Verification

Lecture 4

Bernd Finkbeiner

ICdm UNIVERSITAT
“H"w"“" DES
UL SAARLANDES

Plan for today

» CTL model checking
» The basic algorithm
» Fairness
» Counterexamples and witnesses

CTL fairness constraints

» An unconditional CTL fairness constraint is a formula of the
form:

ufair=)\ GFY;
O<i<k

» A weak CTL fairness constraint is a formula of the form:

wfair = /\ (FG(D, g GF\P,)
O<i<k

» A strong CTL fairness constraint is a formula of the form:

sfair = \ (GF®; > GFY))
O<i<k

where GF means “infinitely often”, FG means “eventually forever”.
®; and ¥; (for 0 < i < k) are CTL-formulas over AP.

A CTL fairness assumption fair is a conjunction of CTL fairness
constraints.

CTL fairness constraints

Note that unconditional and weak fairness constraints are special
cases of strong fairness constraints:

» An unconditional CTL fairness constraint is a formula of the
form:

ufair=)\ GFY; = A (GFtrue > GFY))
O<i<k O<i<k

» A weak CTL fairness constraint is a formula of the form:

wfair= \ (FG®; > GFY¥;)) = A (GFtrue > GF (-®; Vv ¥;))
O<i<k O<i<k

» A strong CTL fairness constraint is a formula of the form:

sfair= /\ (GF®; > GFY¥;)
O<i<k

where ®@; and ¥; (for 0 < i < k) are CTL-formulas over AP.

Semantics of fair CTL

For CTL fairness assumption fair, relation ¢, is defined by:

S Efgir 4 iff ael(s)

S Eggir =@ iff = (s =g @)

Sk @ vV ff (SERi @) Vv (SERr P)

SEmirEg iff 7 Eir @ for some fair path 7 that startsin s
S Efir A @ iff 7 £ ¢ for all fair paths 7 that startin s

T Efair X0 iff 7'[[1] FEfair 0}
7 U iff (3> 0.7]j] B ¥ A (V0 <k < j. 71[K] Ear @)

m is a fair path iff 7 = fair for CTL fairness assumption fair

Transition system semantics

» For CTL-state-formula @, and fairness assumption fair, the
satisfaction set Satg,;, (@) is defined by:

Sal’fair(q)) = {C] €S | g Btair QD}
» TS satisfies CTL-formula @ iff ® holds in all its initial states:

TS Efiy @ ifandonlyif Vqg €l.qo Efir ©

» this is equivalent to | € Sats;, (D)

Fair CTL model-checking problem

For:
» finite transition system
» CTL formula @ in ENF, and

» CTL fairness assumption fair

establish whether or not:

TS Etair)

use bottom-up procedure a la CTL to determine Saty;, ()
using as much as possible standard CTL model-checking algorithms

CTL fairness constraints

» Letsfair= A (GF®; > GFY¥))
O<i<k

» where ®; and V¥; (for 0 < i < k) are CTL-formulas over AP

» Replace the CTL state-formulas in sfair by fresh atomic
propositions:

sfair:=)\ (GFa; > GFb;)
O<i<k

» where g; € L(s) if and only if s € Sat(®;) (not Satg (D))
» by e L(s)ifand only if s € Sat(\¥;) (not Sat;, (¥;)Y

Results for ¢, (1)

7 & fair iff n[j..] = fair for some j > 0 iff z[j..] = fair forall j > 0

» s i EXaif and only if 35’ € Post(s) with
s" & aand FairPaths(s") + @

» s Eqi E(aUa") if and only if there exists a finite path fragment
S0S152...5n-15n € Pathsg,(s) withn >0

such thats; = afor0<i<n,s,E d,and FairPaths(s,) + @

Results for ¢, (2)

» S i EXaif and only if 35’ € Post(s) with
s’ = aand FairPaths(s') + @

s £y EGtrue
» s Eqi E(aUa") if and only if there exists a finite path fragment
S0S152...57-15n € Pathsg,(s) withn >0

suchthats; = afor0<i<n,s,Ed, and FairPaths(s,) + &

sn =i EG true

Basic algorithm

v

Determine Saty,;,(EGtrue) = {q €S| FairPaths(q) # @ }
» Introduce an atomic proposition ag,;, such that:
» arir €L(q) ifandonlyif g e Sate, (EGtrue)

Compute the sets Saty,;, (V) for all subformulas ¥ of @ (in ENF)

v

Satir(a) = {qeS|lacl(q)}
Satri(-a) = S\ Satg(a)
by: Satgi(ana) = Satg(a) n Satg(a’)
Sat}‘air(EX a) = Sat (EX (a A afair))
Satgi(E(aUa’)) = Sat(E(aU(d A agi)))
Satyi(EGa) =
Thus: model checking CTL under fairness constraints is

» CTL model checking + algorithm for computing Saty,;,(EGa)!

v

Core model-checking algorithm

{states are assumed to be labeled with a; and b;}
compute Satz,; (EGtrue) = {q eS| FairPaths(q) # @ }
forall g € Sats,;,(EGtrue) do L(q) := L(q) U { drir } od
{compute Satz; (D)}
forallo<i<|®|do

forall ¥ € Sub(®) with | V| =ido

switch(\¥):
true 1 Satg (V) =S
a t o Satg (V) :={qeS|acl(s)};
and i Satg(¥):={qeS|a,a el(s)};
-a i Sate (V) :={qeS|a¢L(s)};
EXa t Satwi (V) == Sat(EX(a A agir));
E(aUd’) : Satg(¥):=Sat(E(aU(d A awy)));
EGa 1 compute Saty;(EGa)

end switch

replace all occurrences of ¥ (in @) by the fresh atomic proposition ay
forall g € Saty,;,(¥) do L(q) :=L(g) u{av } od
end for
end for
return / c Saty (®)

