Verification

Lecture 6

Martin Zimmermann

COlm UNIVERSITAT
"H"IHIIMI DES
JI SAARLANDES

REVIEW: model checking

requirements
Formalizing

property

specification

Modeling

Model Checking

violated +
counterexample

insufficient
memory

Plan for today

» Linear-time properties
» Safety
» Liveness
» Fairness

Linear-Time Properties

REVIEW: executions

» A finite execution fragment p of TS is an alternating sequence
of states and actions ending with a state:

p = Soa1S10z ...apnSy such thats; s, forall 0 <i < n.

» An infinite execution fragment p of TS is an infinite, alternating
sequence of states and actions:

p = SoaS1a28 a3. .. such thats; = s;,; forall 0 <.

» An execution of TS is an initial, maximal execution fragment
» a maximal execution fragment is either finite ending in a
terminal state, or infinite
» an execution fragment is initial if 5o € /

State graph

» The state graph of TS, notation G(TS), is the digraph (V,E)
with vertices V = Sand edges E = {(s,s) e Sx S| s’ € Post(s)}
= omit all state and transition labels in TS and ignore being initial

Post* (s) is the set of states reachable in G(TS) from s

v

Post*(C) = |_J Post™(s) forCcS
seC

v

The notations Pre*(s) and Pre* (C) have analogous meaning
The set of reachable states: Reach(TS) = Post* (/)

v

Path fragments

v

A path fragment is an execution fragment without actions
A finite path fragment 77 of TS is a state sequence:

v

T =598...5p suchthat s;. € Post(s;)forall0<i<nwheren>0

v

An infinite path fragment 7 of TS is an infinite state sequence:

T = 5S9851S2... suchthatsi, € Post(s;) foralli>0

v

A path of TS is an initial, maximal path fragment
» a maximal path fragment is either finite ending in a terminal
state, or infinite
» apath fragmentis initial if sg €/
» Paths(s) is the set of maximal path fragments 7 with first(7) = s

Traces

States themselves are not “observable’, but just their atomic
propositions

» Let transition system TS = (S, Act, —,/, AP, L) without terminal
states

» all maximal paths (and excutions) are infinite
» The trace of path fragment 7 = sgs7.. . is
trace(m) = L(so) L(s1)...
» thetrace of T =59 51...5yis trace(7) = L(so) L(s1) ... L(Sn)

» The set of traces of a set I of paths:

trace(11) = { trace(m) | me 11 }
» Traces(s) = trace(Paths(s)) Traces(TS) = Use Traces(s)
» Tracesq, (s) = trace(Pathsg,(s)) Tracesg,(TS) = Use Tracesg, (s)

Semaphore-based mutual exclusion

PG; : PG, :
noncrit noncrit,
; ! I
\ v
, \ \
/ \ h
/ \ ,
/ \ / \
/ \ / \
| \ | \
I
| |
yi=y+ waity y =yl wait,
\ \
: :
N \ y>0: \ \ y>0
\ \

y=0 means “lock is currently possessed”; y=1 means “lock is free”

Interleaving of transition systems

Let TS; = (S, Acti, =i, 1;, AP;, L;) i=1,2, be two transition systems.
Transition system
TS] ‘H TSZ = (51 X Sz,ACt1 Lt'ACtz, —>,/1 X Iz,AP] L+JAP2, L)

where L((s1,52)) = L1(s51) U La(s2) and the transition relation — is
defined by the rules:

51 8] 53 %5 5

and
(s1,52) -5 (s, 52) (s1,52) =2 (s51,55)

Transition system TS(PG, ||| PG,)

Example traces

Let AP = { crity, crity }
Example path:

o= (m,nyy=1) > (w,nyy=1) - (c,n,y =0) -

(m,n,y=1) > (n,wy,y=1) > (M, ¢,y =0) > ...

The trace of this path is the infinite word:

trace(n) = @@ {crity } @@ { crity } @@ { crity } 3@ { crity } . ..

