
Verification

Lecture 4

Bernd Finkbeiner

Plan for today

▸ CTL model checking
▸ The basic algorithm
▸ Fairness
▸ Counterexamples and witnesses

CTL fairness constraints

▸ An unconditional CTL fairness constraint is a formula of the

form:

ufair = ⋀
0<i≤k

GFΨi

▸ A weak CTL fairness constraint is a formula of the form:

wfair = ⋀
0<i≤k

(FGΦi → GFΨi)

▸ A strong CTL fairness constraint is a formula of the form:

sfair = ⋀
0<i≤k

(GFΦi → GFΨi)

where GF means ‘‘infinitely often’’, FG means ‘‘eventually forever’’.

Φi and Ψi (for 0 < i ≤ k) are CTL-formulas over AP.

A CTL fairness assumption fair is a conjunction of CTL fairness

constraints.

CTL fairness constraints
Note that unconditional and weak fairness constraints are special

cases of strong fairness constraints:

▸ An unconditional CTL fairness constraint is a formula of the

form:

ufair = ⋀
0<i≤k

GFΨi = ⋀
0<i≤k

(GF true→ GFΨi)

▸ A weak CTL fairness constraint is a formula of the form:

wfair = ⋀
0<i≤k

(FGΦi → GFΨi) = ⋀
0<i≤k

(GF true→ GF (¬Φi ∨Ψi))

▸ A strong CTL fairness constraint is a formula of the form:

sfair = ⋀
0<i≤k

(GFΦi → GFΨi)

whereΦi and Ψi (for 0 < i ≤ k) are CTL-formulas over AP.

Semantics of fair CTL

For CTL fairness assumption fair, relation ⊧fair is defined by:

s ⊧fair a iff a ∈ L(s)

s ⊧fair ¬Φ iff ¬(s ⊧fair Φ)

s ⊧fair Φ ∨ Ψ iff (s ⊧fair Φ) ∨ (s ⊧fair Ψ)

s ⊧fair Eφ iff π ⊧fair φ for some fair path π that starts in s

s ⊧fair Aφ iff π ⊧fair φ for all fair paths π that start in s

π ⊧fair XΦ iff π[1] ⊧fair Φ

π ⊧fair ΦUΨ iff (∃ j ≥ 0. π[j] ⊧fair Ψ ∧ (∀0 ≤ k < j. π[k] ⊧fair Φ))

π is a fair path iff π ⊧ fair for CTL fairness assumption fair

Transition system semantics

▸ For CTL-state-formulaΦ, and fairness assumption fair, the

satisfaction set Satfair(Φ) is defined by:

Satfair(Φ) = {q ∈ S ∣ q ⊧fair Φ }

▸ TS satisfies CTL-formulaΦ iffΦ holds in all its initial states:

TS ⊧fair Φ if and only if ∀q0 ∈ I. q0 ⊧fair Φ

▸ this is equivalent to I ⊆ Satfair(Φ)

Fair CTL model-checking problem

For:

▸ finite transition system

▸ CTL formulaΦ in ENF, and

▸ CTL fairness assumption fair

establish whether or not:

TS ⊧fair Φ

use bottom-up procedure a la CTL to determine Satfair(Φ)
using as much as possible standard CTL model-checking algorithms

CTL fairness constraints

▸ Let sfair = ⋀
0<i≤k
(GFΦi → GFΨi)

▸ whereΦi and Ψi (for 0 < i ≤ k) are CTL-formulas over AP

▸ Replace the CTL state-formulas in sfair by fresh atomic

propositions:

sfair ∶= ⋀
0<i≤k

(GFai → GFbi)

▸ where ai ∈ L(s) if and only if s ∈ Sat(Φi) (not Satfair(Φi)!)
▸ bi ∈ L(s) if and only if s ∈ Sat(Ψi) (not Satfair(Ψi)!)

Results for ⊧fair (1)

π ⊧ fair iff π[j..] ⊧ fair for some j ≥ 0 iff π[j..] ⊧ fair for all j ≥ 0

▸ s ⊧fair EXa if and only if ∃s′ ∈ Post(s)with
s′ ⊧ a and FairPaths(s′) /= ∅

▸ s ⊧fair E (aUa′) if and only if there exists a finite path fragment

s0 s1 s2 . . . sn−1sn ∈ Pathsfin(s) with n ≥ 0

such that si ⊧ a for 0 ≤ i < n, sn ⊧ a′, and FairPaths(sn) /= ∅

Results for ⊧fair (2)

▸ s ⊧fair EXa if and only if ∃s′ ∈ Post(s)with
s′ ⊧ a and FairPaths(s′) /= ∅

´¹¹¸¹¹¹¶
s′ ⊧fair EG true

▸ s ⊧fair E (aUa′) if and only if there exists a finite path fragment

s0 s1 s2 . . . sn−1sn ∈ Pathsfin(s) with n ≥ 0

such that si ⊧ a for 0 ≤ i < n, sn ⊧ a′, and FairPaths(sn) /= ∅
´¹¹¹¸¹¹¶

sn ⊧fair EG true

Basic algorithm

▸ Determine Satfair(EG true) = {q ∈ S ∣ FairPaths(q) /= ∅}
▸ Introduce an atomic proposition afair such that:

▸ afair ∈ L(q) if and only if q ∈ Satfair(EG true)
▸ Compute the sets Satfair(Ψ) for all subformulas Ψ ofΦ (in ENF)

by:

Satfair(a) = {q ∈ S ∣ a ∈ L(q) }
Satfair(¬a) = S ∖ Satfair(a)

Satfair(a ∧ a′) = Satfair(a) ∩ Satfair(a′)
Satfair(EXa) = Sat (EX (a ∧ afair))

Satfair(E (aUa′)) = Sat (E (aU (a′ ∧ afair)))
Satfair(EGa) =

▸ Thus: model checking CTL under fairness constraints is
▸ CTL model checking + algorithm for computing Satfair(EGa)!

Core model-checking algorithm

{states are assumed to be labeled with ai and bi}

compute Satfair(EG true) = {q ∈ S ∣ FairPaths(q) /= ∅}
forall q ∈ Satfair(EG true) do L(q) ∶= L(q) ∪ {afair } od
{compute Satfair(Φ)}
for all 0 < i ≤ ∣Φ ∣ do

for all Ψ ∈ Sub(Φ)with ∣Ψ ∣ = i do

switch(Ψ):
true : Satfair(Ψ) ∶= S;

a : Satfair(Ψ) ∶= {q ∈ S ∣ a ∈ L(s) };
a ∧ a′ : Satfair(Ψ) ∶= {q ∈ S ∣ a, a

′ ∈ L(s) };
¬a : Satfair(Ψ) ∶= {q ∈ S ∣ a /∈ L(s) };
EXa : Satfair(Ψ) ∶= Sat(EX (a ∧ afair));
E (aUa′) : Satfair(Ψ) ∶= Sat(E (aU (a′ ∧ afair)));
EGa : compute Satfair(EGa)

end switch

replace all occurrences of Ψ (inΦ) by the fresh atomic proposition aΨ

forall q ∈ Satfair(Ψ) do L(q) ∶= L(q) ∪ {aΨ } od
end for

end for

return I ⊆ Satfair(Φ)

Characterization of Satfair(EGa)

q ⊧sfair EGa where sfair = ⋀
0<i≤k

(GFai → GFbi)

iff there exists a finite path fragment q0 . . . qn and a cycle q′0 . . . q
′
r

with:

1. q0 = q and qn = q′0 = q
′
r

2. qi ⊧ a, for any 0 ≤ i ≤ n, and q′j ⊧ a, for any 0 ≤ j ≤ r, and

3. Sat(ai) ∩ {q′1, . . . , q
′
r } = ∅ or Sat(bi) ∩ {q′1, . . . , q

′
r } /= ∅ for

0 < i ≤ k

Computing Satfair(EGa)

▸ Consider state q only if q ⊧ a, otherwise eliminate q
▸ change TS into TS[a] = (S′ ,Act,→′ , I′ ,AP, L′)with S′ = Sat(a),
▸ →′ =→ ∩ (S′ × Act × S′), I′ = I ∩ S′, and L′(s) = L(s) for s ∈ S′

⇒ each infinite path fragment in TS[a] satisfies Ga

▸ q ⊧fair EGa iff there is a non-trivial strongly connected set of
nodes D in TS[a] reachable from q such that

▸ D ∩ Sat(ai) = ∅ or
▸ D ∩ Sat(bi) /= ∅

for 0 < i ≤ k
▸ Satsfair(EGa) = {q ∈ S ∣ ReachTS[a](s) ∩ T /= ∅}

▸ T is the union of all such SCCs D.

how to compute T?

Unconditional fairness

ufair ≡ ⋀
0<i≤k

GFbi

Let T be the set union of all non-trivial SCCs C of TS[a] satisfying

C ∩ Sat(bi) /= ∅ for all 0 < i ≤ k

It now follows:

s ⊧ufair EGa if and only if ReachG[a](s) ∩ T /= ∅

⇒ T can be determined by a simple graph analysis (DFS)

Strong fairness: single constraint (k = 1)

▸ sfair = GFa1 → GFb1
▸ q ⊧sfair EGa iff C is a non-trivial SCC in TS[a] reachable from q
with:

(1) C ∩ Sat(b1) /= ∅, or
(2) there exists a non-trivial SCC D in C[¬a1]

▸ For the union T of all such SCCs C:

q ⊧sfair EGa if and only if ReachS[a](q) ∩ T /= ∅

Strong fairness: general case (k > 1)

Check each non-trivial SCC C recursively as follows:

Check(C, ⋀
0<i≤k
(GFai → GFbi)):

if ∀i ∈ {1, . . . , k} ∶ C ∩ Sat(bi) ≠ ∅ return true

else

choose some j ∈ {1, . . . , k} ∶ C ∩ Sat(bj) = ∅.
remove all states in Sat(aj) from C
for all non-trivial SCCs D do

if Check(D, ⋀
0<i≤k,i≠j

(GFai → GFbi)) return true

return false

T is the union of all SCCs C that pass the check.