Characterization of Sat;,(EGa)

q =stqir EGa where sfair=)\ (GFa; » GFb;)
O<i<k

iff there exists a finite path fragment qo...g, and acycle gy . .. q;
with:

1. qo=9 and gn=q, =g,

2. giea,forany0<i<n,and qu Ea,forany0<j<r,and

3. Sat(a;)) N {q},...,q, } =@orSat(b;)) N {q,...,q,} # @ for
0<i<k

Computing Saty,;,(EGa)

» Consider state g only if g £ g, otherwise eliminate g
» change TS into TS[a] = (', Act, —',I', AP, L") with S’ = Sat(a),
» >'=5 n (S xActxS),I'=1nS,andL’(s) =L(s) forse S
= each infinite path fragment in TS[a] satisfies Ga
» g Eqir EGaiff there is a non-trivial strongly connected set of
nodes D in TS[a] reachable from g such that
» D n Sat(a;) =@ or
» D n Sat(b) + @
for 0<i<k
> Satsi(EGa) = {qeS| ReaChTs[a] (s)nT#2}
» T is the union of all such SCCs D.

how to compute T?

Unconditional fairness

ufair =)\ GFb;
O<i<k

Let T be the set union of all non-trivial SCCs C of TS[a] satisfying
CnSatb;)) #+ o forall0<i<k
It now follows:

s Fufair EGa ifand only if Reachgq1(s) N T # @

= T can be determined by a simple graph analysis (DFS)

Strong fairness: single constraint (k = 1)

» sfair = GFa,; - GF b,
» q Esqair EGaiff Cis a non-trivial SCCin TS[a] reachable from g
with:
(1) C n Sat(by) + @, or
(2) there exists a non-trivial SCC D in C[-a]

» For the union T of all such SCCs C:

q Fstair EGa ifandonly if Reachsq(q) n T # @

Strong fairness: general case (k > 1)

Check each non-trivial SCC C recursively as follows:

Check(C, A (GFa;—> GFb))):
O<i<k
if Vie{1,...,k} : CnSat(b;) + & return true

else
choose someje {1,...,k}: CnSat(b;) = 2.

remove all states in Sat(a;) from C
for all non-trivial SCCs D do

if Check(D, A (GFa; - GFb;)) return true

0<izk,i%j

return false

T is the union of all SCCs C that pass the check.

Complexity

For a transition system TS with N states and M transitions,
CTL formula @, and CTL fairness constraint fair with k conjuncts,
the CTL model-checking problem TS ¢, ©
can be determined in time O (| @ |-(N + M)-k)

Counterexamples and Witnesses

Counterexamples

» Model checking is an effective and efficient “bug hunting”
technique
» Counterexamples are important for diagnostic feedback,
abstraction-refinement, schedule synthesis . ..
» TS # A ¢ where ¢ only contains universal path quantifiers
» counterexample = a sufficiently long prefix of a path refuting ¢
» this fragment of the logic is known as universal fragment of CTL
» TS # E ¢ where ¢ is arbitrary CTL formula
» all paths satisfy -¢! = no clear notion of counterexample
» witness = a sufficiently long prefix of a path satisfying ¢
» So:
» for A ¢, a prefix of 7 with 7 i ¢ acts as counterexample
» for E ¢, a prefix of = with 7 = ¢ acts as witness

Counterexamples for X ®

» A counterexample of X @ is a path fragment g g’ with
» geland g’ € Post(q) with g’ # @

» A witness of X @ is a is a path fragment g g’ with
» geland g’ € Post(q) with g’ £ ©®

» Algorithm: inspection of direct successors of initial states

Counterexamples for G ®

» Counterexample is initial path fragment g g5 . .. g5 such that:
* Go>--->qn-1 E ®and g, # ©
» Algorithm: backward search starting in —~®-states

» A witness of ¢ = G ® consists of an initial path fragment of the
form:

> QOQ1qnqqq, Wlth qn:q;

satisfy o

Algorithm: cycle search in the digraph G = (S, E’) where the set
of edges E':

» E' = {(9,9')| g €Post(q) n gD}

v

Counterexamples for ® U ¥

» A witness is an initial path fragment go g1 . . . gn with
» gh=¥Y and giE®for0<i<n

v

Algorithm: backward search starting in the set of ¥-states

» A counterexample is an initial path fragment that indicates a
path 7
» for which either
TEG(® A YY) or 7(D A -Y)U(-D A -¥)
» Counterexample is initial path fragment of either form:

> go.--Gn-1 Gnqy...q, With gn=q; or
S —
cycle

satisfy @ A =¥

Go..-Gn-1 Gn Withg, E-® A =¥
———
satisfy @ A ¥

Counterexample generation

» Determine the SCCs of the digraph G = (S, E") where
E' = {(9.9) €5x5q cPost(q) A q=® A ~¥)

» Each path in G that starts in an initial state go € / and leads to a
non-trivial SCC C in G provides a counterexample of the form:

q0q1-.-Gnq1...q; With gn=g;
———
eC
» Each path in G that leads from an initial state gg to a
trivial terminal SCCC ={q'} with q'# ¥
provides a counterexample of the form go g ... g, with
dn E-OA-Y

Example

(wi,nz,y=1) (n1,wa,y=1)

—
10} v

SCC graph

(n,n2,y=1)

(w1, n2,y=1)

(c1,n2,y=0)

{c1, w,y=0)

Complexity

Let TS be a transition system TS with N states and M transitions
and ¢ a CTL- path formula.

If TS # A ¢, then a counterexample for ¢ in TS
can be determined in time O(N+M).

The same holds for a witness for ¢,
provided that TS = E ¢.

