{request}; \textbf{n1}) \land \Phi(\textbf{moveUp}; \textbf{n2}) \\ &\underline{\textbf{unsatisfiable}} \end{split}
```

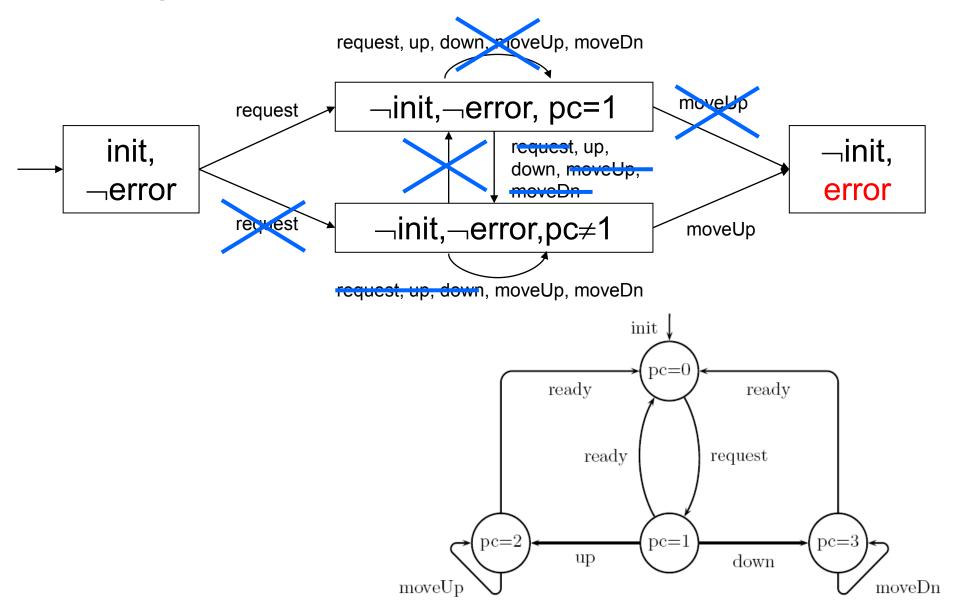
- \Rightarrow There exists a Craig interpolant \triangle^1 , such that
- $\Phi(n0; request; n1) \Rightarrow \Delta^1$
- $\Phi(\mathsf{moveUp}; \mathsf{n2}) \Rightarrow \neg \Delta^1$
- Variables(\triangle^1) \subseteq V¹

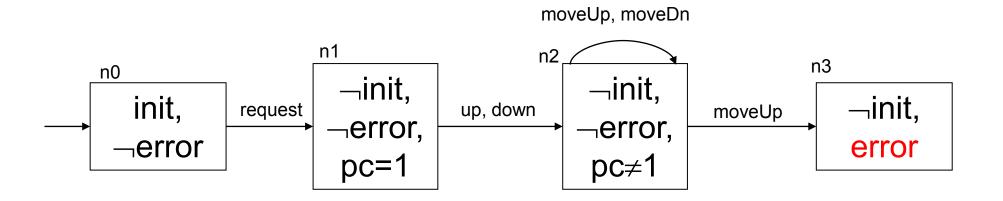
$$\Delta^1 = pc^1=1$$

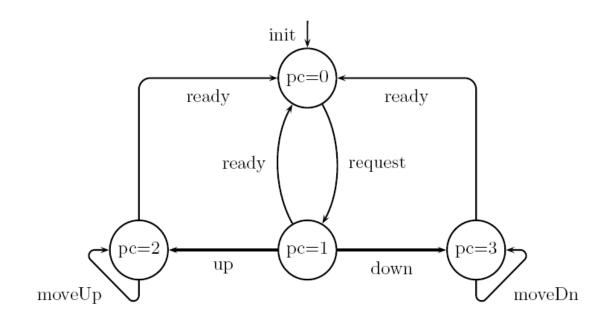


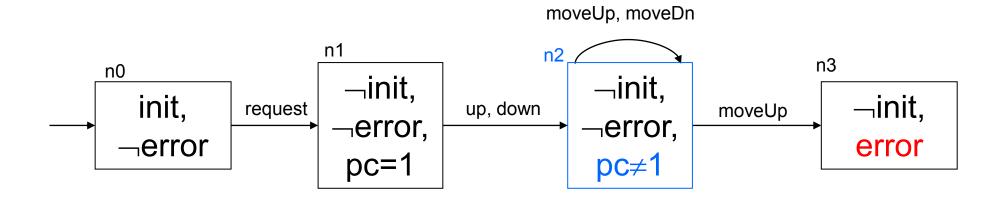
Splitting

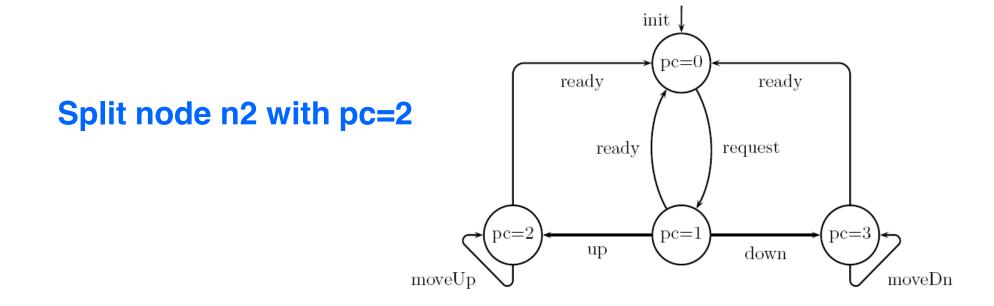




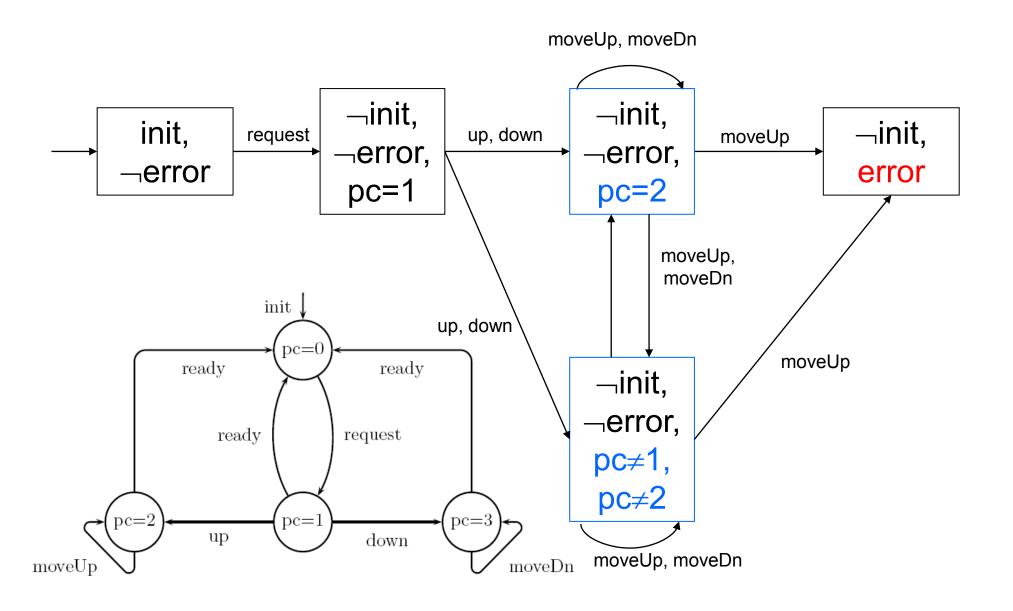


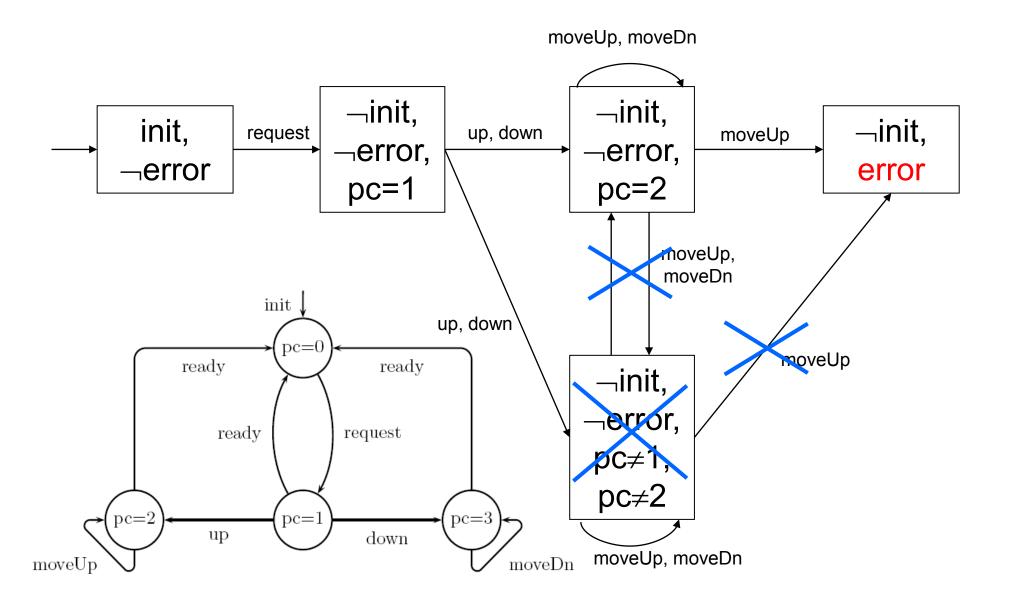


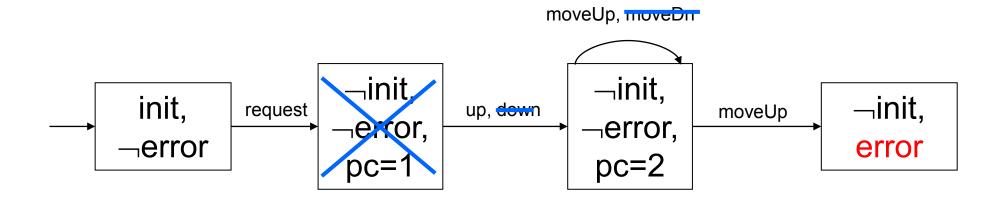