The trace of the finite path fragment:

T o= (n,nyy=1) > (w,nLy=1 > (w,wy,y=1) -

(wr,c2,y =0) > (wq,n,y =1) > (c1,n2,y = 0)

trace(7w) = @ @@ { crity } & { crity }

Linear-time properties

» Linear-time properties specify the traces that a TS may exhibit
» LT-property specifies the admissible behaviour of system under
consideration
later, a logic will be introduced for specifying LT properties
» Alinear-time property (LT property) over AP is
a subset of (247)”

» finite words are not needed, as it is assumed that there are
no terminal states

» TS (over AP) satisfies LT property P (over AP):
TS=P ifandonlyif Traces(TS) c P
» TS satisfies the LT property P if all its “observable” behaviors are

admissible
» state s € S satisfies P, notation s = P, whenever Traces(s) < P

How to specify mutual exclusion?

"Always at most one process is in its critical section”

» Let AP = { crity, crity }
» other atomic propositions are not of any relevance for this
property
» Formalization as LT property
Pmutex = set of infinite words Ag A1A; ...
with { crity, crit; } ¢ A; forall0 < i
» Contained in Pptex are e.g., the infinite words:

» ({crity } { crity })“ and {crity } { crit; } {crity} ... and @ @ @ ...

» but not { crity } @ { crity, crit, } ... or
@ {cit },ao{ crity, crit } 3

Does the semaphore-based algorithm satisfy Ppytex?

Does the semaphore-based algorithm satisfy Pp,ytex?

%]

a

SN

Yes as there is no reachable state labeled with { crity, crit; }

{crity } { crit, }

How to specify starvation freedom?

"A process that wants to enter the critical section is eventually able
to do so”

» Let AP = {waity, crity, waits, crity }
» Formalization as LT-property

Prostarve = set of infinite words Ag A A, ... such that:

(oﬂoj.wait,veAj) = (oaoj.crit,-eAj) foreachie {1,2}

there exist infinitely many:
(oﬂoj. wait; € Aj) = (Vk > 0.3j > k. wait; € A})

Does the semaphore-based algorithm satisfy Pnostarve?

Does the semaphore-based algorithm satisfy Ppostarve?

(w1, na2,y=1) (n, wy,y=1)

{m,c2,y=0)

No. Trace @ ({ wait, } { waity, wait, } { crity, wait, }) € Traces(TS), but

?-{ Pnostarve

Trace equivalence and LT properties

Let TS and TS’ be transition systems (over AP) without terminal states:

Traces(TS) < Traces(TS')
if and only if
for any LT property P: TS" = P implies TS = P

Traces(TS) = Traces(TS')
if and only if
TS and TS’ satisfy the same LT properties

Two beverage vending machines

AP = {pay, sprite, beer }

there is no LT-property that can distinguish between these machines

Invariants

» Safety properties ~ “nothing bad should happen” [Lamport 1977]
» Typical safety property: mutual exclusion property
» the bad thing (having > 1 process in the critical section) never
occurs
» Another typical safety property is deadlock freedom
= These properties are in fact invariants
» Aninvariantis an LT property
» that is given by a condition @ for the states
» and requires that @ holds for all reachable states
» e.g., for mutex property ® = —crit; v —crit,

Invariants

» An LT property P;,, over AP is an invariant if there is a
propositional logic formula ® over AP such that:

Pinv = {A0A1A2... € (2AP)‘U | Vj > O.Aj = q)}

» @ is called an invariant condition of P;,,
» Note that
TSE P, iff trace(m) € Py, forall paths win TS
iff L(s) = @ forall states s that belong to a path of TS
iff L(s) = @ forall states s € Reach(TS)
» @ has to be fulfilled by all initial states and

» satisfaction of @ is invariant under all transitions in the
reachable fragment of TS

Checking an invariant

v

Checking an invariant for the propositional formula ®
= check the validity of ® in every reachable state
= use a slight modification of standard graph traversal algorithms
(DFS and BFS)
» provided the given transition system TS is finite
Perform a forward depth-first search
» at least one state s is found with s ¥ ® = the invariance of @ is
violated
» Alternative: backward search
» starts with all states where @ does not hold
» calculates (by a DFS or BFS) the set Uses g2 Pre” (s)
» The time complexity for invariant checking is
O(N*(1+|®])+M)
» where N denotes the number of reachable states, and
» M =Y s |Post(s)| the number of transitions in the reachable
fragment of TS

v

Safety properties

» Safety properties may impose requirements on finite path
fragments
» and cannot be verified by considering the reachable states only
» A safety property which is not an invariant:
» consider a cash dispenser, also known as automated teller
machine (ATM)
» property “money can only be withdrawn once a correct PIN has
been provided”
= not an invariant, since it is not a state property
» But a safety property:

