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Plan for today

▸ Binary Decision Diagrams

▸ Symbolic model checking



Boolean functions

▸ Boolean functions f ∶ Bn
→ B for n ≥ 0 where B = {0, 1}

▸ examples: f(x1 , x2) = x1 ∧ (x2 ∨ ¬x1), and f(x1 , x2) = x1 ↔ x2

▸ Finite sets are boolean functions
▸ let ∣S∣ = N and 2n−1 < N ≤ 2n

▸ encode any element s ∈ S as boolean vector of length n:

[[ ]] ∶ S→ B
n

▸ T ⊆ S is represented by fT such that:

fT([[ s ]]) = 1 iff s ∈ T

▸ this is the characteristic function of T

▸ Relations are boolean functions
▸ R ⊆ S × S is represented by fR such that:

fR([[ s ]], [[ t ]]) = 1 iff (s, t) ∈R



Transition systems as boolean functions

▸ Assume each state is uniquely labeled
▸ L(s) = L(s′) implies s = s′

▸ no restriction: if needed extend AP and label states uniquely

▸ Assume a fixed total order on propositions: a1 < a2 < . . . < aK
▸ Represent a state by a boolean function

▸ over the boolean variables x1 through xK such that

[[ s ]] = x∗1 ∧ x∗2 ∧ . . . ∧ x∗K

▸ where the literal x∗i equals xi if ai ∈ L(s), and ¬ xi otherwise
⇒ no need to explicitly represent function L

▸ Represent I and→ by their characteristic (boolean) functions
▸ e.g., f→([[ s ]], [[ α ]], [[ t ]]) = 1 if and only if s α−−→ t



Example

s0 s1

s3 s2

a

b{a, b}

∅

▸ States:

state bit-vector boolean function

s0 ⟨0, 0⟩ ¬ x1 ∧ ¬ x2
s1 ⟨0, 1⟩ ¬ x1 ∧ x2
s2 ⟨1, 0⟩ x1 ∧ ¬ x2
s3 ⟨1, 1⟩ x1 ∧ x2

▸ Initial states: fI(x1 , x2) = (¬ x1 ∧ ¬ x2) ∨ (x1 ∧ ¬ x2)



Example (continued)

▸ Transition relation:

f→ ⟨0, 0⟩ ⟨0, 1⟩ ⟨1, 0⟩ ⟨1, 1⟩
⟨0, 0⟩ 0 1 0 1

⟨0, 1⟩ 0 1 1 0

⟨1, 0⟩ 0 1 1 1

⟨1, 1⟩ 1 0 1 1

▸ f→( x1 , x2
²

s

, x′1 , x
′

2
²

s′

) = 1 if and only if s→ s′

f→(x1 , x2 , x
′

1 , x
′

2) = (¬ x1 ∧ ¬ x2 ∧ ¬ x′1 ∧ x′2)
∨ (¬ x1 ∧ ¬ x2 ∧ x′1 ∧ x′2)
∨ (¬ x1 ∧ x2 ∧ x′1 ∧ ¬ x′2)
∨ . . .

∨ (x1 ∧ x2 ∧ x′1 ∧ x′2)



Representing boolean functions

representation compact? sat ∧ ∨ ¬

propositional

formula often hard easy easy easy

DNF sometimes easy hard easy hard

CNF sometimes hard easy hard hard

(ordered)

truth table never hard hard hard hard



Representing boolean functions

representation compact? sat ∧ ∨ ¬

propositional

formula often hard easy easy easy

DNF sometimes easy hard easy hard

CNF sometimes hard easy hard hard

(ordered)

truth table never hard hard hard hard

reduced ordered

binary

decision diagram often easy medium medium easy



Binary decision trees

▸ Let X be a set of boolean variables and < a total order on X

▸ Binary decision tree (BDT) is a complete binary tree over ⟨X , <⟩
▸ each leaf v is labeled with a boolean value val(v) ∈ B
▸ non-leaf v is labeled by a boolean variable Var(v) ∈ X
▸ such that for each non-leaf v and vertexw:

w ∈ { left(v), right(v) } ⇒ (Var(v) < Var(w) ∨ w is a leaf)

⇒ On each path from root to leaf, variables occur in the same

order



Shannon expansion

▸ Each boolean function f ∶ Bn
Ð→ B can be written as:

f(x1, . . . , xn) = (xi ∧ f[xi ∶= 1]) ∨ (¬ xi ∧ f[xi ∶= 0])

▸ where f[xi ∶= 1] stands for f(x1 , . . . , xi−1 , 1, xi+1 , . . . , xn)
▸ and f[xi ∶= 0] for f(x1 , . . . , xi−1 , 0, xi+1 , . . . , xn)

▸ The boolean function fB(v) represented by vertex v in BDT B is:
▸ for v a leaf: fB(v) = val(v)
▸ otherwise:

fB(v) = (Var(v) ∧ fB(right(v))) ∨ (¬Var(v) ∧ fB(left(v)))

▸ fB = fB(v)where v is the root of B



Considerations on BDTs

▸ BDTs are not compact
▸ a BDT for boolean function f ∶ Bb

→ B has 2n leafs

⇒ they are as space inefficient as truth tables!