Complexity

For a transition system TSwith N states andM transitions,

CTL formulaΦ, and CTL fairness constraint fair with k conjuncts,

the CTL model-checking problem TS ⊧fair Φ

can be determined in timeO(∣Φ ∣⋅(N +M)⋅k)

Counterexamples and Witnesses

Counterexamples

▸ Model checking is an effective and efficient ‘‘bug hunting’’

technique

▸ Counterexamples are important for diagnostic feedback,

abstraction-refinement, schedule synthesis . . .

▸ TS /⊧ Aφ where φ only contains universal path quantifiers
▸ counterexample = a sufficiently long prefix of a path refuting φ
▸ this fragment of the logic is known as universal fragment of CTL

▸ TS /⊧ Eφ where φ is arbitrary CTL formula
▸ all paths satisfy ¬φ! ⇒ no clear notion of counterexample
▸ witness = a sufficiently long prefix of a path satisfying φ

▸ So:
▸ for Aφ, a prefix of π with π /⊧ φ acts as counterexample
▸ for Eφ, a prefix of π with π ⊧ φ acts as witness

Counterexamples for XΦ

▸ A counterexample of XΦ is a path fragment qq′ with
▸ q ∈ I and q′ ∈ Post(q)with q′ /⊧ Φ

▸ A witness of XΦ is a is a path fragment qq′ with
▸ q ∈ I and q′ ∈ Post(q)with q′ ⊧ Φ

▸ Algorithm: inspection of direct successors of initial states

Counterexamples for GΦ

▸ Counterexample is initial path fragment q0 q1 . . . qn such that:
▸ q0 , . . . , qn−1 ⊧ Φ and qn /⊧ Φ

▸ Algorithm: backward search starting in ¬Φ-states

▸ A witness of φ = GΦ consists of an initial path fragment of the
form:

▸ q0 q1 . . . qn q
′

1 . . . q
′

r
´¹¹¸¹¹¶

satisfy Φ

with qn = q′r

▸ Algorithm: cycle search in the digraph G = (S, E′)where the set
of edges E′:

▸ E′ = { (q, q′) ∣ q′ ∈ Post(q) ∧ q ⊧ Φ }

Counterexamples forΦUΨ

▸ A witness is an initial path fragment q0 q1 . . . qn with
▸ qn ⊧ Ψ and qi ⊧ Φ for 0 ≤ i < n

▸ Algorithm: backward search starting in the set of Ψ-states

▸ A counterexample is an initial path fragment that indicates a
path π:

▸ for which either

π ⊧ G (Φ ∧ ¬Ψ) or π ⊧ (Φ ∧ ¬Ψ)U (¬Φ ∧ ¬Ψ)
▸ Counterexample is initial path fragment of either form:

▸ q0 . . . qn−1 qn q
′

1 . . . q
′

r
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

cycle
´¹¹¹¸¹¹¹¶

satisfyΦ ∧ ¬Ψ

with qn=q′r or

q0 . . . qn−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

satisfyΦ ∧ ¬Ψ

qn with qn ⊧ ¬Φ ∧ ¬Ψ

Counterexample generation

▸ Determine the SCCs of the digraph G = (S, E′)where

E′ = { (q, q′) ∈ S × S ∣ q′ ∈ Post(q) ∧ q ⊧ Φ ∧ ¬Ψ }

▸ Each path in G that starts in an initial state q0 ∈ I and leads to a

non-trivial SCC C in G provides a counterexample of the form:

q0 q1 . . . qn q
′
1 . . . q

′
r

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
∈C

with qn = q
′
r

▸ Each path in G that leads from an initial state q0 to a

trivial terminal SCC C = {q′ } with q′ /⊧ Ψ

provides a counterexample of the form q0 q1 . . . qn with

qn ⊧ ¬Φ ∧ ¬Ψ

Example

⟨n1 , n2 , y=1⟩

⟨w1 , n2 , y=1⟩ ⟨n1 ,w2 , y=1⟩

⟨c1 , n2 , y=0⟩ ⟨w1 ,w2 , y=1⟩ ⟨n1 , c2 , y=0⟩

⟨c1 ,w2 , y=0⟩ ⟨w1 , c2 , y=0⟩

A (((n1 ∧ n2) ∨ w2)
´¹¹¹¸¹¹¹¶

Φ

U c2
®
Ψ

)

SCC graph

⟨n1 , n2 , y=1⟩

⟨w1 , n2 , y=1⟩ ⟨n1 ,w2 , y=1⟩

⟨c1 , n2 , y=0⟩ ⟨w1 ,w2 , y=1⟩ ⟨n1 , c2 , y=0⟩

⟨c1 ,w2 , y=0⟩ ⟨w1 , c2 , y=0⟩

Complexity

Let TS be a transition system TSwith N states andM transitions

and φ a CTL- path formula.

If TS /⊧ Aφ, then a counterexample for φ in TS

can be determined in timeO(N+M).

The same holds for a witness for φ,

provided that TS ⊧ Eφ.