» any infinite run violating the property has a finite prefix that is
Hbadll
» i.e., in which money is withdrawn without issuing a PIN before

Safety properties

» LT property Py, over AP is a safety property if
» forallo € (2Ap)w \ Psqte there exists a finite prefix o of ¢ such
that:
Psate N {a’ € (ZAP)w | 7 is a prefix of 0’} =@

all possible extensions of &

» any such finite word 7 is called a bad prefix for Pygf,
» Minimal bad prefix for Pyfe:

» is a bad prefix @ for P4 for which no proper prefix of ' is a bad
prefix for Psgfe
= minimal bad prefixes are bad prefixes of minimal length

Safety properties and finite traces

For transition system TS without terminal states

and safety property Pqfe:

TS = Pgafe if and only if Tracesg, (TS) n BadPref(Psqse) = @

where BadPref(Py,) is the set of bad prefixes of Py

Finite trace equivalence and safety properties

For TS and TS’ be transition systems (over AP) without terminal states:

Tracess;, (TS) < Tracesg, (TS')
if and only if
for any safety property Psare : TS' E Psare = TS E Pyare

Tracesg, (TS) = Tracesg, (TS')
if and only if
TS and TS' satisfy the same safety properties

Why liveness?

» Safety properties specify that “something bad never happens”
» Doing nothing easily fulfills a safety property
» as this will never lead to a “bad” situation
= Safety properties are complemented by liveness properties
» that require some progress
» Liveness properties assert that:
» "something good” will happen eventually [Lamport 1977]

Liveness properties

LT property P, over AP is a liveness property whenever

pref(Pye) = (2°)"

» Aliveness property is an LT property
» that does not rule out any prefix
» Liveness properties are violated in “infinite time”

» whereas safety properties are violated in finite time

» finite traces are of no use to decide whether P holds or not

» any finite prefix can be extended such that the resulting infinite
trace satisfies P

Example liveness properties

» “If the tank is empty, the outlet valve will eventually be closed”
» “If the outlet valve is open and the request signal disappears,
the outlet valve will eventually be closed”
» “If the tank is full and a request is present,
the outlet valve will eventually be opened”
» “The program terminates within 31 computational steps”
= a finite trace may violate this; this is a safety property!

» “The program eventually terminates”

Liveness properties for mutual exclusion

» Eventually:
» each process will eventually enter its critical section
» Repeated eventually:
» each process will enter ist critical section infinitely often
» Starvation freedom:
» each waiting process will eventually enter its critical section

how to formalize these properties?

Liveness properties for mutual exclusion

P={AoA1Ay...|AjCAP & ... } and AP = {waity, crit,, waity, crit, }
» Eventually:

(3 >0.crity e Aj) A (3j>0.crit; € A))
» Repeated eventually:
(oaoj > 0. crity € Aj) A (0301 > 0. crity € Aj)

» Starvation freedom:
Vj>0. (wait e A; = (3k >j.crity e Ac)) A
Vj>0. (wait, € Aj = (3k > j.crity € Ay))

Safety vs. liveness

» Are safety and liveness properties disjoint?
» Is every linear-time property a safety or liveness property? No.

“the machine provides infinitely often beer
after initially providing sprite three times in a row”

» This property consists of two parts:
> it requires beer to be provided infinitely often
= as any finite trace fulfills this, it is a liveness property
> the first three drinks it provides should all be sprite
= bad prefix = one of first three drinks is beer; this is a safety
property
» Property is thus a conjunction of a safety and a liveness

property

does this apply to all properties?

Decomposition theorem

For any LT property P over AP there exists
a safety property Ps.r and a liveness property Pje

(both over AP) such that:

P= Psafe N Plive

= safety and liveness provide an essential characterization of LT
properties

Classification of LT properties

safety and liveness property

I
I
!
o
8

safety properties __-- liveness properties

_ - --- neither liveness
nor safety properties

invariants ~

Summary LT properties

» LT properties are sets of infinite words over 247 (= traces)

» Aninvariant requires a condition @ to hold in any reachable
state
» Each trace refuting a safety property has a finite prefix causing
this
» invariants are safety properties with bad prefix ®*(-®)
= safety properties constrain finite behaviors
» A liveness property does not rule out finite behaviour
= liveness properties constrain infinite behaviors
» Any LT property is equivalent to a conjunction of a safety and a
liveness property