⇒ BDTs contain quite some redundancy
▸ all leafs with value one (zero) could be collapsed into a single

leaf
▸ a similar scheme could be adopted for isomorphic subtrees

▸ The size of a BDT does not change if the variable order changes



Ordered Binary Decision Diagram

share equivalent expressions [Akers 76, Lee 59]

▸ Binary decision diagram (OBDD) is a directed graph over ⟨X , <⟩
with:

▸ each leaf v is labeled with a boolean value val(v) ∈ {0, 1}
▸ non-leaf v is labeled by a boolean variable Var(v) ∈ X
▸ such that for each non-leaf v and vertexw:

w ∈ { left(v), right(v) } ⇒ (Var(v) < Var(w) ∨ w is a leaf)

⇒ An OBDD is acyclic
▸ fB for OBDD B is obtained as for BDTs



Reduced OBDDs

OBDD B over ⟨X , <⟩ is called reduced iff:

1. for each leaf v,w: (val(v) = val(w)) ⇒ v = w

⇒ identical terminal vertices are forbidden

2. for each non-leaf v: left(v) ≠ right(v)

⇒ non-leafs may not have identical children

3. for each non-leaf v,w:

(Var(v) = Var(w) ∧ right(v) ≅ right(w) ∧ left(v) ≅ left(w)) ⇒ v = w

⇒ vertices may not have isomorphic sub-dags

this is what is mostly called BDD; in fact it is an ROBDD!



Dynamic generation of ROBDDs

Main idea:

▸ Construct directly an ROBDD from a boolean expression

▸ Create vertices in depth-first search order

▸ On-the-fly reduction by applying hashing
▸ on encountering a new vertex v, check whether:
▸ an equivalent vertexw has been created (same label and

children)
▸ left(v) = right(v), i.e., vertex v is a ‘‘don’t care’’ vertex



ROBDDs are canonical

[Fortune, Hopcroft & Schmidt, 1978]

For ROBDDs B and B′ over ⟨X , <⟩we have:

(fB = fB′) implies B and B′ are isomorphic

⇒ for a fixed variable ordering, any boolean function

can be uniquely represented by an ROBDD (up to isomorphism)



The importance of canonicity

▸ Absence of redundant vertices
▸ if fB does not depend on xi, ROBDD B does not contain an xi
vertex

▸ Test for equivalence: f(x1, . . . , xn) ≡ g(x1, . . . , xn)?
▸ generate ROBDDs Bf and Bg, and check isomorphism

▸ Test for validity: f(x1, . . . , xn) = 1?
▸ generate ROBDD Bf and check whether it only consists of a

1-leaf

▸ Test for implication: f(x1, . . . , xn)→ g(x1, . . . , xn)?
▸ generate ROBDD Bf ∧ ¬Bg and check if it just consist of a 0-leaf

▸ Test for satisfiability
▸ f is satisfiable if and only if Bf is not just the 0-leaf



Variable ordering

▸ Different ROBDDs are obtained for different variable orderings

▸ The size of the ROBDD depends on the variable ordering

▸ Some boolean functions have linear and exponential ROBDDs

▸ Some boolean functions only have polynomial ROBDDs

▸ Some boolean functions only have exponential ROBDDs



The even parity function

f(x1, . . . , xn) = 1 iff the number of variables xi with value 1 is even

truth table or propositional formula for f has exponential size

but an ROBDD of linear size is possible



Symmetric functions

f[x1 ∶= b1, . . . , xn ∶= bn] = f[x1 ∶= bi1 , . . . , xin ∶= bin]

for each permutation (i1, . . . , in) of (1, . . . , n)

⇒ The value of f depends only on the number of ones!