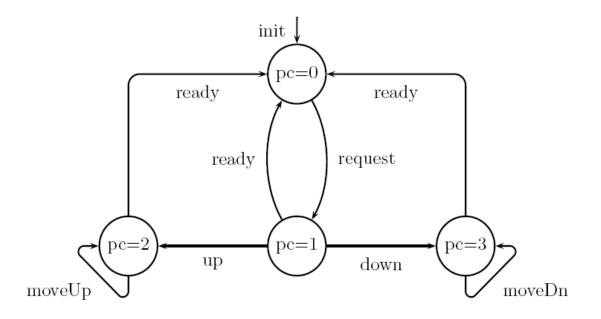


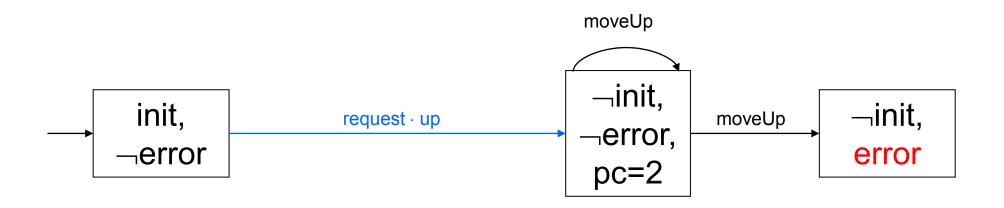
Splitting

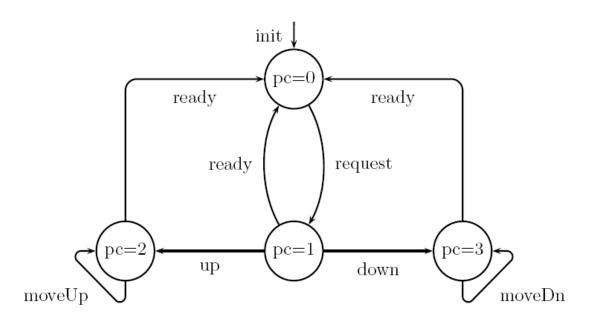


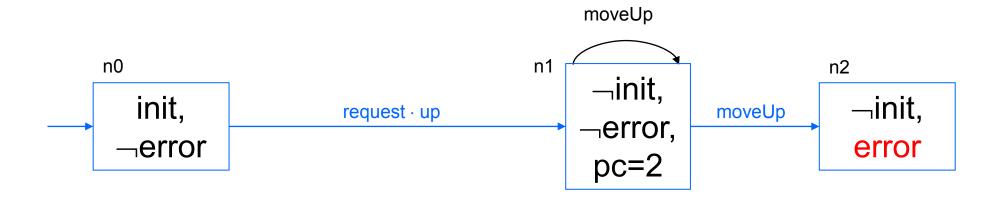




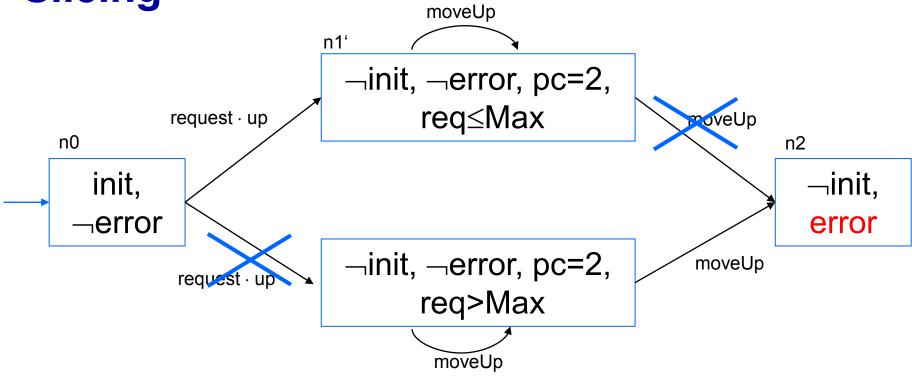




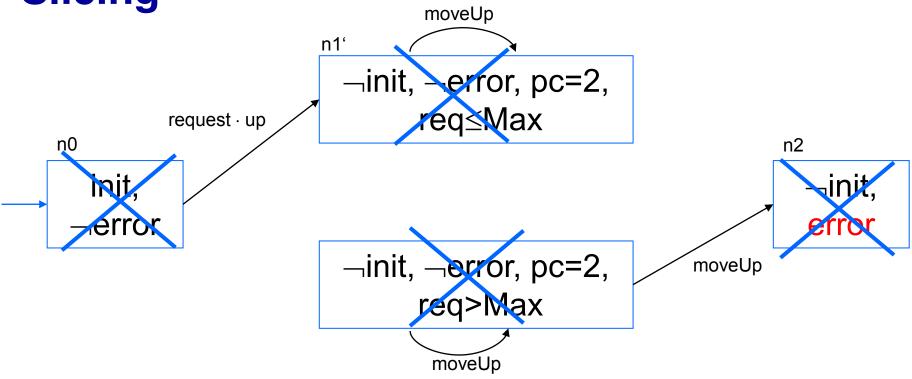




Split node n1 with req≤Max

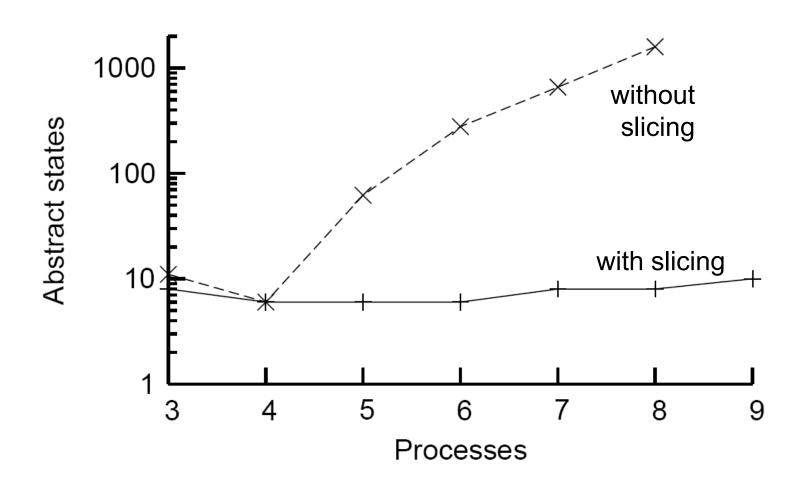


init	$pc=0 \land current \leq Max \land input \leq Max$
error	current > Max
request	$pc=0 \land pc'=1 \land current'=current \land req'=input$
ready	$pc \ge 1 \land req = current \land pc' = 0 \land current' = current \land req' = req \land input' \le Max$
up	$pc=1 \land req > current \land pc'=2 \land current'=current \land req'=req$
down	$pc=1 \land req < current \land pc'=3 \land current'=current \land req'=req$
moveUp	$pc=2 \land req > current \land pc'=2 \land current'=current+1 \land req'=req$
moveDn	$pc=3 \land req < current \land pc'=3 \land current'=current-1 \land req'=req$

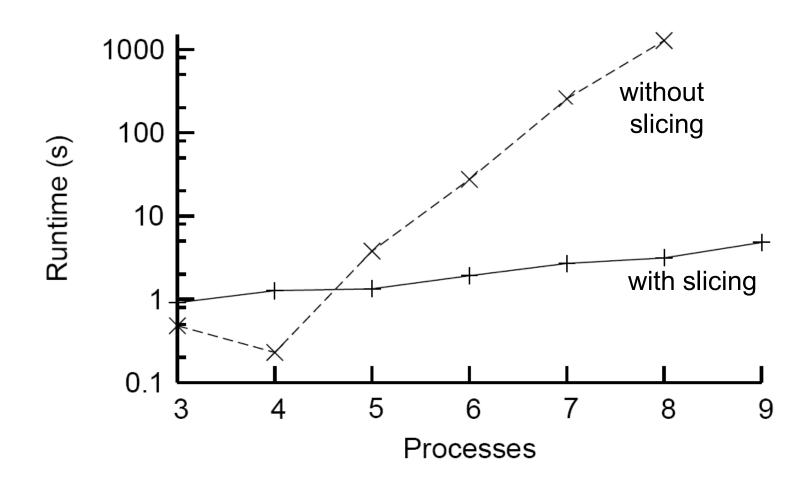


init	$pc=0 \land current \leq Max \land input \leq Max$
error	current > Max
request	$pc=0 \land pc'=1 \land current'=current \land req'=input$
ready	$pc \ge 1 \land req = current \land pc' = 0 \land current' = current \land req' = req \land input' \le Max$
up	$pc=1 \land req > current \land pc'=2 \land current'=current \land req'=req$
down	$pc=1 \land req < current \land pc'=3 \land current'=current \land req'=req$