Examples: f(. . .) = x1 ⊕ . . . ⊕ xn,

f(. . .) = 1 iff ≥ k variables xi are true

symmetric boolean functions have ROBDDs of size inO(n2)



The function stable with exponential ROBDD

y1y1 y1 y1 y1 y1 y1 y1

x1

1

y3

x2 x2

x3 x3 x3x3

y2

y3

y2 y2 y2

The ROBDD of f(x, y) = (x1 ↔ y1) ∧ . . . ∧ (xn ↔ yn)

has 3⋅2n − 1 vertices under ordering x1 < . . . < xn < y1 < . . . < yn



The function stable with linear ROBDD

x1

y1 y1

x2

y2 y2

x3

y3

1

y3

The ROBDD of f(x, y) = (x1 ↔ y1) ∧ . . . ∧ (xn ↔ yn)

has 3⋅n + 2 vertices under ordering x1 < y1 < . . . < xn < yn



Optimal variable ordering

▸ The size of ROBDDs is dependent on the variable ordering

▸ Is it possible to determine < such that the ROBDD has minimal
size?

▸ the optimal variable ordering problem for ROBDDs is

NP-complete (Bollig & Wegener, 1996)

▸ There are many boolean functions with large ROBDDs

▸ How to deal with this problem in practice?
▸ guess a variable ordering in advance
▸ rearrange the variable ordering during the manipulations of

ROBDDs



Sifting algorithm

(Rudell, 1993)

Dynamic variable ordering using variable swapping:

1. Select a variable xi

2. By successive swapping of xi, determine ∣B∣ at any position for xi

3. Shift xi to its optimal position

4. Go back to the first step until no improvement is made

○ Characteristics:
▸ a variable may change position several times during a single

sifting iteration
▸ often yields a local optimum, but works well in practice



Interleaved variable ordering

▸ Which variable ordering to use for transition relations?

▸ The interleaved variable ordering:
▸ for encodings x1 , . . . , xn and y1 , . . . , yn of state s and t

respectively:

x1 < y1 < x2 < y2 < . . . < xn < yn

▸ This variable ordering yields compact ROBDDs for binary

relations



Negation

x1

x2

x1

x2

x′2

x′1

0

x′2

1

x′1

x′2

x′1

1

x′2

0

x′1

negation amounts to interchange the 0- and 1-leaf



Apply

▸ Shannon expansion for binary operations:

f op g = (x1 ∧ (f[x1 ∶= 1] op g[x1 ∶= 1]))

∨ (¬ x1 ∧ (f[x1 ∶= 0] op g[x1 ∶= 0]))

▸ A top-down evaluation scheme using Shannon’s expansion:
▸ let v be the variable highest in the ordering occurring in Bf orBg
▸ split the problem into subproblems for v ∶= 0 and v ∶= 1, and

solve recursively
▸ at the leaves, apply the boolean operator op directly
▸ reduce afterwards to turn the resulting OBDD into an ROBDD

▸ Efficiency gain is obtained by dynamic programming
▸ the time complexity of constructing the ROBDD of Bf op g is in

O(∣Bf ∣⋅∣Bg ∣)



Algorithm Apply(op, Bf , Bg)

if G(op, v1 , v2) ≠ empty then return G(op, v1 , v2) fi; {lookup in hashtable}

if (v1 and v2 are terminals) then res ∶= val(v1) op val(v2) fi;
else if (v1 is terminal and v2 is nonterminal)

then res ∶= MakeNode(Var(v2),Apply(op, v1 , left(v2))),Apply(op, v1 , right(v2)));
else if (v1 is nonterminal and v2 is terminal)

then res ∶= MakeNode(Var(v1),Apply(op, left(v1), v2)),Apply(op, right(v1), v2));
else if (Var(v1) = Var(v2))

then res ∶= MakeNode(Var(v1),Apply(op, left(v1), left(v2))),
Apply(op, right(v1), right(v2)));

else if (Var(v1) < Var(v2))
then res ∶= MakeNode(Var(v1),Apply(op, left(v1), v2)),Apply(op, right(v1), v2));

else {Var(v1) > Var(v2)}
res ∶= MakeNode(Var(v2),Apply(op, v1 , left(v2)),Apply(op, v1 , right(v2)));

G(op, v1 , v2) ∶= res; {memoize result}

return res



Algorithm Restrict(B, x, b)

▸ For each vertex v labeled with variable x:
▸ if b = 1 then redirect incoming edges to right(v)
▸ if b = 0 then redirect incoming edges to left(v)
▸ remove vertex v, and all vertices only reachable through v
▸ (if necessary) reduce (only above v)



Restrict

x1

x2

x′2

x′1

0

x′2

1

x′1

x1

x′2

x′1

0

x′2

1

x′1

performing Restrict(B, x2 , 1): replace x2 by constant 1



Abstract

▸ Existential quantification over xi:

∃xi . f(x1, . . . , xn) = f[xi ∶= 1] ∨ f[xi ∶= 0]

▸ Naive realization: Apply(∨, Restrict(Bf , xi , 1), Restrict(Bf , xi , 0))

▸ Efficiency gain:
▸ observe that Restrict(Bf , xi , 1) and Restrict(Bf , xi , 0) are equal
up to xi

▸ . . . the resulting ROBDD also has the same structure up to xi
▸ replace each node labeled with xi by the result of applying ∨ on

its children

▸ This can easily be generalized to ∃x1. . . . ∃xk . f(x1, . . . xn)



Example

x1

x2

x′2

x′1

0

x′2

1

x′1

x1

x′2

0 1

x′1

x1

x′1

x′2

0 1

x′2

x′1

x1

0 1

x′2

x′1

ROBBDs Bf (left up), Bf[x2 ∶=0] (right up), Bf[x2 ∶=1] (left down), and B∃x2 . f (right down)



Operations on ROBDDs

Algorithm Output Time complexity Space complexity

Not B¬f O(∣Bf ∣) O(∣Bf ∣)

Apply Bf op g O(∣Bf ∣⋅∣Bg∣) O(∣Bf ∣⋅∣Bg∣)

Restrict Bf[x∶=b] O(∣Bf ∣) O(∣Bf ∣)

Rename Bf[x∶=y] O(∣Bf ∣) O(∣Bf ∣)

Abstract B∃x . f O(∣Bf ∣
2) O(∣Bf ∣

2)

operations are only efficient if f and g have compact ROBDD representations



Symbolic CTL model checking: Computing Sat(Φ)

Require: CTL-formulaΦ in ENF

Ensure: ROBDD BSat(Φ)

switch(Φ):

true : return Const(1);

false : return Const(0);

xi : return ROBDD Bf for f(x1 , . . . , xn) = xi;

¬Ψ : return Not(bddSat(Ψ))

Φ1 ∧ Φ2 : return Apply(∧, bddSat(Φ1), bddSat(Φ2))

EXΨ : return bddEX(Ψ);

E (Φ1 UΦ2) : return bddEU(Φ1 , Φ2)

EGΨ : return bddEG(Ψ)

end switch



Symbolic CTL model checking: The next-step operator

Sat(XΦ) = {q ∈ Q ∣ ∃q′. (q, q′) ∈ E and q′ ∈ Sat(Φ) }

Require: CTL-formulaΦ in ENF

Ensure: ROBDD B
Sat(X Φ)

B ∶= bddSat(Φ); {Sat(Φ)}
B ∶= Rename(B, x1 , . . . , xn , x

′

1 , . . . , x
′

n);
B ∶= Apply(∧, B→, B); {Pre(Sat(Φ))}
return Abstract(B, x′1 , . . . , x

′

n)



Symbolic CTL model checking: Existential until

Require: CTL-formulasΦ, Ψ in ENF

Ensure: ROBDD B
Sat(E (ΦU Ψ))

var N, P, B ∶ ROBDD;

N ∶= bddSat(Ψ);
P ∶= Const(0);
B ∶= bddSat(Φ);
while (N ≠ P) do

P ∶= N; {Ti}

N ∶= Rename(N, x1 , . . . , xn , x
′

1 , . . . , x
′

n);
N ∶= Apply(∧, B→,N); {Pre(Ti)}
N ∶= Abstract(N, x′1 , . . . , x

′

n);
N ∶= Apply(∧,N, B); {Pre(Ti) ∩ Sat(Φ)}
N ∶= Apply(∨, P,N); {Ti+1 = Ti ∪ . . . . . .}

end while

return N



Symbolic CTL model checking: Possibly always

Require: CTL-formulaΦ in ENF

Ensure: ROBDD B
Sat(EG Φ)

var N, P, B ∶ ROBDD;

B ∶= bddSat(Φ);
N ∶= B;

P ∶= Const(0);
while (N ≠ P) do

P ∶= N; {Ti}

N ∶= Rename(N, x1 , . . . , xn , x
′

1 , . . . , x
′

n);
N ∶= Apply(∧, B→,N); {Pre(Ti)}
N ∶= Abstract(N, x′1 , . . . , x

′

n);
N ∶= Apply(∧,N, B); {Pre(Ti) ∩ Sat(Φ)}
N ∶= Apply(∧, P,N); {Ti+1 = Ti ∩ . . . . . .}

end while

return N