moveUp	$pc=2 \land req > current \land pc'=2 \land current'=current+1 \land req'=req$
moveDn	$pc=3 \land req < current \land pc'=3 \land current'=current-1 \land req'=req$

Experiments: State Space

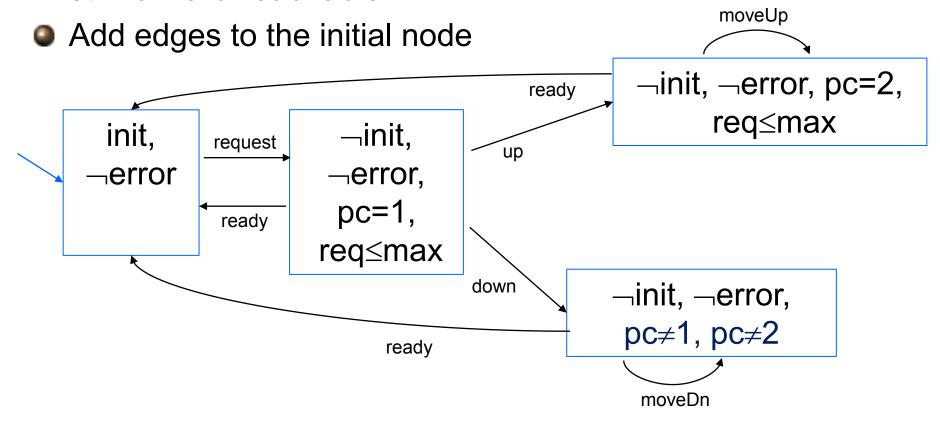


Experiments: Runtime



Verification diagrams as certificates

- Add intermediate nodes for composite transitions (using strongest postcondition)
- Do not remove nodes that are not backward reachable but still forward-reachable

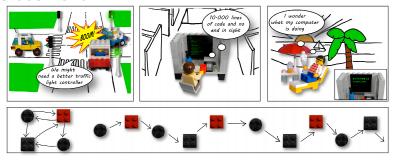


Exams

- **Exam**: 09.10.2013, 9am at E2 2, Günter-Hotz-Hörsaal.
- **Backup Exam**: 25.11.2013, 10am at E1 3, HS 002.
- Each $2\frac{1}{2}$ hours.
- Review session: 07.10.2013, 2pm at E1 3, HS 001.
- Your grade solely depends on your performance in the exam.
- We inform you over the weekend, whether you are admitted to the exam (reach at least 50% of the total points in the assignments).
- The exams are open-book: bring books, hand-written, notes, etc., but no cell phones, laptops, tabs, etc.

1

Advertisement



- Advanced lecture: Infinite Games
- Lectures: Th. 10.15am; Tutorials: Tu. 10am or 4pm
- Learn how infinite games...
 - allow you to automatically generate correct programs,
 - decide logics stronger than everything considered here, and
 - play, play, play...
- www.react.uni-saarland.de/teaching/infinite-games-13-14/

The last slide

Thank you and good luck for the exam.